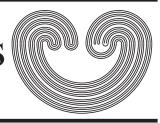
TOPOLOGY PROCEEDINGS

Volume 7, 1982 Pages 197–200



http://topology.auburn.edu/tp/

Research Announcement: HOMOGENEOUS, HEREDITARILY INDECOMPOSABLE CONTINUA

by

JAMES T. ROGERS, JR.

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON.	0146 4194

ISSN: 0146-4124 COPYRIGHT © by Topology Proceedings. All rights reserved.

HOMOGENEOUS, HEREDITARILY INDECOMPOSABLE CONTINUA

James T. Rogers, Jr.¹

R. H. Bing [2] has proved that the pseudo-arc is homogeneous. This remarkable result stimulated the search to discover which continua are homogeneous. For a history of early work on this topic, see [3].

The pseudo-arc is a hereditarily indecomposable, arclike (hence tree-like) continuum. No other homogeneous, tree-like continuum is known. Bing [1] has shown that no homogeneous, hereditarily indecomposable continuum is n-dimensional, $2 < n < \infty$.

In this announcement, we outline a proof of the following result.

Theorem 1. Each homogeneous, hereditarily indecomposable continuum is tree-like.

In 1955, F. B. Jones [6] classified homogeneous plane continua into three kinds: (1) nonseparating, (2) decomposable and separating, and (3) indecomposable and separating. Continua of types (1) and (3) must be hereditarily indecomposable [5], while continua of type (2) not homeomorphic to S^1 admit a continuous decomposition into elements of type (1) such that the resulting quotient space is homeomorphic to S^1 [6]. Hence the next theorem is a corollary to Theorem 1.

¹This research was partially supported by NSF grant number MCS-8101565.

Theorem 2. Homogeneous, separating plane continua are decomposable.

A result of E. G. Effros [4] has invigorated the search for homogeneous continua. We state the result in the following form.

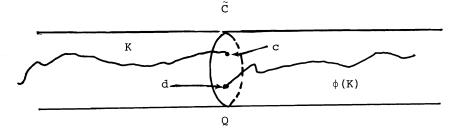
Theorem 3. Let M be a homogeneous continuum. For each $\varepsilon > 0$, there exists $\delta > 0$ such that if x and y are points of M and $d(x,y) < \delta$, then some homeomorphism of M onto itself takes x to y and moves no point of M as much as ε .

We say that a space satisfying the conclusion of Theorem 3 has the Effros property.

Outline of proof of Theorem 1. Let M be a homogeneous, hereditarily indecomposable continuum that is not tree-like. There exists an essential embedding of M into a certain space C, where C is a cube-with-handles if dim M = 1, and the product of S¹ and the Hilbert cube, if dim M > 1. Let $\sigma: \tilde{C} \rightarrow C$ be the universal covering space of C, and let $\tilde{M} = \sigma^{-1}(M)$. Each continuum of \tilde{M} is indecomposable. No component of \tilde{M} is compact. There exists a metric on \tilde{C} with the property that σ is a local isometry and each deck transformation is an isometry. With this metric, \tilde{M} has the Effros property.

We use the noncompact component of \tilde{M} to find a continuum K in \tilde{M} , a cross-sectional disk Q in \tilde{C} , and a deck transformation $\phi: \tilde{C} \rightarrow \tilde{C}$ such that (1) some of K lies far to the left of Q and none lies far to the right, (2) some of $\phi(K)$ lies far to the right of Q and none lies far to the left, and (3) there exist points c in K \cap Q and d in $\phi(K) \cap Q$ that are very close to each other.

Because \tilde{M} has the Effros property, there exists a homeomorphism h: $\tilde{M} \rightarrow \tilde{M}$ such that h(c) = d. This implies that either the continuum $\phi(K) \cup h(K)$ is decomposable or h moves points of K too far to satisfy the Effros property. This contradiction completes the proof.



Proofs of Theorems 1 and 2 appear in [8] and [7], respectively.

References

- R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273.
- 2. ____, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742.
- 3. _____ and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), 171-192.
- 4. E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. (2) 81 (1965), 38-55. MR 30 #5175.
- C. L. Hagopian, Indecomposable homogeneous plane continua are hereditarily indecomposable, Trans. Amer. Math. Soc. 224 (1976), 339-350.
- 6. F. B. Jones, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc. 6 (1955), 735-740.
- 7. J. T. Rogers, Jr., Homogeneous, separating plane continua are decomposable, Michigan J. Math (to appear).

8. ____, Homogeneous, hereditarily indecomposable continua are tree-like, Houston J. Math. (to appear).

Tulane University

New Orleans, Louisiana 70118