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FACTORWISE RIGIDITY OF THE PRODUCT 

OF TWO PSEUDO-ARCS 

David P. Bellamy· and Janusz M.Lysko2 

Introduction 

I denotes the interval [0,1]. A continuum is a compact 

connected metric space. If X and Yare continua, an E-map 

f: X + Y is a continuous surjective mapping such that for 

-1each p E Y, f (p) has diameter less than E. A continuum 

x is arclike or chainable if and only if, for each E > 0, 

there exists an E-map f: X + I. A continuum X is indecom­

posable if and only if it is not the union of two of its 

proper subcontinua. This is equivalent to each of its proper 

subcontinua having empty interior. X is hereditarily 

indecomposable if and only if each of its subcontinua is 

indecomposable. A chainable hereditarily indecomposable 

continuum is called a pseudo-arc. Some background informa­

tion on pseudo-arcs can be found in [1], [2], [3], [4], [6], 

and [9]. It is clear that every nondegenerate subcontinuum 

of a pseudo-arc is a pseudo-arc, and R. H. Bing has shown 

that all pseudo-arcs are homeomorphic, although we shall not 

need this fact. 

If X and Yare continua then TIl: X x Y + X and 

TI : X x Y + Y will always denote the projection maps. If
2 

d and d are the given metrics on X and Y, the metric d on
l 2 

lThe first author was supported by NSF Grant Number 
MCS 8103402. 

2This paper was written when the second author was 
visiting the University of Delaware. 
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x x Y will always be taken as the maximum metric; 

d«x,y), (u,v)) = max{dl(x,u) ,d2 (y,v)}. Thus, if f: X ~ Xo 
and g: Y ~ YO are E-maps, then f x g: X x Y ~ X x YO iso 
an E-map also. 

A product of mutually homeomorphic continua is faa tor­

wise rigid if and only if each homeomorphism of the product 

is a product of homeomorphisms of the separate factors, 

followed by a permutation of the factors. Thus, a product 

X x X is factorwise rigid if every homeomorphism H: X x X ~ 

X x X is of the form H(x,y) = (h(x) ,key)) or H(x,y) 

(h(y) ,k(x)) where hand k are self-homeomorphisms of X. 

Wayne Lewis [7, problem 60] has asked whether every product 

of pseudo-arcs is factorwise rigid. This article gives an 

affirmative answer for a product of two pseudo-arcs. It is 

known that every product of Menger or Sierpinski Universal 

curves is factorwise rigid [5] and [11]. 

If X is a continuum and A ~ X, T(A) is defined to be 

the complement of the set of points of X which have a con­

tinuum neighborhood missing A. A substantial body of litera 

ture exists on this set function and related topics. Rather 

than attempt to give a comprehensive list of references, 

we refer the interested reader to the articles in Sections 

II and V of [8], and the bibliographies thereof. 

Lemma 1. Suppose Wand Mare subcontinua of I x I and 

that TIl(M) I whiZe TI (W) = I. Then W n M ~ O.2 

Proof· This is an immediate consequence of Theorem 28 

of [10, p. 156]. 
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Lemma 2. Suppose X and Yare chainabZe continua and 

M, W c X x Yare continua such that TIl(M) = X and TI (W) = Y.
2 

Then M n W t: fJ. 

Proof. Suppose not. Choose E > 0 such that E < d(M,W), 

and let f: X ~ I and g: Y ~ I be E-maps. Then f x g: X x Y 

+ I x I is an E-map also, so that (fxg) (M) n (fxg) (W) ~, 

since a point in this intersection would have inverse image 

under f x g with diameter greater than E. 

However, TIl((fxg) (M» = f(TI1(M» = I and TI ((fxg) (W»
2 

g(TI 
2 

(W» = I, so that by Lenuna 1, (fxg) (M) n (fxg) (W) t: fJ, 

a contradiction. 

CoroZZary 3. Let X and Y be chainabZe continua and 

suppose Wand Mare subcontinua of X x Y such that 

TIl(W) ~ TIl(M) whiZe TI 2 (M) ~ TI 2 (W). Then W n M t: ~ . 
•Proof. Subcontinua of chainable continua are chainable 

(or degenerate) so Lenuna 2 applies to TIl(M) x TI 2 (W). 

Lemma 4. If X and Yare continua and A is a cZosed 

subset of X x Y, and T(A) = X x Y, then either TIl(A) = X or 

TI 2 (A) = Y. 

Proof. This is a classical argument due to F. B. Jones. 

Suppose A is closed in X x Y, TIl (A) ~ X, and TI 2 (A) ~ Y. 

Then there exists a nonempty open subset U of X with 

IT n TIl (A) = fJ, and there is a point y E Y - TI 2 (A). Then 

(UxY) U (xx{y}) is a continuum in X x Y with nonvoid interior 

missing A so that T(A) ~ X x Y. 

Lemma 5. If X and Yare continua and X is indecomposa­

bZe, then for any a E X, in X x Y, T({a}xY) = X x Y. 
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Proof. If W c X x Y is a continuum with nonvoid 

interior,7T (W) X, since 7T (W) must be a subcontinuum ofl l 

X with interior. Thus, a E 7T (W) so that W n ({a}xY) ~ ~.l 

Lemma 6. Suppose X and Yare indecomposabZe continua 

and a E X and h: X x Y ~ X x Y is a homeomorphism. Then 

either 7Tl(h({a}xy)) = X or 7T2(h({a}xy)) = Y. 

Proof. For any set A and any homeomorphism h, 

T(h(A)) = h(T(A)). Apply Lemmas 4 and 5. 

In what follows, P denotes a pseudo-arc. 

Lemma 7. Let h: P x P ~ P x P be any homeomorphism. 

Then either 7T (h({p}xP)) = P for every pEP, or
l 

7T (h({p}xP)) = P for every pEP.2 

Proof. For i = 1,2, let M. = {p E pl7T. (h({p}xP)) = p};
1 1 

by Lemma 6, M U M = P. Suppose M ~ P and M ~ P. Then
1 2 l 2 

M and M2 are closed sets, and so there exist two distinctl 

points a, b E M n M since P has no separating point.2 ,
l 

Then , 7T 1 (h ( {a } xP)) = 7T 2 (h ( {a }xP)) = 7T 1 (h ( {b } xP) ) 

TI2(h({b}xP)) = P. Thus, h({a}xp) and h({b}xP) satisfy the 

hypotheses of Lemma 2, so that h({a}xp) n h({b}xP) ~ ~. 

But then ({a}xp) n ({b}xP) ~ ~, so that a = b, a contradic­

tion. Hence, either M P or M = P, as claimed.
l 2 

Let 8: P x P ~ P x P be the homeomorphism which inter­

changes the factors. 

Theorem. Let H: P x P ~ P x P be a homeomorphism. 

Then there exist homeomorphisms h,k: P ~ P such that either 

H = (hxk) or H = 8 o (h xk); in other words P x P is factorwise 

rigid. 
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Proof. By Lemma 7, either TI (H({p}xP)) = P for every2 

pEP or TIl(H({p}xP)) = P for every pEP. Assume the 

latter; the other case is similar. Then TI 
2 

(8 0H({p}xP)) = P 

for every pEP. Suppose for some pEP, TI (8°H({p}xP)) isl 

nondegenerate. Let (Wn}~=l be a decreasing sequence of non­

degenerate subcontinua of P whose intersection is {p}, and 

let a E P. Then (W x{a}}oo 1 is a sequence of continua in 
n n= 

P x P whose intersection is {(p,a)}, and so ( (8 oH(W x{a}))}oo 1 
n n= 

has intersection equal to {8 oH(p,a)}, and (TI (8 oH(W x{a})) }~=l1 n

is a decreasing sequence of continua in P whose intersection 

is {TI (8 oH(p,a))}. In particular, TI l (8(H(p,a))) E1 

TIl(8(H(Wnx{a}))) for every n, so that for every n, 

TI 
l 

(8 0H(W
n

x{a}}) n TI l (8 0H({p}xP)) is nonempty, and so for 

some n, TI (8 0H(W x{a})) ~ TI (8 oH({p}xP)), since P is
l n 1 

hereditarily indecomposable and TIl(8oH({p}xP)) is nondegen­

erate and so cannot be a subset of TI (8 oH(W x{a})) for everyl m

m. Let q E W with q ~ p. Then TIl(8oH({q}xP)) n n 

TI (8 oH({p}xP)) ~ ~, so that one of these continua is a sub­
l 

set of the other. Without loss of generality, assume 

TIl (8°H({q}xP)) ~ TIl (8 oH({p}xP)). 

But TI (8 oH({p}xP)) ~ TI (8 oH({q}xP)) (since both of these are
2 2 

equal to Pl. Thus, by Corollary 3, 

8 oH({q}xP) n 8 oH({p}xP) t- ~, 

and consquently ({q}xP) n ({p}xP) ~ ~, since 80H is 1 to 1. 

This is a contradiction since q ~ p. Therefore, for every 

pEP, TIl(8oH({p}xP)) = {x} for some x E P. Define 

h: P -+ P by h(p) = TI1080HOTIil(p), which is weJ.l-defined by 

the above argument. A parallel argument will prove that 
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k: P ~ P defined by k(q) = TI2080HOTI;l(q) well-defined. Then, 

for any (p,q) E P x P, 8 0H(p,q) = (h(p),k(q)), or 80H = (hxk) , 

so that H 80 (hxk) • (The other case, that TI2(H({p}xP)) = P 

for every pEP, yields H = h x k for some hand k.) 

The idea for this paper grew in part out of a conversa­

tion between Howard Cook and the first author in the Spring 

of 1980. At that time, it was proven that there is no 

homeomorphism of the product P x P which carries the 

diagonal to a fiber {a} x P. This fact now follows as a 

corollary to the Theorem in this paper. This is a curious 

fact, since if X is either a topological group or an n-cell 

for n ~ 1, there is a homeomorphism of X x X carrying the 

diagonal to any {a} x X, but though the pseudo-arc is homo­

geneous, and of trivial shape, no such homeomorphism exists. 
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