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THE CANTOR INTERMEDIATE VALUE PROPERTY 

Richard G. Gibson and Fred Roush 

J.	 Stallings [9] asked the question: "If one considers 

2
I = [0,1] embedded in I x	 I 1 as I x 0, can a connectivity 

function I ~ X be extended to a connectivity function 

21 ~ X?" J. L. Corne'tte [3] and J. H. Roberts [8] gave 

negative answers to this question. A	 natural question 

2arises: "In order for the extension 1 ~ I of a connectivity 

function I ~ I to be a connectivity function, what is both 

necessary and sufficient?" Toward this end we defined the 

Cantor Intermediate Value Property (CIVP) which is given in 

definition 2. The relationship between the Cantor Intermedi­

ate Value Property and this question is unknown. However we 

2conjecture that if the extension 1 ~ I of a connectivity 

function f: I ~ I is a connectivity function, then f has 

the CIVP. 

In this paper we give the relations between continuous 

functions, connectivity functions, Darboux functions, and 

functions having the CIVP. 

Definition 1. A function f: X ~ Y between spaces X 

and Y is a connectivity function if and only if for each 

connected subset C of X, the graph of f restricted to C, 

denoted by flc, is a connected subset of X x Y. The func­

tion f is a Darboux function if f(C) is connected for each 

connected set C. 
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Definition 2. A function f: I ~ I has the Cantor 

Intermediate Value Property (CIVP) if and only if for any 

Cantor set K in the interval (f(x),f(y)) the interval (x,y) 

or (y,x) contains a Cantor set C such that f(C) c K. 

It is well known that there are Darboux functions which 

are not connectivity functions [1], [2]. Since the projec­

tion map is continuous, each connectivity function is a 

Darboux function. Also there are connectivity functions 

which are not continuous. However, every continuous func­

tion is a connectivity function. To complete the relations 

between these functions we (1) construct a connectivity func­

tion which does not have the CIVP, (2) construct a function 

which has the CIVP but is not a Darboux function, and (3) 

prove that if f: I ~ I is a continuous function, then f 

has the CIVP. 

A Hamel basis for the real numbers is a set of numbers 

a,b,c,··· such that if x is any number then x may be 

expressed uniquely in the form aa + Sb + yc + where 

a,S,y,··· are rational numbers of which only a finite 

number are different from zero. We now construct a Hamel 

basis for the real numbers which is a subset of I and has 

cardinality c in each interval of positive length but con­

tains no Cantor set. 

As stated in [5], Burstin showed the existence of a 

Hamel basis H which intersects every perfect set of real 

nurr~ers. Let p be in H and let Hip be the elements of H 

divided.by p. Then 1 is the only rational number in Hip 

and Hip is a Hamel basis for the reals. 
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Lemma 1. Hip intersects every perfect subset of the 

reaZs. 

Proof. Suppose P is a perf~ct set. Then pP is a per­

fect set and pP n H ~~. Let y be in H and a be in P such 

that pa = y. Then a = yip is in Hip. So a is in P n Hip. 

Let G = {y - [y]: y is in Hlp and y ~ I} U {I} where 

[y] is the greatest integer less than or equal to y. Then 

G is a subset of I. Since Hip n I is a subset of G and 

intersects every perfect subset of I, G does also. Also G 

is a Hamel basis for the reals. 

Lemma 2. G contains no perfect subset. 

Proof. Suppose P is a perfect subset of G. Then 

choose a rational nUITIDer q such that q lies between two 

points of P. So q ~ 1. Let M = P n [O,q] and let N = P n 
1[q,l]. Now M and N are perfect sets. Assume q ~~. 

Then M + (l-q) is a perfect subset of I. So there exists 

an x in G such that x is in M + (l-q). Let x = y + (l-q) 

where y is in M. Since x - y + (q-l) 0, it follows that 

l,x,y are linearly dependent which is a contradiction. 

Similarly we have a contradiction, if q > ~. 

Lemma 3. Every Cantor set contains c disjoint sub-

Cantor sets. 

Proof. Let K be a Cantor set. Then for each x in K, 

{x} x K is a Cantor set. If x ~ y, then ({x} x K) n 

({y} x K) =~. Thus K2 contains c disjoint sub-Cantor sets. 

Since K2 is a Cantor set and any two Cantor sets are homeo­

morphic, K contains c disjoint sub-Cantor sets. 
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Since a Cantor set contains c disjoint sub-Cantor sets, 

if a set meets every perfect subset in an interval it has 

cardinality c there. Thus G has the desired properties. 

The First Example. Let f = {(x,O): x is not in G}.l 

Let K be the collection of closed subsets of I x I such that 

ITX(K) has cardinality c for each K in K where TI is the x 

x-projection. Using transfinite induction, select a subset 

f 2 of 1 x I such that 

(1) f 2 intersects each element of K and 

(2) if x and yare in f 2 , then TIx(x), TIx(y) are in G 

and ITx(x) ~ TIx(y). 

Let f f l U f 2 U {(t,l): t is in I - TIx(f l U f 2 )}. Then 

I and f is the graph of a function f: I + I. 

Suppose f is not a connectivity function. Then f is 

the sum of two mutually separated sets A and B and there 

exists two mutually exclusive open sets U and V in 1 x 1 

such that A c U and B c V. Let K = I x I - U U V. Then K 

contains a continuum L that separates I x I. Choose points 

P and Q in L such that TIx(P) ~ TIx(Q). Then there exists 

(z,O) in f l and E > ° such that 
2(1) the disc {(xl ,x ) E 1 : IXI - zl < 2£ and2

x 2 < 2£} n K = ~ and 

(2) the interval {xl E 1 : IXI - zl < 2£} is between 

TIx(P) and TIx(Q). 

Let S = {(xl ,x2 ) E 12 : z + £ 2. xl < z + 2£ and 0 < x2 2. I}. 

Then K n S c 12 is closed and (K n S) n f = ~. So TIx(K n S) 

has cardinality less than c. Thus there exists a u such 

that z + £ < U < z + 2£ and u is not in TIx(K n S). Hence 
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{ (u,t): 0 ~ t 2 I} separates P from Q in 12 and does not 

intersect L. This is a contradiction. Hence ITx(P) = ITx(Q) 

and L is a proper subset of a vertical interval of I. So 

2L does not separate r . This is a contradiction. Therefore 

r is connected and f is a connectivity function. 

We now show that f does not 'have the CIVP. Choose

f(x) and fey) in I such that f(x) ~ fey). A~x < yand 

f (x) < f (y). Let C be a Cantor set~/  open interval 

(f(x),f(y». Now G n (x,y) c6I{tains no Cantor set but is 

of cardinality c. So there exists no Cantor set in (x,y) 

which maps into C. 

Definit~on 3. A subset ScI is Cantor dense if and 

only if for any 0 < a < b < 1, [a,b] n S contains a Cantor 

set. 

Lemma 4. I is the cZosure of the union of Cantop 

dense subsets St for each t in I and Sr n Ss _ if r ~ s. 

Proof. Let KI,1 be a Cantor set in [o,~] and let KI ,2 

1be a Cantor set in [2,1] such that Kl,l n Kl ,2 _. 

Let K2,~ be a Cantor set in [O,}], let K2 ,2 be a Cantor 

. [1 1] 1 b C . [1 3] d 1set ln ~,~, et K2 ,3 e a antor set ln ~,~, an et 

K2 ,4 be a Cantor set in [i,l] such that the collection 

K 1 =1,2 or m == 1,2,3,4 are pairwise disjoint.I,m
 

Continuing this process, let K 1 be a Cantor set in
 n, 

[O,1/2n ], K ,2 be a Cantor set in [1/2n ,2/2n ], .~., and n 

let K be a Cantor set in [(2n-l)/2~,1] such that 
n,2n 

Kl,m n Kp,q = ~, if 1 ~ p or m ~ q. 

Now decompose each Kl,m into c disjoint Cantor sets 
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t 
sets K for each t in I. Let S = U Kt Then St isl ,m t I,m I,m· 

Cantor dense in I. Since St is dense in I, the closure of 

UtS is equal to I.t 

The Second ExampZe. Let g: I + {irrational numbers in 

I} be 1 - 1 and onto. Define f(x) g(y) where x is in S . 
Y 

If x is not in S for each y in I, let f(x) = o. y 

Let a and b be in I such that a < b. Suppose f(a) < 

f(b). Let K be a Cantor set in (f(a) ,f(b)) and let z be an 

irrational number in K. Let w = g-l(z). Consider S. If w 

x is in Sw' then f(x) = g(w) z. Thus Sw maps into K. By 

Cantor density there is a Cantor set C c Sw n [a,b]. Thus 

!(C) c K and f has the CIVP. 

Clearly f is not a Darboux function. 

Theopem 1. If f: I + I is continuous~ then f has the 

CIVP. 

Ppoof. Assume x and yare in I and x < y. Suppose 

f(x) < f (y) • Let C be a Cantor set in (f(x) ,f(y»). Let 

K = f-1(C) n (x, y) . Since f(x) and f (y) are not in C, x 

and yare not in f 
-1 

(C). Hence K f-l(C) n [x, y] and K 

is closed. Since K is closed and has cardinality c, K con­

tains a Cantor set P. Since f(P) c C we are done. 

Theorem 2. If f: I + I is a cZosed function which 

has the CIVP~ then f is a continuous function. 

Proof. Choose a and b in I such that a < b. Assume 

f(a) < f(b). Suppose f is not a Darboux function. Then 

there exists a y in the open interval (f(a) ,f(b)) such 

that if x is in the interval (a,b), then f(x) ~ y. 
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Choose a positive integer N such that [y - ~,y + ~] is 

a subset of (f(a) ,f(b)). Now for each Cantor set 

C c (f(a),y - ~), there exists a Cantor set K c {a,b) 

such that f(K) c C. Choose p in K. Then f(p) is in 

1(f(a),y - N). Likewise we have a q in (a,b) such that f(q} 

1is in (y + N,f(b)). Assume p < q. 

We can construct a collection C of Cantor sets such n 

that: 

1}(1) C c [y - 1 + N+n c (f(p),f(q)) where nn N+:n'y 

1,2,3,- - -, 

(2) Y is in each C ' n 

(3) x is in [p,q}, f(x ) is in C ' and x ~ x ifn n n n m 

n ~ ro, and 

(4) f(x i ) is not in C if i = 1,2,---,n-1.n 

Now nC = {y} and f(x ) converges to y. There exists a n n 

subsequence {a } of {x } such that an converges to some x n n 

in [p,q} c (a,b). Now {a } U {x} is a closed set. Hence n 

f({a } U {x}) is closed. Since f(a ) converges to y and yn n 

is not in the set f({a } U {x}) we have a contradiction. n 

Therefore f is a Darboux function. 

Since a closeq Darboux function is continuous, f is 

a continuous function. 

We make the following remarks. 

(1) As stated by the referee the function in the first 

example is almost continuous [7}. A function f i~ said to 

be almost continuous if each open set containing f also 

contains a continuous function with the same domain. 

Stallings [9} showed that if the function f is almost 
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continuous and has connected domain, then f is a connec­

tivity function. Examples of connectivity functions which 

are	 not almost continuous are given in [1], [3], [6], and 

[8]. Clearly every continuous function is almost continuous. 

Thus with previous results and this remark the relations 

between continuous, almost continuous, connectivity, Darboux, 

and	 functions having the CIVP are known. 

(2) It follows from lemma 3 that there exists Cantor 

sets which contain no rational numbers. 
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