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CLOSED IMAGES OF LOCALLY COMPACT 

SPACESANDFRtCHETSPACES 

Yoshio Tanaka 

o. Introduction 

Every quotient image of a metric space is actually the 

quotient image of a locally compact metric space [4]. How­

ever, every closed image (closed s~image) of a metric space 

need not be the closed image (closed s-image) of a locally 

compact metric space. Indeed, any non-locally compact, 

metric space is not the closed image of a locally compact 

metric space. 

So, the for image Y of a metric space (paracompact 

M-space) under a closed map, a closed s-map, or a pseudo­

open s-map, we give a necessary and sufficient condition 

for Y to be the image of a locally compact metric space 

(locally compact paracompact space) under the respective 

kind.of map. Also, we show that every Frechet space which 

is the quotient s-image of a locally compact metric space 

is a Lasnev space which can be decomposed into a discrete 

closed subspace and a locally compact· subspace. 

We assume that all spaces are regular; all maps are 

continuous and onto. 

1. Closed Images of Locally Compact Paracompaet Spaces 

In [9], E. Michael introduced the notion of bi-k-spaces 

and showed that every bi-k-space is precisely the bi-quotient 

image of a paracompact M-space. Hence, every paracompact 
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M-space is bi-k. Recall that a space is a paracompact M-space 

if it admits a perfect map onto a metric space. 

A space X is a bi-k-spaae [9;0 Lemma 3.E.2], if whenever 

F is a filter base accumulating at x in X, then there exists 

a k-sequence (F ) in X such that x E F n F for all F and n n n 

all F E J. Here, a decreasing sequence (F ) of subsets of n 

X is a k-sequence, if K = n:=lF is compact in X and everyn 

neighborhood of K contains some F • We can assume that all 
n 

F are closed in X. n 

Theorem 1.1. The following are equivalent. 

(1) Y is the alosed image of a paraaompaat bi-k-spaae, 

and eaah aZosed (or aZosed a-aompaat) M-subspaae of Y is 

ZoaaZZy aompaat. 

(2) Y is the aZosed image of a ZoaaZZy aompaat para­

aompaat spaae. 

Proof· (2) ~ (1): Let f be a closed map from a locally 

compact paracompact space onto Y. Let Y be a closed,l 
-1

M-subspace of Y, and Xl = f (Y ). Then g = flx is al l 

closed map from a paracompact space Xl onto an M-space Y •l 

Thus, each ag-l(y) is compact by [7; Corollary 2.2]. Hence, 

as in the proof of [7; Corollary 1.2], there is a closed 

subset F of Xl such that glF is a perfect map onto Y •l 

Since F is locally compact, so is Y • Hence each closed,
l 

M-subspace of Y is locally compact. 

(1) - (2): Let f: X ~ Y be a closed map with X para-

compact bi-k. Let y E Y. Then we will prove that each 

point of f-l(y) has a neighborhood contained in the inverse 

image of some compact subset of Y. To see this, suppose 
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not. Then there is a point X E f-l(y) such that for any
o 

neighborhood V of X and for any compact subset K of Y,o 
V ~ f-I(K). Let J {X - f-l(K); K is compact in Y}. 

Then J is a filter base accumulating at x • Since X is a
O

bi-k-space, there is a k-sequence (F ) in X with x E F n F
nOn 

for all F and all F E J. Obviously, (f(F » is a k-sequencen n 

in Y. Suppose that all f(F ) are not compact. Now, recall n 
the well-known result due to E. Michael: Every closed image 

of a paracompact space is paracompact (see, [2; Theorem 2.4, 

p.165]). Thus Y is paracompact. Then, the f(Fn)'S are not 

countably compact. Hence there are closed, countable 

discrete subsets D of f(F ). Let C = n°O If(F ) and 
n n n= n 

YO = C U U~=lDn. Then YO is closed in Y. Let Z be the 

quotient space obtained from YO by identifying the compact 

subset C to a point. Then it is easy to show that YO is the 

perfect pre-image of a countable metric space Z and that Z 

is not locally compact. Thus, YO is a closed, a-compact 

M-subspace of Y which is not locally compact. This is a 

contradiction to the hypothesis of Y. Hence some f(F ) is 
nO 

compact. Let K f(F ). Then K is compact in Y. But,O no O 

X € (X - f-1 (KO» 0 F c (X - f-1 (KO» 0 f-1 (KO) = ~.o no 
This contradiction implies that each point of f-l(y) has a 

neighborhood which is contained in the inverse image of 

some compact subset of Y. Let V = {V; V is open in X with 

V c f-l(K) for some compact KeY}. Then V is an open 

covering of a paracompact space X. Thus V has a locally 

finite closed refinement C. Let f(C) = {f(C): C E C}. Then, 

since f is closed, f<C) is a hereditarily closure-preserving 
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cover of compact subsets of Y. Let Z be the topological sum 

of elements of f([), and let g: Z ~ Y be the obvious map. 

Then g is a closed map from a locally compact paracompact 

space Z onto Y. 

We shall call a map Lindelof if every point-inverse 

is a Lindelof space. 

Corollary 1~2. The follo~ing are equivalent. 

(1) Y is the alosed Lindelof image of a bi-k-spaae~ 

and Y is a paracompaat spaae in ~hiah every closed (or 

alosed a-compaat) M-subspaae is locally compaat. 

(2) Y is the closed Lindelof image of a loaally com­

paat paracompaat space. 

Proof. It suffices to prove (1) ~ (2). Let f: X ~ Y 

be a closed Lindelof map with X bi-k. Let y E Y. Then, 

by the proof of (1) ~ (2) of the previous theorem, there 

is a sequence {V ; n E N} of open subsets of X such that n
 
f-l(y) c U

OO 
lV and each f(V ) is compact. Since f is
 n= n n 

closed, y e: int(U
oo 

If(V ». This shows that Y is locallyn= n 
a-compact. Since Y is paracompact, there is a locally 

finite closed cover of a-compact subspaces Fa. Since f is 

a closed Lindelof map, each f-l(F ) is Lindelof. Thus each 
a 

Fa is the closed image of a Lindelof (hence paracompact) 

bi-k-space. Thus, by the proof of the previous theorem, 

each Fa has a countable hereditarily closure-preserving 

cover of compact subsets. So, each Fa is the closed image 

of a locally compact, Lindelof space. Hence Y is the closed 

Lindelof image of a locally compact paracompact space. That 

completes the proof. 
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Let Y be the closed image of a paracompact space X. 

Then every compact subset of Y is the image of some compact 

subset of X [1; Corollary 1.2]. So, in view of the proof 

of Theorem 1.1 and Corollary 1.2, we have 

CoroZZary 1.3. Let Y be the cZosed image (resp. cZosed 

LindeZof image) of a paracompact bi-k-space X. Then Y is 

the cZosed image (resp. cZosed LindeZof image) of the 

topoZogicaZ sum of some compact subsets of X if and onZy 

if every cZosed (a-compact) M-subspace of Y is ZocaZZy 

compact. 

Now we shall consider Lasnev spaces. Recall that a 

space is Lasnev if it is the closed image of a metric space. 

Let f: X ~ Y be a closed map with X metric. Then for each 

x € ~ and for each decreasing local base {V ; n € N} at x,n 

(f(V » is a k-sequence with n:=lf(V ) a single point f(x).n n

Also, every compact subset of Y is metrizable. Then, by 

the proof of Theorem 1.1, we have 

CoroZZary 1.4. The foZZo~ing are equivaZent. 

(1) Y is the cZosed image (resp. cZosed s-image) of 

a metric space~ and each cZosed (or countabZe cZosed) 

metric subspace is ZocaZZy compact. 

(2) Y is the cZosed image (resp. cZosed s-image) of 

a ZocaZZy compact~ metric space. 

Let X be a space and let Cbe a covering (not neces­

sarily closed or open) of X. Then X has the weak topoZogy 

with respect to Cprovided that, for A c X, if A n C is 

closed in C for all C € C, then A is closed in X. If Cis 
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a closed covering, as a stronger notion, let us recall 

that X has the hereditarily weak topology with respect to 

C, or equivalently X is dominated by C, provided that, for 

every C' c: C, if A c: uC' and A n C is closed in C for all 

C E C', then A is closed in X. 

Recall that every space having the weak topology with 

respect to an increasing, countable closed cover is domi­

nated by the cover. Also, every CW-complex is dominated 

by the cover of all finite subcomplexes. 

Not every space dominated by a countable cover of 

compact metric subspaces can be decomposed into a a-discrete 

subse~ and a locally compact metric subspace. Indeed, 

this can be seen by the countable CW-complex obtained from 

the topological sum of countably many triangles, ~aibici' 

by identifying all of segments, a.b., to a segment. So,
1. 1. 

as an application of Theorem 1.1, we shall consider the 

decomposition of spaces having the weak topology with 

respect to a closed covering of locally compact subspaces. 

Recall that a space is Frechet if, whenever x E A, 
then there is a sequence in A converging to the point x. 

Proposition 1.5. For a space Y having a cLosed cover 

J of LocaLLy compact subspaces, we define the following 

properties. 

(a) Y is dominated by J. 

(b) Y has the weak topology with respect to J such that 

J is point-countabLe, e.g.,.Y is the quotient LindeLof image 

of a LocaLLy compact paracompact space. 
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Then Y is the union of a discrete cZosed 8ubspace and 

a ZocaZZy compact subspaae if Y satisfies (1) or (2) beZow.

(1) Either (a) or (b) hoZds, and Y is the cZosed image

of a paracompact bi-k-space. 

(2) Y is a Frechet space, and (b) hoZds. 

Proof. Case (1): We will prove that Y is the closed 

image of a locally compact paracompact space. Hence, by 

[IOi Theorem 4], Y is decomposed as a discrete closed sub­

space and a locally compact subspace. To prove that, from 

Theorem 1.1, it suffices to show that every closed, a-com­

pact M-subspace F of Y is locally compact. If Y satisfies 

(a), then it is easy to check that every compact subset of 

Y is contained in a finite union of elements of J. Then 

F is contained in a countable union of elements F. E J. 
1 

Since F is closed, it is obvious that F has the weak topol­

ogy with respect to a countable, closed cover {F n F i ; 

i = 1,2,···} of locally compact subspaces. This shows that 

the case (a) reduces to (b). So we assume that Y satisfies 

(b). It follows from [14; Lemma 6], for each k-sequence 

(An) in Y, that some A is contained in a finite union of 
nO 

elements of ], so A is locally compact, Hence, in view 
nO 

of the proof of Theorem 1.1, Y is the closed image of a 

locally compact paracompact space. 

Case (2): Let D = {y E Y; Y ¢ int(UJ') for any finite 

JI C ]}. Then it is sufficient to show that D is a discrete 

closed subset of Y. To see that D is discrete in Y, suppose 

not. Then there exist a sequence Yn E D and a point yo ¢ D 

with Yn ~ YO· Let K = {Yn ; n E N} U {YO}' and 
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n
{F E J; F n K f ~} = {F1 ,F2 ,···}, and let Tn = Ui =lFi.
 

Since Yn € 0 (hence, Yn E Y - Tn)' there exist sequences
 

S = {y oj j = 1,2,···} converging to y , and S n T ~.
 n nJ n n n
 

Since YO € U~=lSn and Y f YO' there exists a sequence
n 

5 = {Yk; k = 1,2, ••• } converging to YO with Yk E 5 . 
nk 

But, each convergent sequence together with the limit point 

(hence, a compact subset) of Y is contained in a finite 

union of elements of J. Thus, for some nO and a subsequence 

50 = {Yk(j); j = l,2,···}, 50 U {yO} C T . Thus, for any
no 

nk(O) = m > nO' S n T +~, a contradiction. Hence 0 is
J - m· m 

discrete in Y. 

2. Fr&chet Spaces and Lallnev Spaces 

Not every Fr~chet space having the weak topology with 

respect to a point-finite closed cover of metric (hence 

Lasnev) subspaces is Lasnev. Indeed, let X be the upper 

half plane. For each real number r and each n E N, let 

{(x,Y)j Y = Ix - rl < ~} be a basic neighborhood of (r,O), 

and let the other points be isolated. Then X is a first 

countable (hence Fr~chet) space having the weak topology 

with respect to a point-finite c10pen cover of metric 

subspaces. But X is not Lasnev, for it is not normal. So, 

in terms of weak topology, we shall consider conditions 

that imply every Frechet space with Lasnev pieces is Lasnev. 

Proposition 2.1. Let X be a Freahet spaae having the 

weak topoLogy with reBpeat to a aLosed aover J of Laanev 

8ubBpaaeB. If (1) or (2) beLow hoLd8, then X is Lasnev. 
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(1) J is countabZe. 

(2) J is point-countabZe and each eZement of ] is a 

separabZe space. 

Proof· Case (1): Let J = {Fn ; n E N}, Cn = U'~=lFi' 

and let Mn Cn - Cn_l' Co =~. Let M be the topological 

sum of Mn (n E N), and let f: M 0+, X be the obvious map. 

Since X is Frechet space having the weak topology with 

respect to {C ; n E N} with C c C +1' by the proof of n n n 
F. Siwiec [12; Proposition 2(a)], we show that f is a 

closed map without any topological property of F • Since n 

each F is now Lasnev, so is M. Then X is Lasnev. n 

Case (2): Every separable Lasnev space is obviously 

the closed image of a separable metric space. Thus, each 

element of ] is an No-space [8], that is, a space with a 

countable k-network. Thus X has the weak topology with 

respect to a point-countable cover of No-subspaces. Since 

X is Fr~chet, by [5: Corollary 8.9], ~ is the topological 

sum of No-spaces. Hence, it is sufficient that every 

closed, N -subspace S of X is Lasnev. To see this, let 
o 

Nbe a countable k-network for S, that is, whenever K c U 

with K compact and U open in S, then K c uN' c U for some 

finite N' c tV. We assume that each element of tV is closed 

in S, and that N is closed under finite unions and inter­

sections. Now, let K be any compact subset of S, and 

neach Nn E tV contain the set K, and let K = for each n Ui=lNi 
n. Then K E tV and (R ) is a k-sequence in S with K = n 00 

.N . 
n=~n n n 

On the other hand, the closed subset S of X has the weak 

topology with respect to a point-countable closed cover 
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[ = {s n F; F € ]}. Hence by [14; Lemma 6], some K is 
nO 

contained in a finite union of elements of [. Since each 

element of Cis Lasnev, so is K • This implies that 
nO 

H' = {N € N; N is La~nev} is a k-network for S. Thus, S 

has the weak topology with respect to the countable closed 

cover N', because S is Frechet (hence a k-space) and each 

compact subset of S is contained in an element of N'. Hence, 

by (1), S is a La~nev space. That completes the proof. 

F. Siwiec [12] showed that closed images of locally 

compact, separable metric spaces are precisely the hemicom­

pact Frechet spaces in which every compact subset is metriza­

ble. As for closed s-images of locally compact metric 

spaces, we have the following characterization and a rela­

tionship between closed s-images and pseudo-open s-images. 

Recall that a map f: X ~ Y is pseudo-open [1] (i.e., 

hereditarily quotient) if for any y € Y and for any neigh­

borhood U of f-l(y), Y € int f(U). 

Theorem 2.2. The follo~ing are equivalent. 

(1) Y is the pseudo-open s-image of a metric space, 

and each closed (or countable closed) metric subspace is 

locally compact. 

(2) Y is the pseudo-open s-image of a locally compact, 

metric space. 

(3) Y is the closed s-image of a locally compact, 

metric space. 

(4) y is a Frechet space having the weak topology with 

respect to a point-countable cover of compact metric sub­

spaces. 
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Ppoof· Since every closed map is pseudo-open, (3) • ( 

is obvious. 

(2) ~ (1): Let f: X ~ Y be a quotient s-map with X 

a locally compact, metric space. Let F be a closed, metric 

sUbspace of Y. Then g = flf-l(F) is a quotient s-map from 

-1 a locally compact space f (F) onto a metric space F. Thus, 

F is locally compact by [9; Propositions 3.3(d) and 3.4(a)]. 

Thus every closed metric subspace of Y is locally compact. 

(4) • (3): From Proposition 2.1, Y is Lasnev. Thus, 

as in the proof of Proposition 1.5, Y is the closed image 

of a locally compact, metric space (under f). Since Y 

has the weak topology with respect to a point-countable 

cover of compact subsets, every af-l(y) is Lindelof by [13; 

Remark 4]. Thus Y is the closed s-image of a locally com­

pact, metric space. 

(1) ~ (4): Let f: X ~ Y be a pseudo-open s-map with 

X metric. Since each closed metric subspace of Y is locally 

co~pact, as in the proof of Theorem 1.1 or Corollary 1.4, 

X has a locally finite closed cover J each of whose element 

is contained in the inverse-image of a compact subset of Y. 

Since] is a locally finite closed cover of X and f is a 

quotient s-map, Y has the weak topology with respect to a 

point-countable cover f(J) each of whose closure is compact, 

hence separable metric by [3; Corollary 3]. While, Y is 

Frechet, for every pseudo-open image of a metric space is 

Frechet [1]. Thus, by [5; Corollary 8.9], Y is the topo­

logical sum of ~o-spaces. But Y has the weak topology with 

respect to a point-countable cover each of whose closure is 
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compact. Hence, by the same way as in the proof of Pro­

position 2.1, Y has the weak topology with respect to a 

point-countable cover of compact metric subspaces. That 

completes the proof. 

Since every quotient map onto a Frechet space is 

pseudo-open [1], using a decomposition theorem [10; Theorem 
I 

4] of closed images of locally compact spaces, we have 

Co~olla~y 2.3. Every Frechet space which is the quotient 

s-image of a locally compact met~ic space is a Lasnev space 

which can be decomposed into a disc~ete closed subspace and 

a locally compact met~ic 8ubspace. 

We remark that not every Frechet space which is the 

quotient s-image of a metric space is either Lasnev or is 

the union of a discrete closed subspace and a metric sub­

space; see [5; Example 9.4], which is Lindelof, non­

separable, and has a point-countable base (hence, it is the 

open s-image of a metric space by [11]). As for decompo­

sitions of La~nev spaces, N. La~nev [6] showed that not 

every countable Lasnev (hence, No) space is the union of 

a discrete closed subspace and a metric subspace, but every 

La§nev space is at least decomposed as a a-discrete subset 

and a metric subspace. 

Thus, in view of Corollary 2.3 and Proposition 1.5 

(case (2», we pose the following problem concerning Frechet 

spaces. 

Problem 2.4. Is every Fr~chet space which is the 

quotient image of a separable metric space (i.~., Frechet 
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No-space) Lasnev, or at least decomposed as a a-discrete 

subset and a metric subspace? How about every Frechet 

space dominated by a cover of compact metric subspaces 

(e.g., Frechet CW-complex)? 

If the former is affirmative, then every Frechet space 

which is the quotient s-image of a locally separable metric 

space is Lasnev, or at least decomposed as a a-discrete 

subset and a metric subspace, because such spaces are 

characterized as the Frechet spaces which are the topologi­

cal sum of No-spaces by [5; Proposition 8.8] and [8; Corol­

lary 11.5]. 

As for the latter, if every Frechet space dominated 

by a cover of compact metric subspaces is Lasnev, then such 

a space can be decomposed into a discrete closed subspace 

and a locally compact metric subspace by Proposition 1.5 

(case (1». 
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