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A NOTE ON GALE'S PROPERTY (G) 

M. Henry, D. Reynolds and G. Trapp 

In [1], Gale gave a condition which could be used to 

replace equicontinuity in a less restrictive version of 

Ascoli's Theorem, namely where the range space is regular, 

rather than a metric or uniform space. Gale's Theorem 1 

is stated below for the sake of completeness. Throughout 

this note, yX will denote the collection of all functions 

from X to Y with the product topology and if F c yX, then 

F will denote the closure of F in this topology, i.e., the 

pointwise closure of F. 

Theorem I (Gale). If X is a k-space and Y is regular, 

then a collection of continuous functions F from X to Y is 

compact in the compact-open topology if and only if 

(1) F is closed. 

(2) F(x) is compact for each x in X. 

(3) If G is closed in F and U is open in Y then 

n{g-l(u) Ig E G} is open in X. 

In the proof of this theorem, Gale showed that if a 

collection F is continuous and satisfies condition (3) then 

the compact-open and pointwise topologies agree on F. This 

condition was abstracted by Yang in [5] and renamed property 

(G) • 

Definition. F c y X is said to have property (G) if 

for each U open in Y, and each pointwise closed subset G 

of F, n{g-l(u) Ig E G} is open in X. 
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Note that in the above definition, the topology being 

considered is the pointwise, rather than the compact-open, 

and F is not required to be a closed collection, as was the 

case in Gale's Theorem 1. Since F is not necessarily closed, 

the phrase "pointwise closed subset G of F" admits two dis

tinct interpretations. Either 

X(1) the closure of G inY lies in F, or 

(2) G is closed in the relative topology on F induced 

Xby y . 

The purpose of this note is to examine this ambiguity. 

Kelley, to whom Yang refers for all definitions not 

specified in [5], defines pointwise closed [4, p. 218] to 

X mean closed in y , so that interpretation (1) of property 

(G) seems to be intended. Yet the proof of Theorem 1 of 

[5] employes interpretation (2), and in fact is false using 

interpretation (1), as our Example B will show. 

In order to sort out these difficulties, we will intro

duce two versions of the definition of Property (G). 

Using interpretation (1) we will say F c yX has pro

perty (G ) if for each open U in Y, and for each G c F suchl 

that G = G, n{g-l(u) Ig E G} is open in X. 

Similarly we will say F c y 
X has property (G ) if for2

each open U of Y and for each G c F such that G = G n F, 

n{g-l(u) Ig E G} is open in X. 

It is clear that if F satisfies property (G ) then F2

must also satisfy property (G ), but the converse fails asl 

the following example shows. 
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Example A. For each n E N, define f : [0,1] ~ [0,1]
n 

by 

x E [0,1/2n] 

n 
1:/2nf (x) = 

x E [1/2n,1] 

and let F {f In E N}. Then F has property (G ) trivially
n l 

because the only subsets G of F for which G c F are the 

finite ones, so the intersection condition is always satis

fied. But letting U = (0,1) - {1/(2n+l) In E N} and notingo 
that F F n F, we have that 

[0,1) - {1/(2n+l)In EN} 

which is not open in x, so that F does not satisfy property 

(G ). Also note that F is equicontinuous and pointwise
2

bounded, and therefore regular by the corollary to Theorem 

3 of [5]. 

The proof of Theorem 1 of [5] establishes that a col

lection satisfying property (G ) is necessarily regular, but
2

the next example shows that this result fails for property 

Example B. For each n E N, define f : [0,1] ~ [0,1]
n 

by 

nx x E [0,1/4n] 

fn(x) x E [1/4n,1/2n]:-4nx 
x E [1/2n,1]r 

and let F = {f In EN}. Then F has property (G ) trivially,
n l 

but is not equicontinuous at x = 0, and hence by Theorem 5 

of [2] is not regular there. 
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Examples A and B also show that the corollary following 

Theorem 6 of [5] fails under either interpretation of pro

perty (G). However it is the case that whenever X is a 

k-space and Y is regular, if F is evenly continuous (or 

regular, by Theorem A of [3]) and F(x) is compact for each 

x in X, then F satisfies property (G ). This holds because
l
 

if F is evenly continuous, then so is F by [4, Theorem 19,
 

p. 235], and hence the product topology and the compact-

open topology coincide on F. Thus F is compact by [6, 

Theorem B] and therefore satisfies property (G ) by Gale'sl 

Theorem 1. It follows from the definition that F must also 

satisfy property (G ).l 
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