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FUNCTIONAL BASES FOR SUBSETS OF C* (X) 

B. J. Ball and Shoji Yokura 

Let X be a completely regular space and, as usual, let 

C(X) denote the set of all continuous real valued functions 

on X and C*(X) the set of all bounded functions in C(X). 

If G c C*(X), we will call a subset F of G a functionaZ 

base for G if each element of G can be expressed as a con

tinuous function of elements of F; if n is a cardinal number 

and each element of G is a continuous function of (at most) 

n elements of F, then F is said to be a functional base of 

order n for G. 

Making strong use of results from our previous papers 

[1,2], we first show that if G determines a compactification 

•
of X (in the sense of [1]), then every functional base for 

G determines the same compactification; the converse is 

false. If, however, G generates a compactification of X, 

then a subset F of G is a functional base for G if and only 

if F generates the same compactification of X. 

We next assume that X is compact and consider functional 

bases for the set C(X) of aZl real functions on X. For each 

compact Hausdorff space X, let m(X) (resp., mn(X)) denote 

the minimum cardinality of the functional bases (of order 

n) for C(X). We show that m(X), if infinite, is equal to 

the weight of X, and that the inequalities mn(X) ~ mk(X) 

> m(X) hold whenever n < k. This latter condition implies 

that there are at most a finite number of distinct values 

for mn(X), n ranging over all cardinal numbers. Assuming 
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the generalized continuum hypothesis, there are at most two 

such values, namely m(X) ana IC(x)l. The continuum hypothe

sis gives the same result for mn(X), n = 1,2,···; indeed, 

the continuum hypothesis is equivalent to the assertion 

that ml(X) = IC(x)1 if X is not embeddable in R. 

1.	 Definitions and Preliminary Results 

Most of our usage is standard or agrees with that of 

[1,2]. We repeat here the ~ost often used definitions and 

conventions, along with a few basic results. 

Unless the contrary is specifically stated, all spaces 

considered will be assumed to be completely regular. 

Lower case italic letters always denote cardinal num

bers; if A is a set, IAI denotes the cardinal number of 

A. 

For each cardinal number n, represent Rn as IT R , 
vEN v 

where INI = nand R = R for each v, and let 1T : Rn -+ R v v 

thdenote the v projection map. If g is a function from X 

into Rn
, then TI g: X -+ R is called the v th ~oordinate0 v 

function of g and will be denoted gv. It is well known that 

g: X -+ Rn is continuous if and only if g : X -+ R is continuous 
v 

for each v E N. Moreover, if X is a subspace of X, then a map 

g: X -+ Rn is an extension of a map g: X -+ Rn if and only if 

for each v E N, 9 : X-+ R is an extension of gv: X -+ R. v 

This	 fact will be used frequently, often without mention. 

If F = {fvlv E N} ~s an indexed subset of C*(X), then 

the evaZuation map of F ~orresponding to the given indexing 

is the map e F : X -+ Rn,n = INI, defined by the condition 



3 TOPOLOGY PROCEEDINGS Volume 7 1982 

TI 0 e = f for each v E N. Note that this definition is v F v 

more general than the usual one. In particular, e is not
F 

uniquely determined by F, nor is its range, since the index

ing need not be 1-1.' (Our "evaluation map" is the same as 

the diagonaZ map ~ f defined by Engelking [4, p. 110].) 
vEN v 

A compactification aX of X is said to be genepated by 

a set F c C*(X) if (some) e is an embedding and aX isF 

equivalent to eF(x); X is detepmined by F if aX is the small

est compactification of X to which each element of F extends. 

IfaX is either generated or determined by F, then aX will 

be denoted aFX. 

If X and Yare topological spaces, then C(X,Y) denotes 

the set of all maps (continuous functions) from X into Y; 

C(X,R) is denoted CEX), and C*(X) denotes the set of all 

bounded functions in C(X). If F c C(X,Y) and G c C(Y,Z), 

then G F = {g 0 flf E F, g E G}.0 

For each compactification aX of X, C is the set of a 

all elements of C*(X) which have extensions to aX; if 

f E C ' the extension of f to aX is denoted by fa and if a 

FeCa' then Fa = {falf E F}. 

1.1 Definition. If F C: C*(X) and n is a cardinal 

number, then F {etJ: X -+ Rnl gv E F for each v E N} and 
n 

Mn(F) = C (Rn,R) 0 F {cP 0 gig E F cP: Rn -+R }.n n' 

As in [2], we let e F : X -+ Rm be an arbitrarily chosen 

evaluation map for F and let MF = {cP e F IcP: R m -+ R }. (It0 

is shown in [2] that M is independent of the choice ofF 

e .) We can now give a more precise definition of functiona~
F

bases. 
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1.2 Definition. A functional base (of order n) for
 

a subset G of C*(X) is a set F such that F c G c MF (resp.,
 

F C G C Mn(F» • 

1.3 Lemma. For each F c C*(X) and each cardinal number 

n, Mn(F) =U{MGIGCF, IGI < n}. 

Proof. If p =<1> g E Mn(F), where g E F nand0 

n 
<p': R -+ R, then g is an evaluation map for the set G = {g

\) 
I 

\) EN}, so P E MG. Since GC F and IGI ~ n, it follows that 

Mn(F) C U{MGIG c F, IGI ~ n}. 

Conversely, suppose p E MG, where Gc F and IGI ~ n. 

Since IGI 2 n, there is an evaluation map e G for G with 

range Rn 
• Since p E M

G
, = <p o e G for some <p: Rn ~ R.P
 

Since Gc F, e E F and hence p E Mn(F). It follows that

G n 

<lJ{MGI G c F, IGI < n} c Mn(F) • 
-

The following result is an immediate consequence of
 

Lemma 1.3.
 

1.4 Corollary. For any F c C*(X), 

(i) n ~ k implies Mn(F) c Mk(F) 

(ii) Mn(F) C M for all n
F 

(iii) if n~ IFI, then Mn(F) = MF• 

As in [1,2], we let SeX) denote the collection of all 

subsets of C*(X) which separate points and closed sets, 

[(X) the collection of all those which generate compactifi 

cations of X and O(X) those which determine compactifications 

of X. We alwa¥s have Sex) c [(X) c O(X) and, in general, 

both inclusions are proper. 
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2.	 Functional Bases for Elements of VeX) and [eX) 

Not much can be said about functional bases for 

arbitrary subsets of C*(X), but results from [1,2] lead to 

some properties of functional bases for sets which determine 

or generate compactifications. 

2.1 Lemma. IfaX is a compactification of X and 

In particular, M c C and M = MF	 a F Fa 

M
n	 

F
n 

0Proof· Suppose p = cp 9 E (F) , where 9 E and 

n a acp:R -+ R. If 9 : aX -+R is defined by setting (g )v = (gv)a 

for every v E N, then 9
a 

is an extension of 9 and hence 

cp 0 ga is an extension of p = cp g, so P E C. Since ga,0 
a 

as defined above, belongs to (Fa) d for h E (Fa)n' an any n' 
ahlx E Fn , it easily follows that (Mn(F))a Mn(F ). Since 

M = MIFI by Lemma 1.4, we also have MF C C and M~F u 

for any F c Ca. 

2.2 Theorem. If G is a subset of C*(X) which deter

mines ~ compactification of X, then every functional base 

for G determines the same compactification of x. 

Proof. Suppose G determines the compactification aX 

Ga
of X	 and F c G eMF. By [1, Theorem 2.1], G c C and 

a 

separates points of aX - X. Since F c G, F c C and hence a 
a

by Lemma 2.1, MF c Ca. Since G eMF' G c M~ and hence M~ 

separates points of aX - X since Ga does so. Applying 

[1, Theorem 2.1] again, we conclude that M determines theF 

compactification aX. By [1, Theorem 3.2], F determines the 

same	 compactification that M does, so aFX aX.F 
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Remark. It is not true that if G determines a compacti 

fication of X, then every subset of G which determines the 

same compactification of X is a functional base for G. To 

see this, let X be locally compact and let G = C ' where wX w 

is the one-point compactification of X. If F = if}, where 

f is a con~tant map of X into R, then F c G and aFX = wX = 

aGX, but M = {k: X -+ R Ik is constant} and G et M
F

. We doF 

have the following result, however. 

2.3 Theorem. If G is a subset of C*(X) whiah gen

erates a aompaatifiaation aX of X, then a subset F of G is 

a fun~tionaZ base for G if and onZy if F generates aX. 

Proof. Suppose first that F is a functional base for 

G; i.e., F c G eMF. It follows from [2, Theorem 2.3] 

Gathat	 G c C and separates points of aX. Since F c G,
a 

F c C a and hence by Lemma 2.1 MF c Ca. Since G c M
F 

and 

a
G separates points of aX, M~ separates points of aX and 

since M~ = M by Lemma 2.1, M separates points of aX. 
Fa Fa 

This readily implies that Fa also separates points of aX. 

Applying [2, Theorem 2.3] again, we conclude that F E t(X) 

and aFx = aX = aGx, as required. 

Now suppose F c G, F E t(X) and aF(X) = aGX aX. By 

[2, Theorem 2.4], we have M = C Hence G c C
F a a 

F is a functional base for G. 

3.	 Cardinalities of Functional Bases for Ca 

Given a compactification aX of a complete!y regular 

space X, the minimum cardinality of the functional bases 

(of order n) for all of C would seem to be of some interesa 



TOPOLOGY PROCEEDINGS Volume 7 1982 7 

Since it follows immediately from Lemma 2.1 that a set 

F C Ca is a functional base (of order n) for Ca if and only 

if Fa is a functional base (of order n) for C(aX), it is 

sufficient to restrict attention to the case in which X is 

compact. 

3.1 Definition. For each compact Hausdorff space X, 

m(X) = min{IFI: M = C(X)} and for each cardinal number n,F 

m (X) =min{IFI: Mn(F) =C(X)}.n 

Additionally, for each F c C(X) we let MOO (F) 

and let moo (X) = min{IFI: Moo (F) = C(X)}. 

We first note that if n < k, then by Lemma 1.4 

Mn(P) C Mk(P) C Mp for every F C C(X) and hence mn(X) > 

mk(X) > m(X). Since for every positive integer n, Mn(F) c 

00 Ko
M (F) c M (F), we also have mn(X) ~ moo(X) ~ ~ (X), 

o 

n = 1,2,···. In particular, since there does not exist an 

infinite decreasing sequence of cardinal numbers, there are 

only a finite number of distinct values for mn(X), n ranging 

over all cardinal numbers. Moreover, if n
1 

= IC(X) I, then 

for each F c C(X), IFI 2 n 1 and hence by Lemma 1.4 
n 

M l(F) = M and therefore m(X) = m (X). Thus m(X)F n
1 

min{mn(X) }. 

3.2 Theorem. For each compact Hausdorff space X and each 

cardinal number n, X is embeddable in Rn (and hence in In) 

if and only if m(X) < n, and this is true if and only if 

m (X) < n. n -


Proof. If m(X) < n, there is a subset F of C(X) such
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that IFI ~ nand MF = C(X). Since IFI ~ n, there is an 

nevaluation map e F for F with range R . Then MF = {¢ eFI 

Rn
¢: ~ R} = c (X) • 

If a and b are distinct elements of X, there is a map 

h:	 X ~ R with h(a) ~ h(b). Since h = ¢ 0 e
F 

for some 

Rn 
¢ : ~ p, it follows that ep(a) ~ ep(b). Hence e p : X ~ Rn 

is injective and therefore is an embedding since X is com

pact. 

RnConversely, suppose f: X ~ is an embedding and let 

p = {f Iv EN}. If h E C(X), the map h f-l: f(X) ~ R can0 
v 

be extended to a map ¢: Rn 
~ R, so h = ¢ 0 f. Since f is 

an evaluation map for F, it follows that h EMF. Hence 

C(X) C M and since also M C C(X), we have M = C(X).p p p 

Hence m(X) ~ IFl < n. 

With regard to the second assertion of the lemma, 

since m(X) ~ mn(X) for every n, mn(X) ~ n certainly 

implies m(X) ~ n. Por the converse, suppose m(X) ~ nand 

let F be a subset of C(X) such that Ipl ~ nand M = C(X).F 

Since n ~ IFI, Lemma 1.4 implies that Mn(F) = M ' andp 

hence m (X) ~ IF I ~ n.n 

3.3 Corollary. For every compact Hausdorff space X, 

m(X) = min{nlx is embeddable in In}; in particular, if 

m(X) is infinite, then m(X) is the weight of x. 

The preceding theorem and its corollary imply that a 

compact Hausdorff space X is metrizable if and only if 

m (X) is countable. We next show that X is metrizable
K 

o 

and finite dimensional if and only if moo (X) is countable. 
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If X and Yare topological spaces, we let C(X,Y) denote, 

as usual, the set of all continuous functions from X to Y. 

If X, Y, Z are topological spaces, we will say that a set 

F c C(X,Z) is generated by a set G c C(X,Y) if every ele

ment of F factors through Y with first factor in G; i.e., 

for each f: X + Z in F, there is a g: X + Y in G and an 

h: Y + Z in C(Y,Z) such that f = hog. 

3.4 Theorem. A compact Hausdorff space X is embed

dable in a normal space Y if and only if C(X) is generated 

by a countable subset G of C(X,Y). 

Proof. Suppose g: X + Y is an embedding. It follows 

as in the proof of Theorem 3.2 that C(X) = {~ 0 gl~: Y + R}, 

and hence C(X) is generated by G = {g} c C(X,Y). 

Conversely, suppose G = {gl,g2'···} is a countable 

subset of C(X,Y) which generates C(X,R). Suppose no element 

of G is injective. For each i, let ai,b be distincti 

points of X such that gi(ai ) = gi (bi ), and let 

A = U {a.,b.}. Then A is a countable subset of X and no 
i=l 1 1 

element of G is 1 - 1 on A. By [5, Theorem 1] or [3, 

Theorem 5.32], there is a map f: X + R which is 1 - 1 on 

A and which therefore cannot be of the form h gi for any0 

g. E G, contrary to the assumption that G generates C(X,R).
1 

Hence some element of G must be injective and since X is 

compact, it follows that X is embeddable in Y. 

3.5 Theorem. A compact Hausdorff space X is metriza

ble and finite dimensional if and only if moo(X) is countabZe. 

Proof. Suppose moo (X) < K and let F be a countable o 
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subset of C(X) such that MOO (F) = C(X). Let Y = ~{y In = 
n 

1,2,---} be the topological sum (disjoint union) of spaces 

RnY , with Y ~ for each n. For each n, let jn: Rn -+ Y n n 

be an injection with j (Rn
) = Y ' and let G = {j glnnoon n 

9 E F}. Finally, let G U G. Since F is countable,
n n=l n 

each F is countable and it follows that G is countable. n 

If h E C(X), then since MOO (F) = C(X), h E Mn(F) for 

0some nand therefore h = <P 9 for some 9 E F and some 
n
 

Rn
 ep : -+ R. Since Y is a closed subset of the normal spacen 

Y, the map <P 0 
.-1 

: Y -+R can be extended to a mapI n n 
ep , : Y -+ R • Since <P ' jn 9 = <P g = hand jn g E G,0 0 0 0 

it follows that G generates C(X). Hence by Theorem 3.4, 

X is embeddable in Y. 

Since X is compact and each Y is open in Y, X isi 
k 

embeddable in U Y. for some k, which implies that X is 
i=l 1 

metrizable and finite dimensional. 

3.6 Theorem. If n is a positive integer and 

mn(x) 2 K ' then mn(x) < n.o 

Proof. If F is a countable subset of C(X) such that 

~(F) = C(X), then F is a countable set of maps of X into 
n 

Rn which generates C(X) and thus, by Theorem 3.4, X is 

nembeddable in R . Theorem 3.2 then implies that mn(X) < n. 

3.7 Theorem. For each positive integer n, mn(X) is 

either finite or uncountable, and if mn(X) is finite, then 

mn(x) = m(x); the same is true of moo(X). 

Proof. tt follows directly from Theorem 3.6 that 

mn(x) is either finite or uncountable, and Theorem 3.5 
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implies that if moo(X) is countable, then mk(X) is finite 

for some positive integer ki since mk(X) ~ moo(X), it fol

lows that moo (X) is finite if it is countable. 

Now suppose mn(X) is finite for some positive integer 

n. Since mn(X) > m(X), m(X) is also finite, say m(X) = no. 

By Theorem 3.2, X is embeddable in Rno and hence m (X) < n • 
no 0 

Since no < n, m (X) > mn(X). Thus m(X) n > m (X) > 
n o noo 

m (X) • 

If moo(K) is finite, then by Theorem 3.5 mn(X) is finite 

for some positive integer n. Applying the preceding argu

ment, we have 

The preceding theorem shows that for each positive 

integer n, mn(x) is either uncountable or equal to m(X), 

and similarly for moo (X) • Assuming the continuum hypothesis 

(CH), we can be more specific about the "possible values of 

mn(x) and moo (X) . 

3.8 Theorem (CH). For each positive integer n~ eithep 

mn(X) = m(X) or mn(X) = IC(X) I; the same is true of moo(X). 

Proof. First let m = moo(X)i by the preceding result, 

if m ~ K then moo (X) = m(X), so assume m > K • o o 

For each positive integer n, Mn(F) = {~ 0 gig ~ F n 

and <P E C(Rn,R)} and hence IMn(F) I < IF I · \C(Rn,R) I. 
- n 

nSince IF I = IFin = m = m and IC (Rn , R) I = c, we have 
n 

nIM (F) I .:.. m • c for n 1,2, • • • . Since C (X) Moo (F) = 
00 

n 
U M (F), IC (X) I ~ L m • c = K • m • c = m • c. Sinceon=l n=l 

m > K by hypothesis, CH implies that m > c and hence o 
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m· c = m. Thus IC (X) I ~ m and since FcC (X) and 

IFI = m, m~ IC(X)I. Hence m= IC(X)!. 

The argument to show that m	 (X) > H implies
n 0 

mn(X) = IC(X) I is similar but simpler. 

Assuming the generalized continuum hypothesis (GCH) 

gives an analogous result fo~ mn(X), n an arbitrary cardinal. 

We will need the following easy lemma. 

3.9	 Lemma. If X is an infinite compact Hausdorff 

w space of weight w" then IC (X) I ~ 2 and hence for every n~ 

wmn(X) < 2 • 

Proof. Since X has a basis of cardinality w, there 

is a dense subset n of X with Inl ~ w. Since any continu

ous function on X is determined by its values on n, it 

follows that \C(X) I ~ 2w
. Since mn(X) ~ IC(X) I, mn(X) < 2

w
. 

3.10 Theorem (GCH). For every cardinal number ~ 

either m (X) = m(X) OP m (X) = IC (X) I.n n 

Proof. We may assume that n is infinite. If m(X) is 

nfinite, then X is embeddable in R for some positive inte

ger n and hence mn(X) ~ n. Applying Theorem 3.8, we have 

m(X) = mn(X) ~ mn(X) > m(X), so mn(X) = m(X). Hence we 

may also assume that m(X) is infinite, and therefore 

m(X) = w, the weight of X. 

2wFrom Lemma 3.9 we have > m (X) and since m (X) > 
- n	 n 

2wm(x) = w, > m (X) > w. The generalized continuum 
- n 

hypothesis implies that either mn(X) = w (= m(X)) or else 

wmn(x) = 2 . If mn(X) = 2w
, then since IC(X) I ~ mn(X), 

IC(X) I ~ 2w; since also IC(X) I ~ 2
w 

by Lemma 3.9, it follows 
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3.11 Theorem. If X is either the ordinal space 

[O,W l ] or the one-point compactification of a discrete 

space of cardinality K then mn(X) = K for all cardinall , l 

numbers ~ 

Proof. Consider first the case X = [O,w ], where wI'l 

as usual, denotes the smallest uncountable ordinal. For 

each ~ E [O,w l ), let y~ = x/[~,wl] and let p~: X ~ y~ be 

the quotient map. Since Y~ is a countable compact Hausdorff 

space, it is embeddable in R [3, Theorem 5.40]; for each 

~ E [0 , wI)' let j ~: Y~ ~ R be an embedding and let 

F {j~ p~l~ E [O,w I )}. We will show that MI(F) = C(X).0 

Let h: X ~ R be any element of C(X). It is well 

known, and easy to prove, that h is constant on some seg

ment [~,wl]' with ~. E [O,w l ). For each y E Y~, let 

-1
g(y) = h(p~ (y»; since [~,wl] is the only nondegenerate 

point-inverse of p~ and h is constant on [~,wl]' g is a 

well defined function from Y~ intoR , and since 9 p~ = h,0 

it follows that 9 is continuous. Since j~: Y~ ~ R is an 

embedding, 9 = ep 0 j~ for some ep: R~R. Hence ep 0 j~ 0 p~ 

9 0 p~ = h and since j~ 0 p~ E, F, it follows that 

h E MI(F). Thus C(X) c MI(F), so Ml(F) = C(X). Since 

IFI = Kl , ml(X) 2 Kl · 

By Theorem 3.2, X is embeddable in Im(X) and since 

the weight of X is K it follows that m(X) ~ K Thusl , l . 

for every cardinal number n, Xl ~ ml(X) ~ mn(X) ~ m(X) > Xl' 

so mn (X) = K1 · 
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Now suppose X is the one-point compactification of a 

discrete space K, with IKI = ~l. It is easy to show (e.g., 

by making K or~er isomorphic to [O,w )) that there is a set
l 

S of countable subsets of K with lsi = ~l such that every 

countable subset of K is contained in some element of s. 

For each a E S, X - 0 is compact; let Yo XI (X-o) , let 

X -+ Y be the quotient map and let j : Y -+ R be anPo : 0 0 

0embedding. Let F = { jo polo E S}. Since every map 

h: X -+ R is constant on the complement of a countable set, 

and therefore on the complemeht of some element of S, it 

follows exactly as before that Ml(F) = C(X). Moreover, 

IFI 2 lsi = ~l' so ml(X) ~ ~l· As before, this implies 

that m (X) = ~l for all n. n 

3.12 Remark. It can be shown by induction that for 

each positive integer k, if X is either the ordinal space 

[O,W ] or the one-point compactification of a discrete
k 

space of cardinality ~k' then mn(X) = ~k for all n. We 

have been unable to obtain similar results for larger 

alephs. Construction of such examples might lead to an 

equivalence for GCH similar to the one for CH given in the 

next theorem. 

3.13 Theorem. The continuum hypothesis is equivalent 

to the following proposition: For every compact Hausdorff 

space X, either ml(x) = 1 or ml(X) = IC(X) I. 

Proof. Assuming the continuum hypothesis, we have, 

by the proof of Theorem 3.8, that ml(x) = IC(X) I whenever 

m (x) is uncountable; on the other hand, if ml(X) is1 
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countable, then by Theorem 3.6, ~(X) < 1 and thus 

m (X) = l.
l 

Conversely, applying the given proposition to either 

of the examples of Theorem 3.11 gives Kl = IC(X) I and 

since IC (X) I ~ c for any X, we have Kl ~ c and hence 

K = Co
l 
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