TOPOLOGY PROCEEDINGS

Volume 7, 1982
Pages 109-118
http://topology.auburn.edu/tp/

PRIMALITY OF CERTAIN KNOTS

by
Kenneth A. Perko, Jr.

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

PRIMALITY OF CERTAIN KNOTS

Kenneth A. Perko, Jr.

This paper proves that the fifteen 4 -bridged examples in J. H. Conway's table of ll-crossing knots [2] are each actually prime. Note that we avoid reliance upon assumptions that the prime knot tables, are complete or that the minimal crossing number is additive. Cf. [8] and [3].

Reproduced herewith are diagrams of the 552 known ll-crossing primes, of which we here consider knots l2, 84, 220, 225, 240, 357, and 426 through 434. Proof of their primality by another method appears in [4].

Proposition. A knot is prime if (1) its bridge number $\mathrm{b}(\mathrm{k}) \leq 4$ and (2) with respect to the homology of its 3-fold dihedral covering spaces (a) no $\mathrm{H}_{1} \mathrm{M}_{3}(\mathrm{k})$ has odd order and (b) the orders of the $\mathrm{H}_{1} \mathrm{M}_{3}(\mathrm{k})$'s have no common factor >3.

Remarks. The first condition may be verified by finding four generators of an entire knot diagram. Compare [l] and [6, p. 606] but beware the concealed conjecture in the latter that bridge number equals the minimal number of Wirtinger generators. The second condition must be verified by calculation of $\mathrm{H}_{1} \mathrm{M}_{3}(k)$ for all possible representations of the knot group on S_{3} [5]. In the case of each of our 15 examples we get two homology groups, Z_{6} and $Z+z_{2}$. Note that the existence of a single noncyclic $H_{1} M_{3}(k)$ implies that $\mathrm{b}(\mathrm{k})>3$ [1].

Proof. It follows from condition (1) and Schubert's Satz 7 [7]--b $\left(k_{1} \# k_{2}\right)=b\left(k_{1}\right)+b\left(k_{2}\right)-1--$ that k is prime unless it has a 2-bridged factor. Assume, arguendo, that $k=(\alpha, \beta) \# k^{\prime}$, where (α, β) is Schubert's normal form notation for 2 -bridged knots. Recall that α is odd and >1. Either 3 divides α or 3 does not divide α. We shall derive a contradiction from each of these two possibilities.

Case A. 3|a. Then k has a 3-fold irregular covering obtained from the s_{3} cover of (α, β) and the constant map on the k ' factor--i.e., that which sends all meridians to a single transposition. The homology of such a cover is the same as that of the double branched cover of the knot k '. But the order of the latter, $\left|H_{1} M_{2}\left(k^{\prime}\right)\right|=\Delta(-1)\left(k^{\prime}\right)$, is well known to be odd, which violates condition (2) (a).

Case B. 3イa. Here every 3-fold irregular cover of k must be the constant map on the (α, β) factor. By a suitable adjoining of relations derived from the k ' factor each such $\mathrm{H}_{1} \mathrm{M}_{3}(\mathrm{k})$ can be shown to admit a surjection on the homology of the 2 -fold cyclic cover of $(\alpha, \beta), H_{1} M_{2}(\alpha, \beta)=Z_{\alpha}$. But this contradicts condition (2)(b). (Indeed, in the case of our 15 examples we get $z_{6} \rightarrow z_{\alpha}$ and $Z+z_{2} \rightarrow z_{\alpha}$ which together imply that $\alpha=3$.)

Thus k can have no 2-bridged factor and is therefore prime.

PRIME KNOTS WITH ELEVEN CROSSINGS
Drawn by Kathryn Perko

References

[1] G. Burde, On branched coverings of S^{3}, Canad. J. Math. 23 (1971), 84-89.
[2] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational problems in abstract algebra, Prof. Conf. Oxford, 1967, 329-358 (Pergamon Press, Oxford, 1970). ${ }^{1}$
[3] C. McA. Gordon. Problem l, Knot theory, Lecture notes in mathematics 685, Springer-Verlag, 1978, 309.
[4] W. B. Raymond Lickorish, Prime knots and tanglee, Trans. Amer. Math. Soc. 267 (1981), 321-332.
[5] K. A. Perko, Jr., On dihedral covering spaces of knots, Inventiones Math. 34 (1976), 77-82.
[6] R. Riley, Homomorphisms of knot groups on finite groups, Math. Comp. 25 (1971), 603-619.
[7] H. Schubert, Über eine numerische Knoteninvariante, Math. Zeit. 61 (1954), 245-288.
[8] J. M. Van Buskirk, A class of -amphicheiral knots and their Alexander polynomials, Preprint Series 1977/78, No. 18, Matematisk Institut, Aarhus Universitet, 1978.
$l_{\text {Note }}$ that Conway's ll-crossing table omits knot types 549 through 552. Several thousand 12-crossing knots have recently been classified by Morwen B. Thistlethwaite of the Polytechnic of the South Bank.

Rockefeller Center, Inc.
1230 Avenue of the Americas
New York, New York 10020-1579

