TOPOLOGY PROCEEDINGS

Volume 7, 1982

Pages 63-69

http://topology.auburn.edu/tp/

CONTINUA THAT ARE LOCALLY A BUNDLE OF ARCS

by

Andrzej Gutek and Jan van Mill

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CONTINUA THAT ARE LOCALLY A BUNDLE OF ARCS

Andrzej Gutek and Jan van Mill

A continuum is a compact connected Hausdorff space.

A continuum is decomposable if it can be represented as a union of two of its proper subcontinua; otherwise, it is indecomposable.

A continuum is *locally a bundle* of arcs if there exists a compact totally disconnected space X such that every point has a neighbourhood homeomorphic to $X \times (0,1)$.

It is rather easy to construct continua that are locally a bundle of arcs. Let X be a space consisting of two sequences with limit points, say

 $X = \{a_n : n \text{ is an integer}\} \cup \{0,3\},$

where $a_n = \frac{1}{n}$ if n is a positive integer and

 $a_n = 3 + \frac{1}{n-1}$ if n is a negative integer or zero.

Let f be a homeomorphism from X onto itself defined by

$$f(0) = 0,$$

$$f(a_n) = a_{n+1},$$

$$f(3) = 3.$$

The space X \times I/f obtained from the product X \times I, where I is the closed unit interval, by identifying for each x \in X the point $\langle x,0 \rangle$ with $\langle f(x),1 \rangle$ is a planar continuum (see the picture).

Remark 1. There exists in the plane an indecomposable continuum that is locally homeomorphic to $C \times (0,1)$, where C denotes the Cantor set.

In Bing's paper [1], on pages 222 and 223 a description is given of an example of such an indecomposable plane continuum Y. Every proper subcontinuum of Y is an arc and Y is locally homogeneous (i.e., for each pair of points p, q of Y there are arbitrarily small homeomorphic open subsets N_p , N_q containing p, q, respectively). Hence, Y is also locally a bundle $C \times (0,1)$.

We are indebted to F. Burton Jones for referring us to this example.

The next two theorems describe continua that are locally a bundle of arcs.

Theorem 1 [3, p. 29]. Let X be a compact totally disconnected Hausdorff space. If a continuum K is locally a bundle $X \times (0,1)$, then K can be obtained as a quotient of the product $X \times I$ by identifying for each $x \in X$ the points $\langle x,e \rangle$ and h(x,e), where h is an involution with no fixed points defined on $X \times \{0,1\}$.

Theorem 2 [2, Corollary on page 552]. Let X be a compact Hausdorff totally disconnected and dense in itself space. If a homeomorphism f from X onto itself is such that for some x in X the set $\{f^n(x): n \text{ is an integer}\}$ is dense in X, then the space $X \times I/f$ obtained from the product $X \times I$ by identifying for each $x \in X$ the points (x,0) with (f(x),1), is an indecomposable continuum.

To insure the existence of homeomorphisms described in the preceding theorem, we use the following:

Theorem 3. Let P and Q be closed and nowhere dense subsets of the Cantor set C, and let h be a homeomorphism from P onto Q. Then there exists an extension h' of h such that h' is a homeomorphism from C onto itself while moreover for some C of C the set {(h')}^n(c): n is an integer} is a dense subset of C.

The first proof of this theorem was published in [4]. Based on the well-known idea of a shift-mapping, we give a short proof of the theorem.

Proof. Let us observe that because P U Q is a nowhere dense subset of C, then there exists a nowhere dense closed subset D of C, which is homeomorphic to C and which is such that P U Q is nowhere dense in D. By the theorem of Ryll-Nardzewski [7, Corollary 2, p. 186] there exists a homeomorphism from D onto itself that is an extension of h.

Thus, without the loss of generality, we can assume that $\mbox{\bf P} = \mbox{\bf Q}.$

Let Z denote the set of integers and let $\ensuremath{\text{C}}^{\mathbf{Z}}$ be the product of countably many copies of the Cantor set.

Let i_p be an embedding of the set P into C^Z defined by

$$i_p(p) = (\cdots, h^{-1}(p), p, h(p), h^2(p), \cdots),$$

where p is the zero-coordinate, $h\left(p\right)$ is the 1-coordinate of $i_{p}\left(p\right)$, and so on.

Because we assume that P = Q, the function i_p is also an embedding of Q.

Let s be the shift-mapping from C^Z onto itself defined by $s((c_n)_{n\in Z}) = (c_{n+1})_{n\in Z}$.

Observe that $s(i_p(p)) = i_p(h(p))$. By the already mentioned theorem of Ryll-Nardzewski there exists a homeomorphism f_p from C onto C^Z such that $f_{p|p} = i_p$ (see the diagram).

The homeomorphism $h' = f_p^{-1} \cdot s \cdot f_p$ is an extension of h. Let A be a countable dense subset of C^Z , i.e., $A = \{ (d_n^i)_{n \in Z} \colon i \text{ is a positive integer} \}. \text{ Let } d \text{ be a point }$ of C^Z such that for any finite subset (x_1, \dots, x_m) of $\{d_n^i \colon i \text{ is a positive integer and } n \in Z\}$ there is a $k \in Z$ such that $d_{k+j} = x_j$ for all $1 \le j \le m$.

The orbit $\{(h')^k(f_p^{-1}(d)): k \text{ is an integer}\}$ is dense in C.

Question 1. Does there exist a planar indecomposable continuum obtained from $C \times I$ by identifying for each $x \in C$ the point $\langle x, 0 \rangle$ with $\langle f(x), 1 \rangle$, for some homeomorphism from C onto itself?

Ch. L. Hagopian proved in [6] that an indecomposable continuum is a solenoid if and only if it is homogeneous and all of its proper subcontinua are arcs.

R. D. Anderson pointed out that there is a continuum on the surface of a torus that is indecomposable, has only arcs as proper subcontinua, is locally a bundle $C \times (0,1)$ and is obtained from the product $C \times I$ by identifying for each $x \in C$ the point (x,0) with (f(x),1), for some homeomorphism f from the Cantor set C onto itself. This continuum is not a solenoid.

The Anderson example can be described in the following way.

Let $C = (\{e^{it}: t \in R\} \times \{0\}) \cup (\{e^{in}: n \text{ is an integer}\} \times \{1\})$, where $i = \sqrt{-1}$. Induce a topology on C by taking the following sets as a basis: $[(\{e^{it}: r \le t < s\} \times \{0,1\}) \cup \{(e^{is},1)\}] \cap C$, where r and s are reals such that $e^{ir} = e^{in}$ and $e^{is} = e^{ik}$ for some integers n and k. It is easy to see that C with this topology is the Cantor set. Define a homeomorphism f from C onto itself by $f(e^{it},j) = (e^{i(t+1)},j)$. The orbit of every point is dense and the space $C \times I/f$ is an indecomposable continuum.

Question 2. Let $/\!\!/$ be the family of all continua that are indecomposable, locally a bundle $C \times (0,1)$, have only

arcs as proper subcontinua, are not solenoids and are obtained from C \times I by identifying C \times {0} with C \times {1} under some homeomorphism. Does the family # contain 2^{ω} non-homeomorphic continua?

Question 3. In [5], an example was found of a homogeneous indecomposable and non-metrizable continuum that has only arcs as proper subcontinua. Are there 2^{ω} non-homeomorphic continua of this type?

Question 4. Let K be a homogeneous indecomposable circle-like continuum that has only arcs as proper subcontinua. Is the continuum K metrizable (and hence a solenoid)?

References

- [1] R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math 12 (1960), 209-230.
- [2] A. Gutek, A generalization of solenoids, Colloquia Mathematica Societatis Janos Bolyai 23. Topology, Budapest (Hungary) 1978, 547-554.
- [3] _____, On compact spaces which are locally Cantor bundles, Fund. Math. 108 (1980), 27-31.
- [4] _____, On extending homeomorphisms on the Cantor set, Topological Structures II, Mathematical Centre Tracts 115 (1979), 105-116.
- [5] ____ and Ch. L. Hagopian, A non-metric indecomposable homogeneous continuum every proper subcontinuum of which is an arc, Proceedings of AMS (to appear).
- [6] Ch. L. Hagopian, A characterization of solenoids, Pacific J. Math. 68 (1975), 425-435.
- [7] B. Knaster and M. Reichbach, Notion d'homogénéité et prolongements des homeomorphies, Fund. Math 40 (1953), 180-193.

Sacramento, California 95819

and

Vrije Universiteit

Subfaculteit Wiskunde

De Boelelaan 1081

Amsterdam, Holland