TOPOLOGY
PROCEEDINGS

Volume 7, 1982
Pages 279-292

http://topology.auburn.edu/tp/

CLOSED IMAGES OF LOCALLY
COMPACT SPACES AND FRECHET
SPACES

by

Y OSHIO TANAKA

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@Qauburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



TOPOLOGY PROCEEDINGS Volume 7 1982 279

CLOSED IMAGES OF LOCALLY COMPACT
SPACES AND FRECHET SPACES

Yoshio Tanaka

0. Introduction

Every quotient image of a metric space is actually the
quotient image of a locally compact metric space [4]. How-
ever, every closed image (closed s-image) of a metric space
need not be the closed image (closed s-image) of a locally
compact metric space. Indeed, any non-locally compact,
metric space is not the closed image of a locally compact
metric space.

So, the for image Y of a metric space (paracompact
M-space) under a closed map, a closed s-map, or a pseudo-
open s-map, we give a necessary and sufficient condition
for Y to be the image of a locally compact metric space
(locally compact paracompact space) under the respective
kind of map. Also, we show that every Fréchet space which
is the quotient s-image of a locally compact metric space
is a Lasnev space which can be decomposed into a discrete
closed subspace and a locally compact subspace.

We assume that all spaces are regular; all maps are

continuous and onto.

1. Closed Images of Locally Compact Paracompact Spaces
In [9], E. Michael introduced the notion of bi-k-spaces
and showed that every bi-k-space is precisely the bi-quotient

image of a paracompact M-space. Hence, every paracompact
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M-space is bi-k. Recall that a space is a paracompact M-space
if it admits a perfect map onto a metric space.
A space X is a bi-k-space [9; Lemma 3.E.2], if whenever
F is a filter base accumulating at x in X, then there exists
a k-sequence (F ) in X such that x € frﬁ_F; for all F_ and
all F € . Here, a decreasing sequence (Fn) of subsets of
X is a k-sequence, if K = n;=an is compact in X and every

neighborhood of K contains some Fn' We can assume that all

Fn are closed in X.

Theorem l.1. The following are equivalent.

(1) Y 28 the closed image of a paracompact bi-k-space,
and each closed (or closed o-compact) M-subspace of Y is
locally compact.

(2) Y Zs the closed image of a locally compact para-
compact space.

Proof. (2) = (1): Let f be a closed map from a locally
compact paracompact space onto Y. Let Yl be a closed,
M-subspace of Y, and X, = f_l(Yl). Then g = f|xl is a
closed map from a paracompact space X1 onto an M-space Yl.
Thus, each ag_l(y) is compact by [7; Corollary 2.2]. Hence,
as in the proof of [7; Corollary 1.2], there is a closed
subset F of X; such that g|F is a perfect map onto Y.

Since F is locally compact, so is Y,. Hence each closed,
M-subspace of Y is locally compact.

(1) » (2): Let f: X - Y be a closed map with X para-
compact bi-k. Let y € Y. Then we will prove that each
point of f-l(y) has a neighborhood contained in the inverse

image of some compact subset of Y. To see this, suppose
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not. Then there is a point x; € f_l(y) such that for any

neighborhood V of Xq and for any compact subset K of Y,
-1 - .

Vé £7(K). Let 7 = {X - £1(K); K is compact in Y}.

Then 7 is a filter base accumulating at X,. Since X is a

bi-k-space, there is a k-sequence (Fn) in X with X, € F NF

for all Fn and all F € F. Obviously, (f(Fn)) is a k-sequence
in Y. Suppose that all f(Fn) are not compact. Now, recall
the well-known result due to E. Michael: Every closed image
of a paracompact space is paracompact (see, [2; Theorem 2.4,
p. 165]). Thus Y is paracompact. Then, the f(Fn)'s are not
countably compact. Hence there are closed, countable

. (o]
discrete subsets Dn of f(Fn). Let C = nn=1f(Fn) and

Y. =cu u-_,D_ . Then Y. is closed in Y. Let Z be the

0 n=1"n 0

quotient space obtained from Y. by identifying the compact

0]
subset C to a point. Then it is easy to show that Yo is the

perfect pre-image of a countable metric space Z and that %
is not locally compact. Thus, YO is a closed, o-compact
M-subspace of Y which is not locally compact. This is a

contradiction to the hypothesis of Y. Hence some f(Fn ) is
0

is compact in Y. But,

compact. Let K. = f(Fn ). Then K0

0 0
€ x- £tk nF e (x- £k n £ (R = .
0

*0

This contradiction implies that each point of f—l(y) has a
neighborhood which is contained in the inverse image of

some compact subset of Y. Let V = {V; V is open in X with

V < f—l(K) for some compact K <« Y}. Then [/ is an open
covering of a paracompact space X. Thus / has a locally
finite closed refinement (. Let £({) = {f(c): Cc € (}. Then,

since f is closed, f(C) is a hereditarily closure-preserving
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cover of compact subsets of Y. Let Z be the topological sum
of elements of f(C), and let g: Z >+ Y be the obvious map.
Then g is a closed map from a locally compact paracompact

space Z onto Y.

We shall call a map Lindeldf if every point-inverse

is a Lindeldf space.

Corollary 1.2. The following are equivalent.

(1) Y is the closed Lindeldf image of a bi-k-space,
and Y is a paracompact space in which every closed (or
closed o-compact) M~subspace is locally compact.

(2) Y s the closed Lindelof image of a locally com-
paet paracompact space.

Proof. It suffices to prove (l) = (2). Let f: X+ Y
be a closed Lindeldf map with X bi~k. Let y € Y. Then,
by the proof of (1) = (2) of the previous theorem, there
is a sequence {Vn; n € N} of open subsets of X such that
f-l(y) c u°_.Vv_ and each £f(V ) is compact. Since f is

n=1l"n n
closed, y € int(ui=lf(Vh)). This shows that Y is locally
o-compact. Since Y is paracompact, there is a locally
finite closed cover of o-compact subspaces Fo. Since f is
a closed Lindeldf map, each f—l(Fa) is Lindeldf. Thus each
F, is the closed image of a Lindeldf (hence paracompact)
bi~-k-space. Thus, by the proof of the previous theorem,
each Fa has a countable hereditarily closure-preserving
cover of compact subsets. So, each Fa is the closed image
of a locally compact, LindelSf space. Hence Y is the closed
Lindeléf image of a locally compact paracompact space. That

completes the proof.



TOPOLOGY PROCEEDINGS Volume 7 1982 283

Let Y be the closed image of a paracompact space X.
Then every compact subset of Y is the image of some compact
subset of X [7; Corollary 1.2]. So, in view of the proof

of Theorem 1.1 and Corollary 1.2, we have

Corollary 1.3. Let Y be the closed image (resp. closed
Lindeldf image) of a paracompact bi-k-space X. Then Y ig
the closed image (resp. closed Lindeldf image) of the
topological sum of some compact subsets of X if and only
i1f every closed (o-compact) M-subspace of Y is Lloecally

compact.

Now we shall consider La$nev spaces. Recall that a
space is Ladnev if it is the closed image of a metric space.
Let f: X+ Y be a closed map with X metric. Then for each
x € X and for each decreasing local base {Vn; n € N} at x,
(f(Vh)) is a k-sequence with n:=lf(Vh) a single point f(x).
Also, every compact subset of Y is metrizable. Then, by

the proof of Theorem 1.1, we have

Corollary 1.4. The following are equivalent.

(1) Y is the closed image (resp. closed s-image) of
a metric space, and each closed (or countable closed)
metric subspace is locally compact.

(2) Y is the closed image (resp. closed s-image) of

a locally compact, metric space.

Let X be a space and let C be a covering (not neces-
sarily closed or open) of X. Then X has the weak topology
with respect to C provided that, for A < X, if A n C is

closed in C for all Cc € (, then A is closed in X. If ( is
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a closed covering, as a stronger notion, let us recall
that X has the hereditarily weak topology with respect to
(, or equivalently X is dominated by (, provided that, for
every ("< (, if Ac u(’ and A n C is closed in C for all
ce (’, then A is closed in X.

Recall that every space having the weak topology with
respect to an increasing, countable closed cover is domi-
nated by the cover. Also, every CW-complex is dominated
by the cover of all finite subcomplexes.

Not every space dominated by a countable cover of
compact metric subspaces can be decomposed into a g-discrete
subset and a locally compact metric subspace. Indeed,
this can be seen by the countable CW-complex obtained from
the topological sum of countably many triangles, Aaibici,
by identifying all of segments, EIBi, to a segment. So,
as an application of Theorem 1.1, we shall consider the
decomposition of spaces having the weak topology with
respect to a closed covering of locally compact subspaces.

Recall that a space is Fréchet if, whenever x € A,

then there is a sequence in A converging to the point x.

Proposition 1.5. For a space Y having a closed cover
7 of locally compact subspaces, we define the following
properties.

(a) Y 28 dominated by 7.

(b) Y has the weak topology with respect to 7 such that
7 4is point-countable, e.g.,.Y is the quotient Lindelof image

of a locally compact paracompact space.
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Then Y is the union of a discrete closed subspace and
a locally compact subspace if Y satisfies (1) or (2) below.

(1) Either (a) or (b) holds, and Y is the closed image
of a paracompact bi-k-gpace.

(2) Y 28 a Fréchet space, and (b) holds.

Proof. Case (l1): We will prove that Y is the closed
image of a locally compact paracompact space. Hence, by
[10; Theorem 4], Y is decomposed as a discrete closed sub-
space and a locally compact subspace. To prove that, from
Theorem 1.1, it suffices to show that every closed, o-com-
pact M-subspace F of Y is locally compact. If Y satisfies
(a), then it is easy to check that every compact subset of
Y is contained in a finite union of elements of 7. Then
F is contained in a countable union of elements Fi € 7.
Since F is closed, it is obvious that F has the weak topol-
ogy with respect to a countable, closed cover {F n Fi;
i=1,2,-++} of locally compact subspaces. This shows that
the case (a) reduces to (b). So we assume that Y satisfies
(b). It follows from {l14; Lemma 6], for each k-sequence

(An) in Y, that some An is contained in a finite union of
0

elements of F, so An is locally compact. Hence, in view
0

of the proof of Theorem 1.1, Y is the closed image of a
locally compact paracompact space.

Case (2): Let D= {y € Y; y ¢ int(U}’) for any finite
J’ < #}. Then it is sufficient to show that D is a discrete
closed subset of Y. To see that D is discrete in Y, suppose
not. Then there exist a sequence Yn € D and a point Yo ¢ D

withy -y Let K= {y_: n € N} U {y,}, and
n n 0

0
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_ .,n
{Fe 3 Fn K¥$ ¢ ={F,F,,~c-}, and let T =U,_,F..
Since € D (hence, y_€ Y - T_), there exist sequences
Yn n n
Sn = {ynj; j=1,2,~+¢} converging to Yo and Sn nT, = g.
Since ¥y € u:';___lsn and Yy # Ygr there exists a sequence

S = {yi; k =1,2,-++} converging to Yo with yi € Snk.

But, each convergent sequence together with the limit point
(hence, a compact subset) of Y is contained in a finite

union of elements of 7. Thus, for some n, and a subsequence

0

= ! s 4 9= oo
So = {Yk(j)’ J=1,2,000}, 85U {yy} < Tno. Thus, for any

nk(j) =m > no, Sm n Tm + @#, a contradiction. Hence D is

discrete in Y.

2. Fréchet Spaces and La¥nev Spaces
Not every Fréchet space having the weak topology with

respect to a point-~finite closed cover of metric (hence
Ladnev) subspaces is Lasnev. Indeed, let X be the upper
half plane. For each real number r and each n € N, let
{(x,¥v): v = [x - r| < %} be a basic neighborhood of (r,0),
and let the other points be isolated. Then X is a first
countable (hence Fréchet) space having the weak topology
with respect to a point-finite clopen cover of metric
subspaces. But X is not Ladnev, for it is not normal. So,
in terms of weak topology, we shall consider conditions

that imply every Fréchet space with La$nev pieces is La$nev.

Proposition 2.1. Let X be a Fréchet space having the
weak topology with respect to a closed cover F of Lasdnev

subspaces. If (1) or (2) below holds, then X is Laénev.
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(1) F is countable.
(2) 7 is point-countable and each element of ¥ is a

separable space.

. - . _ ,n
Proof. Case (1): Let F {Fn, n € N}, Cp = VioqFyr
and let Mn = Cn - cn—l’ C0 = . Let M be the topological

sum of Mn(n € N), and let f: M » X be the obvious map.
Since X is Fréchet space having the weak topology with
respect to {Cn: n € N} with Cn c Cn+l' by the proof of

F. Siwiec [12; Proposition 2(a)], we show that f is a
closed map without any topological property of F, . Since
each F_ is now Lagnev, so is M. Then X is La&nev.

Case (2): Every separable Ladnev space is obviously
the closed image of a separable metric space. Thus, each
element of 7 is an 8°-space [8], that is, a space with a
countable k-network. Thus X has the weak topology with
respect to a point-countable cover of No—subspaces. Since
X is Fréchet, by [5; Corollary 8.9], X is the topological
sum of No—spaces. Hence, it is sufficient that every
closed, No—subspace S of X is Lasnev. To see this, let
# be a countable k-network for S, that is, whenever K c U
with K compact and U open in S, then K c U#’ c U for some
finite #' <« /. We assume that each element of # is closed
in S, and that / is closed under finite unions and inter-
sections. Now, let K be any compact subset of S, and

N N, for each

each Nn € N contain the set K, and let K = U51N

-]

n. Then Kn € /N and (Kn) is a k-sequence in S with K = nn=iNn'

On the other hand, the closed subset S of X has the weak

topology with respect to a point-countable closed cover
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C =1{sn F; Fe 7}. Hence by [14; Lemma 6], some Kno is

contained in a finite union of elements of (. Since each
element of (f is Ladnev, so is K . This implies that

N = {Ne ¥ N is Ladnev} is a k-network for S. Thus, S

has the weak topology with respect to the countable closed
cover N#’, because S is Fréchet (hence a k-space) and each
compact subset of S is contained in an element of }’. Hence,

by (1), S is a La%nev space. That completes the proof.

F. Siwiec [12] showed that closed images of locally
compact, separable metric spaces are precisely the hemicom-
pact Fréchet spaces in which every compact subset is metriza-
ble. As for closed s-images of locally compact metric
spaces, we have the following characterization and a rela-
tionship between closed s-~images and pseudo-open s-images.
Recall that a map f: X + Y is pseudo-open [1] (i.e.,
hereditarily quotient) if for any y € Y and for any neigh-

borhood U of £ L(y), y € int £(U).

Theorem 2.2. The following are equivalent.

(1) Y is the pseudo-open s-image of a metric space,
and each closed (or countable closed) metric subspace is
locally compact.

(2) Y is the pseudo-open s-image of a locally compact,
metrie space.

(3) Y 28 the closed s-image of a locally compact,
metric space.

(4) Y is a Fréchet space having the weak topology with
respect to a point-countable cover of compact metric sub-

spaces.
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Proof. Since every closed map is pseudo-open, (3) = (2)
is obvious.

(2) = (1): Let f: X + Y be a quotient s-map with X
a locally compact, metric space. Let F be a closed, metric
subspace of Y. Then g = f|f—1(F) is a quotient s-map from
a locally compact space f_l(F) onto a metric space F. Thus,
F is locally compact by [9; Propositions 3.3(d) and 3.4(a)].
Thus every closed metric subspace of Y is locally compact.

(4) =» (3): From Proposition 2.1, Y is LaSnev. Thus,
as in the proof of Proposition 1.5, Y is the closed image
of a locally compact, metric space (under f). Since Y
has the weak topology with respect to a point-countable
cover of compact subsets, every af_l(y) is Lindeldf by [13;
Remark 4]. Thus Y is the closed s-image of a locally com-
pact, metric space.

(1) » (4): Let f: X - Y be a pseudo-open s-map with
X metric. Since each closed metric subspace of Y is locally
compact, as in the proof of Theorem 1.1 or Corollary 1.4,
X has a locally finite closed cover F each of whose element
is contained in the inverse-image of a compact subset of Y.
Since F is a locally finite closed cover of X and f is a
quotient s-map, Y has the weak topology with respect to a
point-countable cover f(F) each of whose closure is compact,
hence separable metric by [3; Corollary 3]. While, Y is
Fréchet, for every pseudo-open image of a metric space is
Fréchet [1]. Thus, by [5; Corollary 8.9], Y is the topo-
logical sum of &o—spaces. But Y has the weak topology with

respect to a point~countable cover each of whose closure is
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compact. Hence, by the same way as in the proof of Pro-
position 2.1, Y has the weak topology with respect to a
point-countable cover of compact metric subspaces. That

completes the proof.

Since every quotient map onto a Fréchet space is
pseudo-open [l], using a decomposition theorem [10; Theorem
’

4] of closed images of locally compact spaces, we have

Corollary 2.3. Every Fréchet space which is the quotient
s-image of a locally compact metric space 18 a Ladnev space
which can be decomposed into a discrete closed subspace and

a locally compact metric subspace.

We remark that not every Fréchet space which is the
quotient s-image of a metric space is either Lasnev or is
the union of a discrete closed subspace and a metric sub-
space; see [5; Example 9.4], which is Lindel®6f, non-
separable, and has a point-countable base (hence, it is the
open s-~image of a metric space by [11l]). As for decompo-
sitions of La$nev spaces, N. Lagnev [6] showed that not
every countable Lagnev (hence, No) space is the union of
a discrete closed subspace and a metric subspace, but every
La%nev space is at least decomposed as a o-discrete subset
and a metric subspace.

Thus, in view of Corellary 2.3 and Proposition 1.5
(case (2)), we pose the following problem concerning Fréchet

spaces.

Problem 2.4. 1Is every Fréchet space which is the

quotient image of a separable metric space (i.e., Fréchet



TOPOLOGY PROCEEDINGS Volume 7 1982 291

No-space) La$nev, or at least decomposed as a o-discrete
subset and a metric subspace? How about every Fréchet
space dominated by a cover of compact metric subspaces

(e.g., Fréchet CW-complex)?

If the former is affirmative, then every Fréchet space
which is the quotient s-image of a locally separable metric
space is Lasnev, or at least decomposed as a o-discrete
subset and a metric subspace, because such spaces are
characterized as the Fréchet spaces which are the topologi-
cal sum of No—spaces by [5; Proposition 8.8] and [8; Corol-
lary 11.5].

As for the latter, if every Fréchet space dominated
by a cover of compact metric subspaces is La&nev, then such
a space can be decomposed into a discrete closed subspace
and a locally compact metric subspace by Proposition 1.5

(case (1)).
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