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ON Z AND Z*-SPACES 

C.E.Aull 

1.	 Introduction 

The condition Z was introduced by Zenor in [15] and 

studied by Mack in [11], and the condition Z* was introduced 

by the author in [3]. The primary purpose of this paper will 

be to study the C- and C*-embedding properties of Z and Z* 

spaces and in particular to prove the following theorem. 

Theorem. A Tychonoff Z-space (Z*-space) is C*-embedded 

in every Tychonoff Z-space (Z*-space) it is embedded in as 

a closed set iff it is almost Lindelof (pseudocompact). 

2.	 Definitions and Notation 

Definition 1. A topological space X is a Z-space 

(Z*-space) if for F,Z c X, F n Z = ~, F closed, and Z a 

zero	 set, then F and Z are completely separated in the 

terminology of [8] (every closed set is a generalized Za i 

i.e. for F closed G open, and F c G, there exists H, a 

countable union of zero sets, such that F c H c G). 

Example 1. The Tychonoff plank satisfies Z* but not 

Z. On the other hand n = W* x W* - (wl,w ) satisfies Zl 

but not Z* where W* is the set of ordinals up to and 

including the first uncountable ordinal [15]. 

Definition 2. Two disjoint sets A,B c X are function­

ally separated if there exists a continuous function to the 

real line such that f(A) n f(B) =~. If for x,y € X, x ~ y, 
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[x] and [y] are functionally separated then X is said to be 

functionally Hausdorff [3]. If for x E X, F c X, x ~ F, 

and F closed (K compact in weak topology K c X, F c X, 

K n F = ~, and F closed) [x] and F (K and F) are functionally 

separated then X is said to be functionally regular 

(k-functionally regular). 

In general, the notation of Gillman and Jerison [8] 

will be used. However (X,W) will be used to represent the 

weak topology for (X,]) and z-embedding is defined in [5]. 

3.	 Basic and Known Properties of Z- and Z*-Spaces 

In the theorem below we will list basic and known pro­

perties of Z- and Z*-spaces,. Many of the proofs will be 

omitted. 

Theorem 1. The following relations hold. 

(a) A	 space is normal iff it satisfies Z and Z*. 

(b) A	 c9untably paracompact Z*-space is normal. 

(c) A functionally regular Z-space is completely regular. 

A functionally Hausdorff Z*-space is k-functionally regular. 

(d) A pseudocompact Z-space is countably compact (Proof 

of Tychonoff case in [15]). A countably compact space [15] 

or a P-space is a Z-space. 

(e) A a-compact functionally Hausdorff space satisfies 

Z*. 

(f) Closed sets of Z*-spaces are Z*-spaces and z-embedded 

closed sets of Z-spaces are Z-spaces. 

(g) Disjoint closed C-embedded subsets of Z*-spaces are 

completely separated and hence finite unions of disjoint 

closed C-embedded sets are C-embedded. 
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(h) Closed countable unions of z-embedded zero sets in 

Z-spaces are z-embedded and hence C-embedded. 

(i) Both Z and Z* are preserved by GZ-mappings (mappings 

that take zero sets onto generalized zero sets). 

(j) Every WZ-mapping from a Z-space is a Z-mapping [15]. 

Proofs. (a) If A and B are disjoint closed sets of X 

there exists a Za set H such that A c H c B. By the Z pro­

perty there exists a zero set containing B and disjoint from 

H. A second application of the Z property establishes that 

A and B are completely separated so X is normal. The con­

verse is immediate given that a space is normal iff every 

closed set is a generalized zero set (folklore). (b) In the 

proof of part (a), first sentence, let H = UZ . We use the 
n 

countable paracompactness of X to establish Zn c G C G C ~B n n 

where G is open. An application of countable paracompact­n 

ness to A shows that A and B are contained in disjoint open 

sets. (e) From [2] Lindelof functionally Hausdorff spaces 

are k-functionally regular. Let A and B be disjoint closed 

sets. Since A is a-compact there is a Za containing A and 

disjoint from B. (g) Let A and B be disjoint C-embedded 

closed sets of a Z*-space. If H is a Za set containing A 

and disjoint from B there is a zero set containing B dis­

joint from H by the C-err~edding of B. The C-embedding of A 

establishes that A and B are completely separated. For any 

finite family {F } of disjoint C-embedded closed sets there n 

is a family of disjoint zero sets {Zn} such that each F C Z • n n 

The C-embedding of UF will follow. (h) Let F = UZ where n n 

each Zn is a z-embedded zero set and hence a C-embedded 
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zero	 set [5]. Let A and B be disjoint zero sets of F and 

let A A n Z By the z-embedding of Z ,A is a zero n n n n 

set of X and hence is completely separated from B by the 

Z-property, and there is a zero set containing B disjoint 

from A = UA ; again we apply the Z-property so that A and n 

B are completely separated. 

Remarks on Theorem 1. (g) The space n has two dis­

joint closed C-errIDedded subsets that are not completely 

separated [8] so the result does not apply to Z-spaces. 

Any attempt to replace finite by countable runs into 

the difficulty of the Tychonoff plank which has a countable 

closed discrete set which is not even C*-embedded. This 

shows also that unlike Z-spaces z-embedded closed sets are 

not necessarily C- or C*-embedded. (j) Zenor [15] showed 

that Z-mappings (mappings such that the image of zero sets 

are closed sets) are identical with closed maps in normal 

spaces. Since every GZ-mapping is a Z-mapping and closed 

sets of normal spaces are generalized zero sets (folklore) 

GZ-mappings are identical with closed maps in normal spaces. 

4.	 The Transition from Complete Regularity to Normality 

Hewitt [10] has shown that a Tychonoff space is 

C*-embedded in every Tychonoff space it is embedded in iff 

it is alsmot compact; the theorem below gives a comparison 

theorem for complete regularity and normality. In the above 

result of Hewitt and the theorem below, we may replace 

C*-embedded by C-embedded. 
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Theopem 2. A Tychonoff (locally compact) space X is 

C*-embedded in evepy Tychonoff (locally compact) space X is 

embedded in as a closed set iff X is almost compact. Fop a 

T 4-space evepy closed embedding is a C-embedding. 

Ppoof. It is evident that the result on Tychonoff 

spaces follows from Hewitt's result. If a Tychonoff space 

X is not almost compact there is a compactification KX in 

which X is not C*-embedded. By problem 9K of [8] there 

exists Y such that KX = 8Y .~ Y. Then X is not C*-ernbedded 

in X U Y but is closed in X U Y. The proof for the locally 

comp~ct case is almost the same. The last result is a 

classical result of Urysohn. 

There is clearly a large gap between complete regularity 

and normality in regard to C and C*-ernbedding of closed 

sets. With Theorems 3 and 4 we will help fill this gap 

by showing that every closed embedding of a Z(Z*)-space in 

a Tychonoff Z(Z*)-space is a C- or C*-ernbedding iff the 

space is almost-Lindelof (pseudocompact). The method of 

proof for these two conditions will be different and also 

distinct from the argument in Theorem 2. However, one could 

prove the special case involving property Z when the space 

is countably compact using the argument of Theorem 2. The 

method we use is closely related to but more involved than 

the one used for investigating P-spaces [1] of Gillman and 

Jerison. 

We note for z-embeddings the condition on X for Tychonoff 

spaces in Theorem 2 is almost compact or Lindelof. This is 

a consequence of a result of Blair and Hager [5]. 
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Remark. In the next theorem we do not have to specify 

that the space X is a Z-space except to insure that there 

is a Tychonoff Z-space in which it is embedded as a closed 

set. For instance no almost compact space that is not 

countably compact can be embedded as a closed set of a 

Z-space. So such a space would vacuously have the property 

that it is C-embedded in every Tychonoff Z-space it is 

embedded in as a closed set. It would be interesting to 

characterize the closed subspaces of Z-spaces. In the 

statement of the next theorem, we may replace C*-embedded 

by z-embedded or C-embedded. 

Theorem 3. A Tychonoff Z space is C*-embedded in 

every Tychonoff Z space that it is embedded in as a cZosed 

set iff it is almost Lindelof. (Note: A space is almost 

Lindelof if given two disjoint zero sets one is Lindelof.) 

We will .need several lemmas. 

Lemma 3A. A space X is almost Lindelof iff ax - x does 

not contain two disjoint closed sets of ax neithep of which 

is contained in a zero set of ax that is contained in eX - x. 

The above lemma was proved in [1]. 

Lemma 3B. A one point Tychonoff extension of a Z-space 

X is a Z-space. 

Proof. The Tychonoff space X U [y] = Y can be con­

sidered as the continuous image of X U K, where K is compact 

and X U K is a subset of aX and the continuous mapping f is 

the extension of a homeomorphism of X onto itself. See [8]. 
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Let A, Z c Y, A n z fiJ, A closed in Y and Z a zero set of 

Y. If Y E Z then K c k- l (Z) and there exists a zero set H 

of X U K containing f-l(A) = A and disjoint from K. Further­

more there exists a zero set 0 of X U K disjoint from 

f-l(Z) n X and containing A so that 0 n H is a zero set 

disjoint from f-l(Z) containing A. Then f(H n 0) H n 0 

is a zero set of Y disjoint from Z and contairting A. 

Suppose y ~ z. There exists a zero set H of X such that 

H n z fiJ and A n X c H. By the C*-embedding of X in X U K 

these zero sets can be extended to X U K and furthermore in 

such a way that the zero set extension 0 of H contains K. 

Then f(O) = (0 n X) U [y] is a zero set of Y containing A 

and disjoint from z. 

Lemma 3C. Let (X,J) be a Tyahonoff Z-spaae and (Y,S) 

a one point Tyahonoff extension of (X,J) where Y = X U [y]. 

The spaae (Y, (J) with subbase aZ,l open sets of (y,S) and all 

aomplements of zero sets of (X,]) whi.ah are disjoint from 

zero sets of (y,5) aontaining [y] is a Tyahonoff Z-spaae. 

Proof. Let H be a zero set of (X,J) disjoint from Z, 

a zero set of (Y,S) such that y E Z. We will show that H 

is a zero set of (y,lj). There is a continuous function f 

on X such that f-l(l) = Hand f-l(O) = Z n X. We define f* 

so that f*(x) = f(x) for x E X and f*(y) O. If A is 

closed in the reals and 0 E A then f-l(A) is closed in Xi 

y E f*-l(A) so that f*-l(A) is closed in Y. If 0 ~ B, B 

closed in the reals, f-l(B) is a zero set in X, since Z 

is disjoint from f- l (B). So f- l (B) is closed in (Y, l/) • 

Thus f* is continuous and H is a zero set of (Y,W. To show 
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the complete regularity of (Y,U) it will suffice to show 

that if y ~ F and F is closed in (Y,U) but not closed in 

(y,S) then F and [y] are completely separated in (Y,U). 

By construction of (Y,U) there is a zero set H of (Y,U) 

such that F e Hand y ~ H. So F and yare completely 

separated in (Y,U) and (Y,U) satisfies Z by Lemma 3B. 

Lemma 3D. Let (Y,S) and (Y,U) be constructed as in 

Lemma 3C and let Z be a zero set of (Y,U) such that y E Z. 

Then there is a zero set M, of (Y,S) such that y E M e z. 

If [y] is a zero set of (Y,U) then [y] is a zero set of 

(Y ,S) . 

Let Z be a zero set of (Y,U) containing [y]. We wish 

to show that there is a zero set M of (Y,S) such that 

y'E Me Z. In (Y,I1), ",Z = UF. where each F. is a zero set
]. ].. 

and Fi e If in (Y,S) there exists F. such that ifFi +l • 
]. 

j ~ i, F. is not closed, then there exists a zero set M 
J 

of (y,S) such that y E M e Z. This follows from the con­

struction of (Y,U). If each Fi is closed iri (Y,S), then 

by the complete regularity of (Y,5> there exists a zero set 

M such that y € M e Z. It is clear that since [y] is not 

a zero set of (y,S), then [y] is not a zero set of (Y,U). 

Definition 4. A set X, X e Y, satisfies Z in regard 

to a space Y if for F closed in X and Z a zero set of Y 

such that F n Z = 0 there is a zero set H of Y such that 

F e H e ",Z. 

Example 2. If X is an uncountable discrete space and 

Y a one point extension by a point y such that the 
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neighborhoods of yare complements of countable sets (the 

one point compactification of X) then X satisfies (does not 

satisfy) Z in regard to Y. 

Lemma 3E. Let (X,J) be Tychonoff, Z, and not aZmost­

LindeZof. Then there is a one point Tychonoff extension Y 

of X which satisfies Z and is such that (X,J) satisfies Z 

with respect to Y and X is not C*-embedded in Y. 

Proof. Let A and B be the disjoint closed sets of 

Lemma 3A and consider the quotient map of X U A U B with 

each x E X an equivalence class and A U B an equivalence 

class. Let f(x) = x and f(A U B) = Y under the quotient map 

f and designate this topology as (Y,S). Then as in Lemmas 

3C and 3D construct the topology (Y,~. We have shown in 

these two Lemmas that (Y,U) is a one point Tychonoff 

extension of (X,J) that satisfies Z. If F is closed in 

(X,J) and disjoint from a zero set Z containing Y, then 

since (Y, ~ satisfies Z, and F is closed in (Y, U), X satis­

fies Z in regard to Y. Since neither A nor B nor A U B is 

a zero set, X is not C*-embedded in Y. Suppose X were 

C*-embedded in the modified quotient space of X U A U B 

of Lemma 3A where each x E X, A and B are the equivalence 

classes forming a space X U [a] U [b], and where for the 

quotient map f, f(x) = x, f(A) = a and feB) = b. We modify 

this quotient space analogous to the process in Lemmas 3C 

and 3D by closing zero sets of (X,J) disjoint from zero 

sets of X U [a] U [b] containing [a] U [b]. Even if X 

were C*-embedded in the modified X U [a] U [b], X would 

not be C*-embedded in Y = (Y,U) which we could obtain by 

identifying a and b. 
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Lemma 3F. Let Y satisfy Z and let Y = X U [y] with X 

satisfying Z with respect to Y. Then' Q (Y x D*) - (y,d*) 

satisfies Z where IDI > Iyl and D* = D U [d*] where each 

d E D is isolated in D* and a set containing d* is open iff 

the cardinality of its complement is less than or equal to 

Proof. Let A be closed and let Z be a zero set of Q 

such that A n Z = ~. For Z a zero set of Q such that 

(x,d*) E Z, all but IYI of (x,d) E Z for d E D. If 

(x,d*) E Z then there is at most members of D such thatIYI
 

(x,d) f Z. So there exists a subset D of D*, d* E D
l
, 

l , 

I Dli IDIand = and «Z n X) x D ) c Z. Furthermore we canl 

choose D so that if (y,d) E Z for som~ d E D then (y,d) E Zl l 

for all d E D This follows from Lemma 3D where it isl . 

shown that [y] is not a zero set of Y so that for HeX, 

Hand H U [y] can not both be zero sets of Y. So that 

either (1) (Z n X) x D = Z n (Y x Dl ) or (2) «Z n X) x D ) Ul l 

Z n (Y x D ). For a closed set A such thatl 

(x,d*) f A there are at most IYI members of D such that 

(x,d) E A. So we may choose D in addition so that ifl
 

(x,d*) ¢ A, then (x,d) f A for d E Dl . In case (1) above
 

A n (Y x D ) c «A n X) x D ) U (D n Q) a closed set. In
l l l 

case (2) above A n (Y x D ) c «A n X) x D ) a closed set.l l 

In either case there is a zero set disjoint from theZ2 

zero set Zl = Z n (Y x D ) and containing the closed setl 

A n (Y x D ) by Lemma 3E. In general there will be pointsl 

of A and Z outside of y x Since d is clopen in D forDl · 

,d ~ Dl , Zd = Z n (Y x d) is a zero set of Q and there is a 



TOPOLOGY PROCEEDINGS Volume 8 1983 11 

zero set H ::::> A n (Y x d) disjoint from Z n (Y x d) by Lemmad 

3E. Then Z Zl UU {Zd: d E D D
l 

} is disjoint from"J 

Z3 Z2 UU {Hd : d E D "J D } which is a zero set containing Al 

by Problem lA [8] • 

Lemma 3G. In a Z-space z-, C*- and C-embeddings are 

equivalent for closed sets. 

Proof. Blair and Hager showed that a z-embedded set 

is C-embedded iff it is completely separated from any dis­

joint zero set. 

Proof of theorem. If X is not almost-Lindelof, we 

construct the one point extension of Lemma 3E and then the 

deleted product space of Lemma 3F which satisfies Z. The 

set X is not C*-errIDedded in Q since there exists f continu­

ous and bounded on X which can not be extended to Y. Any 

extension of this function must be copied on at least one 

X x d, in fact, for all but IYI of these d since zero sets 

containing d* must contain all but IYI points of D*. A 

copy of f on X x d can not be extended to Y x d. So f 

cannot be extended to Q. We then note that in a Z-space 

for closed sets z-, C*-, C-embedding are equivalent by 

Lemma 3G. We conclude the proof by noting that in [3] it 

was proved that every closed almost Lindelof subset of a 

Tychonoff Z-space is C-embedded. 

Example 3. We note that the examples in Example 1 

being almost compact are almost Lindelof. 
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Theorem 4. Every aLosed embedding of a Tyahonoff 

Z*-spaae X in a Tyahonoff Z*-spaae is a C*-embedding iff 

X is pseudoaompaat. 

Proof. In [3] it was shown that closed pseudocompact 

subsets of Z*-spaces are C-embedded. Let X be Tychonoff 

Z* and not be pseudocompact. Using the notation of 

Gillman and Jerison, let T be the Tychonoff plank, where 

T = N* x W* ~ (n*,wl ). Let Y = X U T where X n T = N 

where N is both the countable closed discrete space of the 

plank and a C-embedded copy of N in X which exists since X 

is not pseudocompact [8]. A set will be a member of the 

subbase for Y if it is the complement of a closed set in 

X or T. We will show that X is not C*-embedded in Y = X U T 

and Y satisfies Z* and is Tychonoff. If f is bounded and 

continuous on N but does not have an extension to all of 

T, then ~ny extension of f to X and there is at least one, 

in fact, a bounded one, can not be extended to Y. So X is 

not C*-embedded in X U T. In order to show that Y satisfies 

Z* we first show that X is z-embedded in Y. Let Z be a zero 

set of X and let x l ,x2 ,···x ••• be points of N not contained n 

in Z. There exists a zero set Zn containing all points of 

the above sequence except the first n-l and Zn is disjoint 

from Z. This is possible since N is C-embedded in X. For 
00 

this reason it is no restriction to have nn=lZn =~. The 

zero set Z U Zn of X can be extended to a zero set Q of n 

Y such that Q n X = Z U Zn since they contain all but a n 

finite number of points of N. Since Z = n:=l(z. U Zn)' Z can 

also be extended to a zero set Q of Y such that Q n X = Z. 
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Hence, X is z-embedded in Y. At this point it is clear 

that Y is a Tychonoff space. It remains to show that Y 

satisfies Z*. Let A and B be disjoint closed sets of Y. 

If H is a Za of T such that AnT c H c T - (B n T) then 

there is a Za set Q of Y such that AnT c Q c T (A n T). 

Similarly we can find a Za' R of Y such that A n X eRe X 

(B n X). The set AnT is the countable union of compact 

sets with a countably compact set. Each of these compact 

sets is contained in a zero set disjoint from B n X. Further­

more W, a zero set in T, is a zero set in Y = TUX. For 

the function l/f has a positive extension from N to all of 

X where f is the function of T such that f(wl,n) l/n and 

f(wl,n*) = 0, so that f has an extension to X such that for 

x € X, f(x) ~ O. Thus there is a Za set, S containing AnT 

and disjoint from B n X. Since by similar reasoning there 

is a Z containing B n T and disjoint from A n X, there is a a 
zero set disjoint from the countable union of compact sets 

of B n T, and its intersection with Y - W gives a Za set J con­

taining A n X but disjoint from B n T. Then (Q n S) U (R n J) 

is a Za containing A and disjoint from B. 

By a modification of the above proof we can obtain 

the following more general result. 

Theorem 4A. A T Z*-spaae X is C*-embedded in every
l

, 

T Z*-spaae it is ~mbedded in iff X is pseudoaompaat.
l

, 

In this theorem and Theorem 4, we may replace 

C*-embedding by C-embedding. 
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5.	 On Z- and Z*-Closed Spaces 

One of the questions investigated by the minimal 

topologists is when can a space having property Q be 

errIDedded as a closed nowhere dense set of a Q-closed 

space [4]. 

Definition 5. Let Q be a property. Then P = NF[Q] 

means that a Q space can be C*-embedded as a nowhere dense 

closed set of a Q-closed space iff it satisfies property P. 

The following· table gives a comparison of several pro­

perties in the context of a Tl-space. 

P = NF[Q] 

1.	 Compact 

2.	 Closed sets, Lindelof in weak 
topology 

3.	 Weak topology realcompact 

4.	 No restriction 

5.	 Pseudocompact countable 
compact 

6.	 Weak topology Lindelof = 
closed sets Lindelof in weak 
topology 

Q 

Completely regular 

k-functionally regular 
(see remark below) 

Functionally regular 

Functionally Hausdorff 

Functionally Hausdorff 
and Z 

Z* 

Item 1 is due to the fact that completely regular 

closed spaces are compact and is only put in as a basis of 

comparison. Items 2, 3, and 4 were proved in [2], and items 

5 and 6 will be proved below. In the case of item 2 the 

embedded space and the space embedded in while being 

k-functionally regular the space embedded in is FH-closed 

rather than k-functionally regular closed. For the other 



TOPOLOGY PROCEEDINGS Volume 8 1983 15· 

conditions Q-closed is equivalent to FH-closed. Since in 

Z-spaces every continuous function may be constant the con­

text for Z-spaces in this section will be functionally 

Hausdorff. First we will prove that Z-closed and Z*-closed 

are identical with (FH-closed) functionally Hausdorff 

closed = weak topology compact for Z- and Z*-spaces. 

Theorem 5. A Z-spaae (Z*-spaae) is FH-aZosed iff it 

is Z-aZosed (Z*-aZosed). 

Proof. If a Z-space (Z*-space) is closed in every 

FH-space it is embedded then it is closed in every Z-closed 

(Z*-closed) space it is embedded in. Conversely, suppose 

(X,]) is Z-closed (Z*-closed) and not FH-closed. Then we can 

construct a one point FH extension Y = X U [y] such that X 

is dense and C*-embedded in Y [13]. We will show that Y 

satisfies Z(Z*) contradicting that X is Z-closed (Z*-closed). 

Let (Y, V) be a one point Tychonoff extension of (X, VI) such 

that X is C*-embedded in Y. Let (y,U) be the topology with 

subbase consisting of the open sets of (Y,V) and (X,J). If 

(X,J) satisfies Z, clearly (X,{1/) satisfies Z, and so does 

(Y,~. For if A is closed in Y and Z is a zero set of Y 

such that A n z ~, then there exists a zero set H of X 

such that A n X c HeX Z. If Y E Z, H will be a zero set 

of Y and if y ~ Z there is a zero set of Y containing Hand 

disjoint from Z by the C*-embedding of X in Y and by the 

fact that Y will be completely separated from Z in the 

latter case. If Z = [y] we use the fact that the subbase 

used in the construction is a base and A = B n F where B 

is the complement of a J-open set and y ~ F and F is closed 
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in (Y,V) and thus is completely separated from [y] so that 

(Y,U) satisfies Z. 

We make the same construction for a Z*-space and show 

that the one point extension satisfies Z*. Let A and B be 

closed in (Y,U) with A n B =~. There is a Z of (X,]), H,a 

such that A n X c HeX - B. Then H or H U [y] is a Za of 

Y. The result follows if y ~ B for then we can find a zero 

set containing y disjoint from B. (Z*-spaces are functionally 

regular). If Y € B then we can find a zero set containing 

y and disjoint from A so that there is a Za Q containing A 

but not [y] so that H n Q is a Za such that A c H n Q c- B. 

Theorem 6. For Q property Z and functionally Hausdorff 

P = NF[Q] where P is pseudocompact or equivalently countably 

compact. 

Proof. If (X,]) satisfies Z then so does (X,W). 

Furthermore we note that we can extend Zenor's [15] result 

that a Tychonoff pseudocompact Z-space is countably compact 

for FH-spaces. Set (X,W) = sy - Y and then 'construct the 

topology (Z,U) on ~y with subbase consisting of complements 

of closed sets of (X,]) and open sets of BY. If X is 

countably compact so is (Z,U) since Y under the construction 

of 9K of [8] is always countably compact so that (Z,U) 

satisfies Z with weak topology compact and hence Z-closed. 

See Bourbaki [6, p. 138). From the construction (X,]) is a 

nowhere dense closed set of (X,U) and we can construct (Y,U) 

so that X is C*-embedded and in fact C-embedded. Conversely, 

if (X,]) is errIDedded as a nowhere dense closed C*-embedded 

set of a Z-closed space Y it is also C-embedded and as the 



TOPOLOGY PROCEEDINGS Volume 8 1983 17 

weak topology for Y is compact, all functions on X are 

bounded so that (X,]) is pseudocompact and countably compact. 

Theorem 7. For Q the property Tl and z*, P = NF[Q] 

where P is the property that the weak topoZogy is LindeZof. 

Proof. From [2] a k-functionally regular space (X,]) 

can be C*-embedded as a nowhere dense closed set of an 

FH-closed space iff (X,]) has the property that every closed 

set is Lindelof in (X,W). Since Z*-spaces are k-functionally 

regular spaces and Z*-closed spaces are FH-closed and in 

Z*-spaces closed sets of (X,]) being Lindelof in (X,W) is 

equivalent to (X,W) being Lindelof, a Z*-space (X,J) that 

is C*-embedded as a nowhere dense closed space of a Z*-closed 

space has the property that (X,W) is Lindelof. Conversely, 

if (X,W) is Lindelof we use this construction of (Y,U) in 

Theorem 6 to obtain a Z*-space where (X,]) is embedded as 

a nowhere dense closed C*-embedded subset. We only need to 

show that (Y, U) satisfies Z*. Let A and B be closed in 

(Y,U) , A n B = ~. Then A = Al U A
2

, and B = B U B where
l 2 

Al and Bl 
are closed in (X,]) and A and B are closed in

2 2 

(Y, V) the weak topology for (Y, U) • By the normality of 

(Y,V) there is a zero set Z2 of (Y,V) containing A2 and 

disjoint from B and by the k-functional regularity of2 

(Y,U) [2] there is a zero set Zl containing A2 and disjoint 

from B By similar reasoning there is a zero set containingl . 

B2 and disjoint from Al and hence a Za,H 2 containing Al and 

disjoint from B There exists a Za in (X,]) containing Al
2

. 

and disjoint from A which can be extended to a Za in (Y,U),H2 

by the C*-embedding of X in Y such that HI n A2 = O. The 
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