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CELL-LIKE SHAPE FIBRATIONS WHICH 

ARE FIBER SHAPE EQUIVALENCES 

1
 
Mahendra Jani
 

I. Introduction 

Cell-like mappings have been important in the study 

of mappings on manifolds. In some sense they generalize 

homeomorphisms and have certain approximate lifting proper­

ties [1,6]. Motivated by these facts D. Coram and C. Duvall 

[2] introduced approximate fibrations to study mappings with 

non-trivial point-inverses. "Approximate fibrations" is 

a right tool to study maps between ANR's but it misses some 

cannonical projections from local pathological compact 

metric spaces to ANR's. Also, it fails to have the simple 

property of being preserved under the pull-backs. However, 

it motivated S. Mardesic and T. B. Rushing [7] to generalize 

it to a notion called "shape fibration." 

These facts guided the author of this paper to study 

"shape fibrations" in order to study bundle theory for 

locally pathological spaces. The first question one asks 

"are all the Dold-like theorems true for shape fibrations?" 

The answer is "yes" if we have a "right" notion of "fiber 

shape equivalence." In [4,5] the author has defined the 

notion and has proved a Dold-like theorem for shape fibra­

tions. In this paper we are proving one of the importa~t 

theorems for such maps. The question is the following: 

lThis work is supported in part by William Paterson 
College of New Jersey under the Summer Fellowship and 
Assigned Research Time. 
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Suppose we are given two shape fibrations p: E' ~ B 

and q: E ~ B and a shape map f: E' ~ E over B. Also sup­

pose we are given that the restriction of f to each fiber, 

flFb , (b € B) is a shape equivalence, then under what 

conditions (on B) is f a fiber shape equivalence? 

If the shape fibration q = lB: B ~ B, then the ques­

tion reduces to the Question-3 of T. B. Rushing [10]: Under 

what conditions is a cell-like shape fibration is a shape 

equivalence? 

Edwards and Hastings [3] give an example of a cell-like 

shape fibration which fails to be a shape equivalence. This 

justifies the Question-3 of [10]. 

In this paper we have found the condition as a new 

notion called "shrinkable open cover" and have proved the 

following theorem: 

Theorem 1. Let f: p ~ q be a shape map between two 

shape fibrations p: E' ~ Band q: E ~ B over B where p is 

movable. If B admits a shrinkable open cover then f is a 

fiber shape equivalence if and only if flp-l(b) is a shape 

equivalence for a point b in each strong shape path compo­

nent of B. 

Corollary 1. If···(l·· compact metric space B admits a' 

shrinkable open cover then every cell-like shape fibration 

p: E ~ B from a compactum E onto B is a fiber shape 

equivalence. 

The base space of the Edwards-Hastings example does 

not admit such an open cover. 
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By cOITIDining the above corollary with the results of 

[5] and [9], we obtain the following corollary which 

answers Question-3 of T. B. Rushing [10]. 

Corollary 2. If a compact metric space B admits a 

shrinkable open cover then for a map p: E ~ B from a com­

pactum E, the following three notions are equivalent. 

(1) cell-like shape fibration 

(2) fiber shape equivalence 

(3) hereditary shape equivalence. 

Note that T. C. McMillan [9] has proved that in finite 

dimensions cell-like map, cell-like shape fibrations and 

hereditary shape equivalences are equivalent. 

Hence the interest lies in determining the relation­

ship in infinite dimensions. 

In section II, we recall useful definitions and theorems 

[4,5], in section III, we define the new notion "shrinkable 

open cover" and show that strong FANR's admit such open 

covers while the dyadic solenoid and infinite product of 

spheres do not admit such open covers. In section IV, we 

prove the Theorem-I. 

I thank Professor Dyer and Professor ~astings for in­

spiring conversations. 

I thank the referee for suggesting a short name "shrinka­

ble open cover" rather than a long "strongly shape trivial 

open cover"! 
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II. Preliminaries 

All spaces considered will be compact metric spaces 

unless otherwise stated. By an ANR, we mean an absolute 

neighborhood retract for metric spaces. 

An (open) ANR-sequence ~ = (Bh,onm) is an inverse 

sequence of compact (open) ANR's. A map ~ = (fn'~): E 

(En,y nm) ~ B of ANR-sequences is a sequence of maps 

f : E~(n) ~ B , n =1,2,3--- such that for m > n, fnY n n nm 

onmfm: E~(m) x I ~ B . If the non-decreasing index function n 

~ = IN and for m > n, fnY 0nmfm then we refer f as a nm 

level map of ANR-sequences. 

Two maps f and ~ = (gn'~): E ~ ~ of ANR~sequences are 

said to be homotopia (! ~ ~) if for every n, there is an 

index n(!,~) ~ n such that for all m > n, there is a 

nm
homotopy H : fnY~(n)m ~ gnY~(n)m. In addition, if for 

tw 
t > nand w > t there is a homotopy H : ftY~(t)w ~ gtY~(t)w 

and these two homotopies are coherent (reI. 0,1), meaning 

there is an index s > max (m,w) and homotopy H: E x I x 
s 

nm ~w
I ~ B such that H(x,t,o) H (Y x II); H(x,t,l) = 0n1Hn nw 

and H(x,o,t) = fnY~(n)w and H(x,l,t) = 0n~g~y~(~)w' then f 

is said to be strongly homotopia to~. Two maps (continuous 

functions) f,g: E ~ B between spaces are strongly shape homo­

topia if there are strongly homotopic level maps f,~: ~ ~ ~ 

of ANR-sequences with ~1mit maps f and g. 

A map f: E ~ ~ between two level maps E: ~' ~ ~ and 

~: ! ~ ~ over B is a map f: E' ~ E of ANR-sequences such 

that for any n and any E > a there is an index n* (f,E) > n 

satisfying the following conditions: 



229 TOPOLOGY PROCEEDINGS Volume 7 1982 

(ii)	 for all ~ > m > n* (!,£ ) there is a homotopy 

x I -+ E such thatHm~:	 
fmY;(m)<p(R,) YmR, f~ : E~(~) m 

m~ as
d(onmqn~H ,onR,P~) for every t E I. We refer MmR, an 

£-vertical homotopy. 

Two maps !,g: E -+ ~ over ~ between two level maps of 

ANR-sequences are said to be fiber homotopic (! ~ ~) if 

for every n and for every £ > 0 there is an index n* 

(f,~;£) ~ n such that for all m > n* (!,~;£) there is an 

nm f I
£-vertical homotopy G : nY<p(n)m ~ gnY~(n)m. 

Two level maps E: ~I -+ B and ~: E -+ B are said to be 

fiber homotopy equivalent (E ~ ~) if there are fiber maps 

f: E -+ ~ and ~: ~ -+ E over	 B such that gf ~ !E and 

~ ~!g. 

For given two maps p: E ' -+ Band q: E -+ B between 

spaces, a shape map f: p -+ q over B is an equivalence 

class [!] of a fiber map !: E -+ ~ between two level maps 

over ~ with lim E = p and lim ~ q. 

The shape map f = [!l: p -+ q over ~ is a fiber shape 

equivalence if there is a shape map g = [~]: q -+ paver B 

such that af B~ 1 and fg B~ 1 · 
-'=- -E. - _ --s. 

Two shape fibrations p: E -+ Band q: E -+ B are fiber' 

shape equivalent if there is a fiber shape equivalence 

f:	 p -+ q. 

Now, we recall the definition of an "open set" of an 

ANR-sequence. 

An "open set" ~ = (un) of an ANR-sequence ~ = (BnO )nm

is a sequence of open sets un' n = 1,2,3,--- such that for 
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each n, un is an open set of B and for m > n, 0nm(u ) c u n m n 

where u is the closure of u • m m 

A collection of open covers lj = {lj }n 1,2,--- is 
- n 

called an "open cover" of ~ = (Bn,Onm) if 

(i) for each n = 1,2,---, lj is an open cover of Band n n 
j j(ii) there are "open sets" u (u ) of B such that 

n 

B UoEJ{int. (lim u
j = (u j »} where lim B B. 

] -+- - n -+­

If the index set J is finite then we say that the "open 

cover" lj is finite. The "open set" :!!j of B is said to be 

j
associated with the open setu = int(llm :!!j) of B. 

Remark 1. For a given finite open cover lj of a space 

B there is a "finite open cover" lj of B associated with lj 

where lim B = B. 
-+­

Remark 2. By the definition of the "open set" !!. of ~, 

j j jit is clear that lim u = lim u where u = (ujluj is the 
-+- - - n n 

jclosure of the open set u for each n = 1,2,---).
n 

The author has defined the movability condition for a 

map in [5] as follows: 

A level map ~: E ~ ~ of ANR-sequences is said to be 

vertically strongly movable if for every index nand £ > 0, 

there is an index m ~ n such that for any i > m there is a 

map n Em ~ E satisfying the following conditions:im : i 

(1) nimYmi = IE and 
i 

(2) there is an £-vertical homotopy H: YnmYminim B Ynm : 
n 

Em ~ En (reI. ymi(E i »· 
A level map E: ~ ~ ~ with lim E = p is said to be 

movable if for every open cover lj of B there exists a 
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refinement V of lj such that for each open set ~ of V, the 

restriction map E(~): E-l(~) ~ v is vertically strongly 

movable. 

A map p: E ~ B between compact metric spaces is movable 

if every level map E: ~ ~ ~ with Ilm E = P is movable. 

Now we will recall the useful theorems from [4,5] 

(Theorem-A has also been proved independently by A. Matsu­

moto [8]): 

Theo~em A. The pull-back of a shape fib~ation is a 

shape fib~ation. 

Theo~em B. Two st~ongly shape homotipic maps induce 

fibe~ shape equivalent shape fib~ations, that is if 

(E' iP* (f) ,f') 

f' 
~--- .........
 

E ll..... ........
E''''' ~--~EI
 
p* (f) 

P. (g~ t f --BC­9 

and (E";p*(g)~g') a~e puZl-back diagrams of spaces then 

Two points x and y of a space B are said to be connected 

by a strong path if the two inclusion maps ix,i : *~ Bare y 

strongly shape homotopic. 

CorolZary B. For a shape fibration p: E ~ B, all the 

fibers over the points in the same st~ong shape path compo­

nent of B are of the same shape. 
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1Theorem c. Let p:E ~ Band q: E ~ B be shape fibra­

tions where p is movable and E: ~I ~ ~ and g: ~ ~ ~ be level 

maps of ANR-sequences with lim E = p and lim g q. Let 

f: E ' ~ ~ be a map over ~ such that !IEl(~) is a fiber 

homotopy equivalence for each u where u is the "closure" of 

the "open set" u of~.J then f is a fiber homotopy equivalence. 

Note that the theorem C has been proved for u but the 

proof also works out for ~. 

For more details the reader is advised to refer [4,5]. 

III. Shrinkable Open Cover 

In this section we define the notion of a "shrinkable 

open cover" and find the class of spaces that admit such 

an open cover. 

Definition 1. A non-empty "open set" ~ of an ANR-

sequence!! = (Bn,onm) is said to be "storngly homotopy 

trivial" if the inclusion level map !.: ~C+ ~ of ANR-sequences 

from the "closure" of u to B is strongly homotopic to the 

constant level map b_*: _u ~ B where b~= (b Ib E B for each - - n n n 

n = 1,2,3,···) is a "point" in B (for m ~ n, 0nm(b ) = b ).m n 

Definition 2. An ANR-sequence B is said to admit a 

"shrinkable open cover" I) if there is an "open cover" 

I) = {I) } of B such that each "open set" u of 'I) is strongly
- n 

homotopy trivial. 

The following proposition-l shows that the admittance 

of the strongly homotopy trivial open cover is invariant 

under the choice of an ANR-sequence. 
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Proposition-I. Let B and ~' be ANR-sequences with 

l!m ~ = l!m B' = B. If ~ is a "shrinkable finite open 

cover" of ~ associated with a finite open cover U of B then 

there is a "shrinkable open cover" ~' of B' or of its 

confinal subsequence ~', associated with U. 

Proof. Since lim ~' = B, there are maps of ANR­

sequences £: ~ ~ ~' and g: ~' ~ ~ ([4], Lernrna-l) such that 

9£ and !~ are strongly homotopic to lB and lB' respectively. 

Select "finite open cover" U' of B' associated with the 

open cover U of B such that for each "open set" ~' of U', 

g(~') c u where u' and u are associated with an open set 

u of U. Consider the diagram-2. 

B 
f 

•., B' 
g 

i i' b'e.* -* 

!I~ 
• u'~ 

gl~ 
• 

~ ~ ~ ~Now, i' lB'!.' !9!.' !~9.u ' !£*~u' !9~~ lB'~~ e.* 

(1) (2) (3) (4) 

Where (1) and 

(2) are given 

(3) is by the construction of the Iijap g 

(4) homotopies are induced by .~S- ~ lB' 

Also, each homotopy can be made as small as we wish by 

selecting numbers £'s and indices. 
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Coherent conditions on homopies of ! ~ ~* induce 

coherent conditions on i' ~ ~*. The process is straight­

forward but technically complicated. So we omit it here. 

Definition 3. A compact metric space B is said to 

admit a shrinkable open cover if there is an ANR-sequence 

B with lim B = B that admits a shrinkable open cover 

associated with the open cover of B. 

Remark-3. Since B is a compact metric space in the 

definition-3, if B admits a shrinkable open cover then it 

admits a shrinkable finite open cover. 

We will find the class of spaces admitting such open covers. 

A space B is said to admit homotopy trivial open cover 

V if for each non-empty open set u of V, the inclusion map 

i: uC+ B is homotopic to the constant map b* = u ~ B. 

Proposition-2. If a space admits a (finite) homotopy 

triviaZ open cover then it admits a shrinkabZe (finite) 

open cover. 

Proof. Suppose a space B which admits finite homotopy 

trivial open cover is embedded in the Hilbert cube Q. 

Select decreasing sequence of compact ANR neighborhoods 

B of B such that n B B. Select finite "open cover" n n n 

U of B = (B ) associated with the given finite homotopy
- - n 

trivial open cover V of B. For each non-empty open set u 

of B there is a homotopy H: u x I ~ B where H = i, the o 

inclusion map and HI = b*, the constant map. Extend the 

homotopy to the closure of the "open set" ~ of ~ associated 

with u then i ~*. The coherence condition is trivial. 
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Since ANR's admit homotopy trivial open covers we can 

state the following: 

Ppoposition-3. ANR's admit shpinkabZe open coveps. 

We will define "absolute neighborhood strong shape 

retract." 

Definition-4. A compact metric space X embedded in the 

Hilbert cube Q is called an absolute neighborhood strong 

shape retract (ANSSR) if there is a compact ANR Y :::> X in Q 

and a family of maps r : Y ~ X , n = 1,2,··· where Xn's n n 

are compact ANR-neighborhoods of X and nnXn = X, satisfying 

the following condition: 

for every E > 0 there is an index n*(E) such that for 

all m > n ~ n*(E) there is a homotopy H: Y x I ~ X such that 
n 

H (y, 0) rn(y) 

H(y,l) a r (y), a :X C+ X is the inclusion map
nm m nm m n 

and 

d(x,Ht(X» for all x E X ' tEl, Y E Y. m 

Note that for t = 0, d(x,rn(x» = d(in(x),rnin(x» < E where 

in: XnC+ Y is the inclusion map.n 

Remapk-4. Clearly, ANR. ANSSR • ANSR (absolute neigh­

borhood shape retract). 

ANSSR can also/be called a strong FANR. There are 

compact metric spaces which are not ANR's but are ANSSR's, 

for example the "Wa.rsaw circle." 

The purpose of the definition is the following: 
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Proposition-4. If a compact metric space X is an 

ANSSR then it admits a shrinkable open cover. 

Proof. Consider X, Y, Xn's, rn's etc. as in the 

definition-4. Since Y is an ANR there is a homotopy trivial 

open cover {ul ,u2 ,···,u } of Y. For j = 1,2,···,i writei 

u. n X = V. and U. n X Wn n = 1,2,···.
J J J n j'
 

Thus {V ,v ,···,V } is a finite open cover of X. For

l 2 i 

n n _..11 neach n = 1,2,··· find a finite open cover {V ,v ,···V
j 

, •••v }l 2 i 

of X such that V~ c W~ and int. (n~) = int.(n V~) = V. 
n J J nJ nJ J 

where 1 ~ j ~ i. Let £ = min (diameters of V.) > 0 and 
J 

a > 0 be a number such that any two a-close maps in Yare 

£-homotopic. Fix the index j , (1 < j < i) and for simplicity-
nwrite U. U, V. = V, W~ = W and V~ Vn .

J J J J 
Let b E X. Then b E X c Y for n 1,2, • • • . Since U 

n 

is a homotopy trivial open set, there is a homotopy 

K: U x I ~ Y such that K = i: UC+ Y, the inclusion map and o 

Kl b*: U ~ Y, the constant map. Then rnKlvn which we 

denote by rnK is a homotopy: x I ~ X such thatVn 
n 

n(rK) 0 = r : v C+ X and (rnK) 1 = (rnb) *: vn ~ X . By then n n 

choice of n ~ n*(£), d(x,rn(x») and d(b,rn(b» < a. Therefore 

there are linear £-homotopies Ln : Vn
x I ~ X and n 

n nM : V x I ~ X such that Ln(x,O) = x = i (x), Ln(x,l)
n n 

(r K) (x) r i (x) = r (x) and Mn(x,O) = (rnK)lnon n n 

E Vn n(x) = rn(b) and Mn(x,l) = b for x . Let Nn : v x I ~ X n 

be the composition of the three homotopies 

Ln (x,3t) o < t < 1/3 

Nn(x,t) r K(x,3t-l) 1/3 < t < 2/3 
= { n

Mn (x, 3t-2) 2/3 < t < 1 
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Then Nn(x,O) in(x) and 

Nn(x,l) b, which is .the required 

homotopy. 

Now we will prove the coherence condition. For m > n 

m
> n* (E) , let Nm: v x I ... X be the homotopy between i and m m 

Nm vm
b*. Then 0. : x I ... X is the homotopy between nm n 

0. i i and 0. nm(b*) = b*.nm m n
 

By the definition-4 of ANSSR, there is a homotopy
 

H: 0. r ~ r : Y x I ... X Combining with K, we have a nm m n n 

homotopy H: x I x I ... X such that H(x,s,O) = o.nmrmK(x,s)vm 
n 

and H(x,s,l) rnK(x,s) for x E vm and 5 E I and 

d(x,Ht(x,s)) < 6 for all x E vm and t E I. By the choice 

mof 6, there are linear E-homotopies L,M: v x I x I ... X 
n 

such that 

L(x,O,t) x M(x,O,t) H(k(x,l) ,t) 

H(x,l,t) 

L(x,l,t) H(K(x,O) ,t) M(x,l,t) b
 

H(x,O,t)
 

We can also have L(x,s,l)
 

m
L(x,s,O) o.nmL (x,s) 

and M(x,s,l) = Mn(x,s), M(x,s,O) o.nmMm(x,s) for x E V; 

5, t E 1. Define a homotopy J: vm x I x I ... X by composingn 

the homotopies L, Hand M by 

L(x,3s,t) o < 5 < 1/3

1H(x,3s-1,t) 1/3 < 5 < 2/3J(X,s,t) = 

M(x,3s-2,t) 2/3 < 5 < 1 
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Then J(x,s,O) Cl Nm(x,s)nm 
J(x,s,l) Nn(x,s) 

J(x,O,t) x and 

J(x,l,t) b shows that this is the required 

homotopy. 

The author would like to know an answer to the follow­

ing: 

Question-l. Do FANR's admit shrinkable open covers? 

The following propositions show that not all compact 

metric spaces admit a shrinkable open cover. 

Ppoposition-S. The infinite ppoduct of 8phepe8~ 

rri:ls'l.(q ~ 1) does not admit a shpinkabZe open covep. 

Ppoof. Consider B = n~ 1s~ for m = 1,2,3,··· and for m ~= ~ 

m > n, 0nm: B + B are the projections on the first n m n 

factors. Then lim (Bn,Onm) = rr;:lsf. write B = TT;:lsi. 
R, -1Now every open set u of B is of the form rr .-l(n. u. ) x

J- J. J.j j 

n{:lS'f. where TI. : B + B. are the projection maps.
l.j l.j 

i~i.,l<j<tJ -_. 

Suppose for each j = 1,2,···,1, u. is a non-empty homotopy
l.j 

trivial open set such that the inclusion map i.: u. C+ B.l. . l. .J J J 

is null-homotopic. Then the induced homomorphism (i j )*: 

n (U. ,b)·+ n (B. ,b) is a O-homomorphism. Consider an 
q l.j q l.j 

"open set" ~ = (un) of ~ u. for 
J.. 

J 

n = i., j = 1,2,···,1 and for n ~ i. u Then u 
J J n 



239 TOPOLOGY PROCEEDINGS Volume 7 1982 

where un . or un = sq. Let b E u, b = (b ) E ~ andu i n 
J 

i: (~,£)C+ (~,£) be the inclusion map of ANR-sequences. If 

i is homotopic to the constant map £* then the induced map 

of the pro-homotopy groups _i*: n (u,b)C+ n (B,b) would be 
-q-- -q-­

the O-homomorphism. But there is a cofinal subsequence of 

u = (un) where n 1 i. such that _i*: n (u,b) ~ n (B,b) is an
J -q-- -s.-­

isomorphism. Since n (B,b) 1 0 ~ TI (u,b), i* is not a -q-- --q--­

O-homomorphism. Thus the "open set" u cannot be a strongly 

shape trivial. This proves that B = TIools~ cannot admit a 
1= 1. 

shrinkable open cover. 

Proposition-6. The dyadia solenoid does not admit a 

shrinkable open aover. 

Proof. For n = 1,2,··· let B = Sl where sl {z € [In 

Izi = I} the unit circle and for all m > n, 0nm: B ~ Bm n 

be the map of degree 2. Then l!m ~ = lim (Bn,onm) = B, the 

dyadic solenoid. Suppose B admits a shrinkable open cover 

{ul,u2'···u~}. Then there are open sets ~1'~2'···'~~ of 

B such that for each j = 1,2,···,~, u. = int. (lim u.) and
J ~ -J 

the inclusion map i: u. C+ B of ANR-sequences is homotopic
-J ­

to a constant map b*: u. ~ B for b € B, lim b = b € B. 
~ -J - - - ~ 

Consider a point n = (TI,i,···,~,···) in B where TI = -1 E Sl 
- 2n ­

and for n = 1,2,··· n~l E B . Suppose n E u. = (u~). n2 -J J 

Since the inclusion map ~: ~jC+ B is homotopic to ~*: ~j ~ ~, 

without loss of generality we can assume that for each open 

set the inclusion map i : u~C+ B is homotopic to the constant 
n J n 

n n map (----1)*: u. ~ B . Since n lies in the finite number of 
2n- J n 

open sets ~1'~2'···'~~' for each number n there is a number 
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1T 1T 
m > n such that the points m-l and m-l + 1T lie in the same 

2 2 

open set u~. Thus one can find a cofinal subsequence of 
J 

B = (B ) such that for each index n, the points ~l and 
- n 2n­

__1T__ + 1T lie in the open set u~. Since for each n of the 
2n - l J 

cofinal subsequence the inclusion map in: u~C+ B is homo-n 
1T n 1T 

J 

topic to (2 - 1 )*' there is a path w from to + 1T n n n-l n-l
2 2 

which lies in element [0] of the fundamental group 

1 1T 
1T l (S , n-l). But then the homotopy class of the map 

2 

&(n-l)n·Wn ¢' [0] € nl(sl'2n~2)' meaning the map &(n-l)nwn 

is not null homotopic, while the inclusion map 

in-I: un_lC+ B - l is null homotopic. This shows that the n 

coherence condition is not satisfied. Thus the dyadic sole­

noid does not admit a shrinkable open cover. 

IV. Main Theorem 

Now we will prove the main theorem. 

Theorem 1. Let f: p ~ q be a shape map between two 

shape fibrations p: E ~ Band q: E' ~ B over B where p is 

movabZe. If B admits a shrinkabZe open cover then f is a 

fiber shape equivaZence if and onZy if f Ipl(b) is a shap,e 

equivaZence for a point b in each strong shape path compo­

nent of B. 

Proof. We need only to prove that f is a fiber shape 

equivalence if flpl(b) is a shape equivalence for a point 

b in each strong shape path component of B. 

Let ~ = (Bn,Onm) be an ANR-sequence with lim ~ = B. 

Let lj = {ul ,u2 ,u3 ,···,u } be a strongly shape trivial n 
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non-empty open cover of B and ~ = {~1'~2'~3'···~n} be an 

"open cover" of B associated with U: that is B = U;=lu j and 

for each J' = 1,2,3,···,n, u. = int(lim u.).
J + -J 

By the definition of shrinkable open cover, the inclusion 

level map i. : uC+ B is strongly homotopic 
.... 

to the constant
-J 

-level map b. : u. -+ B of ANR-sequences for each j = 1,2, ••• ,n.
-J. -J 

To avoid notational complications, we will drop the 

suffix j and write !. ~ ~.: ~~ !!. 

Let E: ~ -+ Band g: ~' -+ B be level maps of ANR-sequences 

with limit maps p and q and f: E -+ E' be a shape map of ANR-

sequences over B. 

Consider the following diagram-I. 

- ....... ---- --"E'
 

---- -"E 

i 

Since !. ~ £.' by the Theorem-B the induced shape fibra­

tions are fiber homotopy Lquivalent: E.(!.) ~ E.(£.) and 

g.(!.) ~ g.(£.). Also by the assumption flpl(b) is a fiber 

shape equivalence, E.(£.) ~ g.(£.) via the map !IEl (£). 
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,-I ­
Thus! E (~): E*(!) ~ g*(!) is a fiber homotopy equiva­

lence. Since this is true for any "open set" E. of !!, by 

the theorem-C, f: E ~ ~ is a fiber homotopy equivalence. 

Hence f: p ~ q is a fiber shape equivalence. 

Corollary 1. If a space B admits a shrinkable open cover 

then every cell-like~ shape fibration p: E ~ B over B is a 

fiber shape equivalence. 

Proof. Let p: E ~ B be a cell-like shape fibration. 

We can consider p: E ~ B as a shape map over B between two 

shape fibrations p and lB: B ~ B. Note that lB is movable. 

Since p is a cell-like map, plpl(b) is a shape equivalence 

for any b E B. By the Theorem-I, p is a fiber shape equiva­

lence. 

Remark. Edwards and Hastings [3] have constructed an 

example of a cell-like shape fibration p: E ~ B which fails 

to be a shape equivalence. However, the base space B is an 

infinite product of spheres and by the proposition 5-B does not 

admit a shrinkable open cover. This example shows that in 

the Theorem-l the condition on B cannot be omitted. 

In [5] the author nas proved that every fiber shape 

equivalence is a hereditary shape equivalence and by [9], 

every hereditary shape equivalence is a cell-like shape 

fibration, so it is a cell-like shape fibration. Combining 

this result with Corollary-I, we have 

Corollary 2. If a space B admits a shrinkable open 

cover then for a map p: E ~ B from a compactum E onto B~ 

the follo~ing three notions are equivalent. 
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(1)	 ceLL-Like shape fibpation 

(2)	 fibep shape equivaLence 

(3)	 hepeditapy shape equivalence 

Remapk. The Corollary-2 answers the Question-3 of 

T. B. Rushing [10]. The Question-3 is "can one give a 

reasonable sufficient condition for a shape fibration to be 

a hereditary shape equivalence?" 

The author would like to know an answer to the 

following: 

Question 2. Is there a cell-like shape fibration 

p: E -+ B from a compactum E onto the dyadic solenoid B, which 

is not a shape equivalenc~? 

Addendum. The author came to know that H. Kato has 

proved similar results using techniques of strong shape 

theory (fiber shape categories, Tsukuba J. Math., Vol. 5, 

#2 (1981), 237-265). 
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