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PRIMALITY OF CERTAIN KNOTS 

Kenneth A. Perko, Jr. 

This paper proves that the fifteen 4-bridged examples 

in J. H. Conway's table of II-crossing knots [2] are each 

actually prime. Note that we avoid reliance upon assumptions 

that the prime knot tables/are complete or that the minimal 

crossing number is additive. Cf. [8] and [3]. 

Reproduced herewith are diagrams of the 552 known 

ll-crossing primes, of which we here consider knots ·12, 84, 

220, 225, 240, 357, and 426 through 434. Proof of their 

primality by another method appears in [4]. 

Proposition. A knot is prime if (1) its bridge number 

b(k) < 4 and (2) with respect to the homology of its 3-fold 

dihedral covering spaces (a) no H M (k) has odd order and
l 3 

(b) the orders of the Hl M3 (k)'s have no common factor >3. 

Remarks. The first condition may be verified by finding 

four generators of an entire knot diagram. Compare [1] and 

[6, p. 606] but beware the concealed conjecture in the latter 

that bridge numbe~ equals the minimal number of Wirtinger 

generators. The second condition must be verified by calcu­

lation of Hl M (k) for all possible representations of the3 

knot group on 5 [5]. In the case of each of our 15 examples3 

we get two homolo~y groups, Z6 and Z+Z2. Note that the 

existence of a single noncyclic Hl M (k) implies that
3 

b(k) > 3 [1]. 
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Proof. It follows from condition (1) and Schubert's 

Satz 7 [7]--b(kl #k ) = b(k )+b(k )-1--that k is prime2 l 2

unless it has a 2-bridged factor. Assume, arguendo, that 

k = (a,S) #k', where (a,S) is Schubert's normal form nota­

tion for 2-bridged knots. Recall that a is odd and >1. 

Either 3 divides a or 3 does not divide a. We shall derive 

a contradiction from each of these two possibilities. 

Case A. 31a. Then k has a 3-fold irregular covering 

obtained from the S3 cover of (a,S) and the constant map on 

the k' factor--i.e., that which sends all meridians to a 

single transposition. The homology of such a cover is the 

same as that of the double branched cover of the knot k'. 

But the order of the latter, IH1M (k') I = ~(-l) (k'), is2 

well known to be odd, which violates condition (2) (a). 

Case B. 3ta. Here every 3-fold irregular cover of k 

must be the constant map on the (a,S) factor. By a suitable 

adjoining of relations derived from the k' factor each such 

H M (k) can be shown to admit a surjection on the homology
1 3 

of the 2-fold cyclic cover of (a,S), H M (a,S) = Za. But1 2 

this contradicts condition (2) (b) . (Indeed, in the case of 

our 15 examples we get Z6 ~ Za and Z+Z2 ~ Za which together 

imply that a = 3.) 

Thus k can have no 2-bridged factor and is therefore 

prime. 
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PRIME KNOTS WITH ELEVEN CROSSINGS
 

Drawn by Kathryn Perko
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1Note that Conway's II-crossing table omits knot types 
549 through 552. Several thousand 12-crossing knots have 
recently been classified by Morwen B. Thist1ethwaite of the 
polytechnic of the South Bank. 
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