TOPOLOGY PROCEEDINGS

Volume 7, 1982
Pages 157-166
http://topology.auburn.edu/tp/

TOTALLY DISCONNECTED SPACES AND INFINITE COHOMOLOGICAL DIMENSION

by
Leonard R. Rubin

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

TOTALLY DISCONNECTED SPACES AND INFINITE COHOMOLOGICAL DIMENSION

Leonard R. Rubin ${ }^{1}$

1. Introduction

Do all infinite dimensional (separable metric) spaces have infinite cohomological dimension? This question has been of recent interest, especially in the case of compacta, although it is no less interesting for the case of arbitrary spaces. In [Wl] John Walsh showed the existence of a wide class of compacta having infinite cohomological dimension (this was somewhat generalized in [Bo]). From Walsh's work in [W2] it can be deduced that any space containing subspaces of arbitrarily high finite dimension must itself have infinite cohomological dimension. In general it seems to be difficult to determine the cohomological dimension of a space that "does not contain finite dimensional subspaces" unless it is constructed according to the principles described in [Wl].

The study of cohomological dimension has been motivated very much by results of R. D. Edwards. These are discussed in the aforementioned paper [W2] to which the reader may turn for more enlightenment. To review the matter, recall that it is an open problem whether there exists a cell-like map between compacta that raises dimension. In Section 6 of [W2] we have the beautiful theorem,

[^0]1.l. Theorem. (Vietoris; R. D. Edwards) A compactum has cohomological dimension $\leq \mathrm{n}$ if and only if it is the image of a cell-like map defined on a compactum having dimension $\leq \mathrm{n}$.

For finite dimensional spaces, cohomological dimension agrees with dimension (see Theorem 3.2 (b) of [W2]). We are left with the possibility of the existence of an infinite dimensional compactum (noncompact space?) with finite cohomological dimension; by 1.1 that compactum would be the image of a dimension raising cell-like map.

Results in Section 3 below will show that there is a connection between compacta and noncompacta in the study of cohomological dimension. In Section 4 three classes of hereditarily strongly infinite dimensional spaces will be introduced. One of these will be demonstrated to have infinite cohomological dimension. For the other two our techniques do not seem to prevail--thus, calculating their cohomological dimension remains an open problem.

I wish to thank my colleagues F. D. Ancel and Darryl McCullough for many helpful and critical discussions.

2. Preliminaries

The Hilbert Cube Q is $\prod\left\{I_{k} \mid k=1,2, \cdots\right\}$ where $I_{k}=[-1,1]$. Let $\pi_{k}: Q \rightarrow I_{k}$ be the coordinate projection, $A_{k}=\pi_{k}^{-l}(-1), B_{k}=\pi_{k}^{-l}(1)$. For $0 \leq t \leq \frac{1}{2}$, let $A_{k}^{t}=$ $\pi_{k}^{-l}([-1,-1+t])$ and $B_{k}^{t}=\pi_{k}^{-l}([1-t, l])$. As usual we treat the n-cube I^{n} as a subspace of Q, and $S^{n}=\partial I^{n+1}$. Then sometimes we write A_{k} for $A_{k} \cap I^{n}$ and B_{k} for $B_{k} \cap I^{n}$. The

Eilenberg-MacLane space $K_{n}=K(Z, n)$ is described in [W2]. We treat K_{n} as a $C W$-complex such that $s^{n} \subset K_{n}$ and,

$$
\pi_{k}\left(K_{n}, *\right) \simeq\left\{\begin{array}{cl}
\pi_{k}\left(S^{n}, *\right) & k \leq n \\
0 & k \geq n+1
\end{array}\right.
$$

2.1. Definition. A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{I}^{\mathrm{n}+1}$ is stable if $f \mid f^{-1}\left(S^{n}\right): f^{-l}\left(S^{n}\right) \rightarrow S^{n}$ does not extend to a map of x to S^{n}. It is called cohomologicalzy stable if it does not extend to a map of X to K_{n}.
2.2. Note. The existence of a stable map is equivalent to dim $x \geq n+1$, while that of a cohomologically stable map implies $c-d i m X \geq n+l$ (c-dim means cohomological dimension). See [W2] pp. 106-107.
2.3. Notation. If Γ is a set of natural numbers, then by Q_{Γ} we mean the set of all $\left(x_{1}, x_{2}, \cdots, x_{i}, \cdots\right) \in Q$ such that $x_{i}=0$ if i $\notin \Gamma$. Thus if Γ is finite, then Q_{Γ} is a copy of I^{n} for some n.
2.4. Definition. A collection $\left\{\left(A_{k}^{\prime}, B_{k}^{\prime}\right) \mid k \in \Gamma\right\}$ of disjoint pairs of closed subsets of a space X is called an essential family for X provided that if S_{k} is a closed set separating A_{k}^{\prime} and B_{k}^{\prime} in X for each $k \in \Gamma$, then $\cap\left\{S_{k} \mid k \in \Gamma\right\} \neq \varnothing . \quad$ (This implies $\operatorname{dim} X \geq \operatorname{card} \Gamma$.) A set such as S_{k} is often called a separator of ($\mathrm{A}_{\mathrm{k}}^{\prime}, \mathrm{B}_{\mathrm{k}}^{\prime}$).

The folloiwng Proposition is similar to 5.5 of [R-S-W]; the first part does not require compactness.
2.5. Proposition. Let $\left\{\left(\mathrm{A}_{\mathrm{k}}^{\prime}, \mathrm{B}_{\mathrm{k}}^{\prime}\right) \mid \mathbf{k} \in \Gamma\right\}$ be an essential family for a space X and let $J \subset \Gamma$. If for each
$j \in J, S_{j}$ is a separator of $\left(A_{j}^{\prime}, B_{j}^{\prime}\right)$ and $X^{*}=\cap\left\{S_{j} \mid j \in J\right\}$, then $\left\{\left(A_{k}^{\prime} \cap X^{*}, B_{k}^{\prime} \cap X^{*}\right) \mid k \in \Gamma-J\right\} i s$ an essential family for X^{*}. If in addition X is compact, then for each $\mathrm{k} \in \Gamma-\mathrm{J}, \mathrm{X}^{*}$ contains a continuum meeting $\mathrm{A}_{\mathrm{k}}^{\prime}$ and $\mathrm{B}_{\mathrm{k}}^{\prime}$.
2.6. Definition. A space is called strongly infinite dimensional if it has an infinite essential family. It is hereditarily strongly infinite dimensional if in addition each subspace is either 0-dimensional or strongly infinite dimensional. Such spaces are constructed in [Rul, Ru2].

Throughout this paper, spaces are separable and metrizable. Thus they all can be embedded topologically in Q .

3. A Totally Disconnected Space

There exists a totally disconnected, strongly infinite dimensional G_{δ}-space Y having the property that every strongly infinite dimensional compactum contains a copy of a closed, hereditarily strongly infinite dimensional subspace of Y. Hence if every hereditarily strongly infinite dimensional closed subspace of Y were of infinite cohomological dimension, then every strongly infinite dimensional compactum would have infinite cohomological dimension.

Let $C \subset I_{1}$ be a Cantor set in the interior of $\left[-\frac{1}{2}, \frac{1}{2}\right]$, and let $Y \subset Q$ be a space consisting of at least one point from each continuum in Q that meets both A_{1} and B_{1} and such that $\pi_{1}: Q \rightarrow I_{1}$, when restricted to Y, is a bijection of Y onto C (see 4.5 of [R-S-W]). Thus Y is a totally disconnected space, and it is known that Y can be chosen to be topologically complete; i.e., Y is a G_{δ}-space [Pol]. Such
are the spaces from which Roman Pol constructed his amazing example of an infinite dimensional compactum which is neither countable dimensional nor strongly infinite dimensional. The family $\left\{\left(A_{i}^{t} \cap Y, B_{i}^{t} \cap Y\right) \mid i=2,3, \cdots\right\}$ for any $0<t \leq \frac{1}{2}$ is an essential family in Y, and so Y is strongly infinite dimensional. To see why this is so, let S_{i}, $i \geq 2$, be a separator in Y of $\left(A_{i}^{t} \cap Y, B_{i}^{t} \cap Y\right)$. As in the proof of Theorem 6.2 of [Rul], there are sets \tilde{S}_{i} closed in Q, separating A_{i} and B_{i} in Q, and such that $\tilde{S}_{i} \cap Y=S_{i}$. By 2.5, $n\left\{\tilde{S}_{i} \mid i=2,3, \cdots\right\}$ contains a continuum meeting A_{1} and B_{1}, so $\emptyset \neq \mathrm{Y} \cap\left(\cap\left\{\tilde{\mathbf{S}}_{\mathrm{i}} \mid \mathrm{i}=2,3 \cdots\right\}\right)=\cap\left\{\left(\mathrm{Y} \cap \tilde{S}_{\mathrm{i}}\right) \mid \mathrm{i}=\right.$ $2,3, \cdots\}=\cap\left\{S_{i} \mid i=2,3 \cdots\right\}$. Thus by definition, $\left\{\left(A_{i}^{t} \cap Y\right.\right.$, $\left.\left.B_{i}^{t} \cap Y\right) \mid i=2,3, \cdots\right\}$ is an essential family for Y.

For any subset Γ of the set of natural numbers, let $Y_{\Gamma}=Y \cap Q_{\Gamma}$ (see 2.3). Then an argument similar to that just given proves the following.
3.1. Proposition. For $0<\mathrm{t} \leq \frac{1}{2}$ and any subset Γ of the natural numbers such that $l \in \Gamma$, the collection $\left\{\left(A_{i}^{t} \cap Y_{\Gamma}, B_{i}^{t} \cap Y_{\Gamma}\right) \mid i \in \Gamma\right.$ and $\left.i \geq 2\right\}$ is an essential family for the totally disconnected space Y_{Γ}.
3.2. Proposition. Let N_{0} be an infinite subset of the set of natural numbers with $1 \notin \mathrm{~N}_{0}$ and suppose $0<\mathbf{t} \leq \frac{1}{2}$. Then there exists a set $\left\{\mathrm{Z}_{\mathrm{k}} \mid \mathrm{k} \in \mathrm{N}_{0}\right\}$ of closed subsets of Q satisfying,
3.2.1. Z_{k} continuum-wise separates A_{k}^{t} and B_{k}^{t},
3.2.2. $\mathrm{z}_{\mathrm{k}} \cap \mathrm{A}_{\mathrm{k}}=\varnothing$ and $\mathrm{z}_{\mathrm{k}} \cap \mathrm{B}_{\mathrm{k}}=\varnothing$, and
3.2.3. $\mathrm{Z}=\mathrm{n}\left\{\mathrm{Z}_{\mathrm{k}} \mid \mathrm{k} \in \mathrm{N}_{0}\right\}$ is hereditarily strongly infinite dimensional.

Proof. See the proof of 3.1 of [Ru2].
3.3. Theorem. If K is a strongly infinite dimensional compactum, then K contains a totally disconnected subspace homeomorphic to a hereditarily strongly infinite dimensional closed subspace of Y .

Proof. Let K have essential family $\left\{\left(A_{i}^{\prime}, B_{i}^{\prime}\right) \mid i \geq 1\right\}$. Embed K in Q so that $A_{i}^{\prime} \subset A_{1}, B_{i}^{\prime} \subset B_{1}$, while $A_{i}^{\prime} \subset A_{2(i-1)}$, $B_{i}^{\prime} \subset B_{2(i-1)}, i \geq 2$. For example, one may use the Embedding Lemma 3.5 of $[\mathrm{K}]$ and then perhaps some renaming of coordinates. Let $N_{0}=\{2 k \mid k \geq 2\}$ and choose $\left\{z_{k} \mid k \in N_{0}\right\}$ and $t=\frac{1}{2}$ as in 3.2. Let $x=Y \cap Z \cap K$. If X is not 0 -dimensional then 3.2 .3 implies that X is hereditarily strongly infinite dimensional as required. So we need only show that X is not 0 -dimensional.

To this end it will be demonstrated that $\left\{\left(A_{2}^{t} \cap x\right.\right.$, $\left.\left.B_{2}^{t} \cap X\right)\right\}$ is an essential family for x. For let S_{2} be a separator of $\left(A_{2}^{t} \cap X, B_{2}^{t} \cap X\right)$ in X. Extend S_{2} to a set Z_{2} closed in Q so that $X \cap Z_{2}=S_{2}$, while Z_{2} is a separator of A_{2} and B_{2} in Q. By $2.5, Z \cap K \cap Z_{2}$ contains a continuum meeting A_{1} and B_{1}, so $\varnothing \neq Y \cap Z \cap K \cap Z_{2}=X \cap Z_{2}=S_{2}$. Hence $\left\{\left(A_{2}^{t} \cap X, B_{2}^{t} \cap X\right)\right\}$ is an essential family for X, and the proof is complete.

4. Calculating Cohomological Dimension

Let Y be a strongly infinite dimensional, totally disconnected space chosen as in Section 3. Let
$N_{0}=\{2 k \mid k \geq 1\}$ and $t=\frac{1}{2} ;$ choose $\left\{Z_{k} \mid k \in N_{0}\right\}$ and Z as in 3.2. With $X=Y \cap Z$, then using $3.1,3.2$ and 2.5 we see that X is a hereditarily strongly infinite dimensional, totally disconnected space. Define X_{1} to be the closure of X in Q, and then let $X_{2}=\cap\left(c l_{Q}\left(Z_{k} \cap Y\right) \mid k \in N_{0}\right\}$. Then X_{1}, X_{2} are hereditarily strongly infinite dimensional compacta.
4.1. Theorem. For any space X_{2} chosen as in the preceding paragraph, c-dim $\mathrm{X}_{2}=\infty$.

In order to prove 4.1 , we will need some preliminary lemmas. The reader who is faniliar with the proof of Theorem 3.1 of [Wl] will see interesting parallels in what follows.
4.2. Lemma. Let A, B be disjoint closed subsets of a space $\tilde{\mathrm{X}}$, let S be a separator of (A, B) in $\tilde{\mathrm{X}}$, and let U be an open neighborhood of S in $\widetilde{\mathrm{X}}$. Then for each 0-dimensional subset P of $\tilde{\mathrm{X}}$ there exists a separator S * of (A, B) in \widetilde{X} such that $S^{*} \subset U-P$.

Proof. Let $\widetilde{\mathrm{X}}-\mathrm{S}=\mathrm{V}_{1} \mathrm{U} \mathrm{V}_{2}$ where $\mathrm{A} \subset \mathrm{V}_{1}, \mathrm{~B} \subset \mathrm{~V}_{2}$, both V_{1}, V_{2} are open and $\bar{V}_{1} \cap V_{2}=\varnothing=V_{1} \cap \bar{V}_{2}$. Choose an open set W so that $S \subset W \subset U-(A \quad U B)$. The sets $V_{1}-W$ and $V_{2}-W$ are closed in \tilde{X}; for example $V_{1}-W=\tilde{X}-$ $\left(W \cup V_{2}\right)$. Hence there exists a separator $S *$ of $\left(V_{1}-W\right.$, $\left.V_{2}-W\right)$ in \tilde{X} such that $S^{*} \cap P=\varnothing$. since $A \subset V_{1}-W$, $B \subset V_{2}-W$ and $S^{*} \subset W \subset U$, the proof is complete.
4.3. Lemma. Let $K \subset \widetilde{\mathrm{X}}$ be such that $\operatorname{dim} \mathrm{K} \leq \mathrm{m}<\infty$. Suppose $\left\{\left(\mathrm{A}_{\mathrm{i}}^{\prime}, \mathrm{B}_{\mathrm{i}}^{\prime}\right) \mid 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ is a collection of disjoint pairs of closed subsets of $\tilde{\mathrm{X}}$ and that for each $i, \mathrm{~S}_{\mathrm{i}}$ is a separator of ($A_{i}^{\prime}, B_{i}^{\prime}$) in \tilde{X}. Let U be a neighborhood of $\mathbf{S}=\mathrm{n}\left\{\mathrm{S}_{\mathrm{i}} \mid 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Then for each i there exists $\mathrm{S}_{\mathrm{i}}^{\boldsymbol{i}}$ so that S_{i}^{*} is a separator of ($\left.A_{i}^{\prime}, B_{i}^{\prime}\right)$ in $\tilde{X}, S^{*}=\cap\left\{S_{i}^{*} \mid l \leq\right.$ $\mathrm{i} \leq \mathrm{n}\} \subset \mathrm{U}$, and $\operatorname{dim}\left(\mathrm{S}^{*} \cap \mathrm{~K}\right) \leq \mathrm{m}-\mathrm{n}$.

Proof. Write $K=U\left\{K_{j} \mid l \leq j \leq m+l\right\}$ with the property that $\operatorname{dim} K_{j} \leq 0$ for each j. Let $S^{\prime}=S_{1}-U$ and let $S^{\prime \prime}=\cap\left\{S_{i}-U \mid 2 \leq i \leq n\right\}$. Then $S^{\prime} \cap S^{\prime \prime}=\varnothing$ so there is an open set U^{\prime} with $S^{\prime} \subset U^{\prime}$ and $U^{\prime} \cap S^{\prime \prime}=\varnothing$. Let $U_{1}=U U^{\prime} ;$ hence $S_{1} \subset U_{1}$. Use 4.2 to choose $S_{1}^{*} \subset U_{1}$ so that S_{1}^{*} is a separator of ($A_{1}^{\prime}, B_{1}^{\prime}$) and $S_{1}^{*} \cap K_{1}=\emptyset$. We see that
$S_{1}^{*} \cap S_{2} \cap \cdots \cap S_{n} \subset U$ and $\operatorname{dim}\left(S_{1}^{*} \cap S_{2} \cap \cdots \cap S_{n} \cap K\right) \leq$ m-1. This process can be repeated recursively to obtain the desired result.

Proof of 4.l. We shall find a closed subset A of x_{2} and a map f of A to S^{n} that cannot be extended to a map of X_{2} to K_{n}. Let $\Gamma=\{1,3, \cdots, 2 n+3\}$. Then Q_{Γ} is a copy of I^{n+2} which we choose to write in the form $I_{1} \times I^{n+1}$. Let $\pi: Q+I^{n+1} \subset I_{1} \times I^{n+1}$ be the projection, and choose C to be a closed collar neighborhood of $S^{n}=\partial I^{n+1}$. Define A to be $x_{2} \cap \pi^{-1}(C)$. The map f on A is given by π followed by a retraction ρ of C to S^{n}. Suppose f extends to a map $F: X_{2} \rightarrow K_{n}$; then using the fact that K_{n} is an ANE, assume F is defined on a neighborhood V of X_{2} in Q.

There exists r such that $\cap\left\{c 1_{Q}\left(Z_{k} \cap Y\right) \mid k=2,4, \cdots, 2 r\right\}$
\subset V. Hence $\left\{\cap\left\{z_{k} \mid k=2,4, \cdots, 2 r\right\}\right] \cap Y \subset V$. We may as well
assume $2 \mathrm{r}>2 \mathrm{n}+3$, and we define Λ to be $\{1,2, \cdots, 2 \mathrm{r}\}$.
Let $U=V \cap Q_{\Lambda}$, and let $S_{k}=Z_{k} \cap Q_{\Lambda}, k=2,4, \cdots, 2 r$. We have $\left[\cap\left\{Z_{k} \mid k=2,4, \cdots, 2 r\right\}\right] \cap Y \cap Q_{\Lambda}=\left[\cap\left\{S_{k} \mid k=2,4, \cdots, 2 r\right\}\right]$ $\cap Y_{\Lambda} \subset V \cap Q_{\Lambda}=\mathrm{U}$. Note that $\operatorname{dim} Y_{\Lambda}=2 r-1 . \quad$ Since $S_{k} \cap Y_{\Lambda}$ is a separator of ($A_{k}^{t} \cap Y, B_{k}^{t} \cap Y_{\Lambda}$) in Y_{Λ}, use 4.3 to select separators S_{k}^{*} in Y_{Λ} so that $S^{*} \subset U$ and $\operatorname{dim} S^{*} \leq$ r - l. If there exist odd numbers k so that $2 n+3<k<2 r$, then for those k choose separators S_{k}^{*} of ($A_{k}^{t} \cap Y_{\Lambda}, B_{k}^{t} \cap Y_{\Lambda}$) in Y_{Λ} so that $\operatorname{dim} S_{0} \leq n+1$ where S_{0} is the intersection of all S_{k}^{*}. Employing 3.1 and 2.5, $\left\{\left(A_{j}^{t} \cap S_{0}, B_{j}^{t} \cap S_{0}\right) \mid j=\right.$ $3,5, \cdots, 2 n+3\}$ is an essential family for S_{0}, so $\operatorname{dim} S_{0}=$ $\mathrm{n}+1$.

The map F restricted to S_{0} is homotopic to a map $H: S_{0} \rightarrow K_{n}$ that carries S_{0} into the $(n+1)$-skeleton of K_{n}, i.e., into S^{n} itself. This map H can be chosen so that for some collar C_{0} of S^{n} in $I^{n+1}, H=F$ on $\pi^{-l}\left(C_{0}\right) \cap S_{0}$. There exists $0<s \leq t$ so that $\left(A_{j}^{s} \cap S_{0}\right) \cup\left(B_{j}^{s} \cap S_{0}\right) \subset \pi^{-1}\left(C_{0}\right)$ for all $j=3,5, \cdots, 2 n+3$. The $\operatorname{set}\left\{\left(A_{j}^{S} \cap S_{0}, B_{j}^{s} \cap S_{0}\right)\right\}$ $j=3,5, \cdots, 2 n+3\}$ is an essential family for S_{0}. The existence of the map H is contradictory to Proposition 4.3 of [Wl]. For convenience, that Proposition is now stated (compactness in the hypothesis is unnecessary).
4.4. Proposition. Let X be a space, let $\left\{\left(A_{k}^{\prime}, B_{k}^{\prime}\right) \mid\right.$
$1 \leq k \leq n+l\}$ be a family of disjoint pairs of closed subsets of X , and let $\mathrm{f}_{\mathrm{k}}: \mathrm{X} \rightarrow \mathrm{I}_{\mathrm{k}}$ with $\mathrm{A}_{\mathrm{k}}^{\prime}=\mathrm{f}_{\mathrm{k}}^{-1}(-1)$ and $\mathrm{B}_{\mathrm{k}}^{\prime}=\mathrm{f}_{\mathrm{k}}^{-\mathrm{l}}(\mathrm{l})$. The family $\left\{\left(\mathrm{A}_{\mathrm{k}}^{\prime}, \mathrm{B}_{\mathrm{k}}^{\prime}\right) \mid \mathrm{l} \leq \mathrm{k} \leq \mathrm{n}+\mathrm{l}\right\}$ is essential if and onty if the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{I}^{\mathrm{n}+1}$ defined by $\mathrm{f}=$ $\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \cdots, \mathrm{f}_{\mathrm{n}+\mathrm{l}}\right)$ is stable.

References

[Bo] P. L. Bowers, Detecting cohomologically stable mappings (preprint).
[Du] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
[K] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto, London, 1955.
[Pol] R. Pol, A weakly infinite-dimensional compactum which is not countable dimensional, Proc. Amer. Math. Soc. 82 (1981), 634-636.
[Rul] L. R. Rubin, Hereditarily strongly infinite dimensional spaces, Mich. Math. J. 27 (1980), 65-73.
[Ru2] \qquad , Noncompact hereditarily strongly infinite dimensional spaces, Proc. Amer. Math. Soc. 79 (1980), 153-154.
\qquad , R. M. Schori, and J. J. Walsh, New dimension theory techniques for constructing infinitedimensional examples, General Topology and its Appls. 10 (1979), 83-102.
[Wl] J. J. Walsh, A class of spaces with infinite cohomoZogical dimension, Mich. Math. J. 27 (1980), 215222.
[W2] \qquad , Dimension, cohomological dimension, and cell-like mappings, Shape theory and geometric topology, Proceedings, Dubrovnik 1981, SpringerVerlag Lecture Notes in Mathematics, Berlin, Heidelberg, New York, 1981, 105-118.

University of Oklahoma
Norman, Oklahoma 73069

[^0]: $l_{\text {The }}$ author was partially supported by a grant from the College of Arts and Sciences of the University of Oklahoma.

