TOPOLOGY PROCEEDINGS

Volume 8, 1983
Pages 21-27
http://topology.auburn.edu/tp/

FACTORWISE RIGIDITY OF THE PRODUCT OF TWO PSEUDO-ARCS

by
David P. Bellamy and Janusz M. Lysko

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

FACTORWISE RIGIDITY OF THE PRODUCT OF TWO PSEUDO-ARCS

David P. Bellamy ${ }^{1}$ and Janusz M. Lysko ${ }^{2}$

Introduction

I denotes the interval [0,1]. A continuum is a compact connected metric space. If X and Y are continua, an ε-map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a continuous surjective mapping such that for each $p \in Y, f^{-1}(p)$ has diameter less than ε. A continuum X is arclike or chainable if and only if, for each $\varepsilon>0$, there exists an ε-map $f: X \rightarrow I$. A continuum X is indecomposable if and only if it is not the union of two of its proper subcontinua. This is equivalent to each of its proper subcontinua having empty interior. X is hereditarily indecomposable if and only if each of its subcontinua is indecomposable. A chainable hereditarily indecomposable continuum is called a pseudo-arc. Some background information on pseudo-arcs can be found in [1], [2], [3], [4], [6], and [9]. It is clear that every nondegenerate subcontinuum of a pseudo-arc is a pseudo-arc, and R. H. Bing has shown that all pseudo-arcs are homeomorphic, although we shall not need this fact.

If X and Y are continua then $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ will always denote the projection maps. If d_{1} and d_{2} are the given metrics on X and Y, the metric d on

[^0]$\mathrm{X} \times \mathrm{Y}$ will always be taken as the maximum metric;
$d((x, y),(u, v))=\max \left\{d_{1}(x, u), d_{2}(y, v)\right\}$. Thus, if $f: X \rightarrow X_{0}$ and $g: Y \rightarrow Y_{0}$ are ε-maps, then $f \times g: X \times Y \rightarrow X_{0} \times Y_{0}$ is an ε-map also.

A product of mutually homeomorphic continua is factorwise rigid if and only if each homeomorphism of the product is a product of homeomorphisms of the separate factors, followed by a permutation of the factors. Thus, a product $\mathrm{X} \times \mathrm{X}$ is factorwise rigid if every homeomorphism $\mathrm{H}: \mathrm{X} \times \mathrm{X} \rightarrow$ $X \times X$ is of the form $H(x, y)=(h(x), k(y))$ or $H(x, y)=$ ($h(y), k(x)$) where h and k are self-homeomorphisms of X. Wayne Lewis [7, problem 60] has asked whether every product of pseudo-arcs is factorwise rigid. This article gives an affirmative answer for a product of two pseudo-arcs. It is known that every product of Menger or Sierpinski Universal curves is factorwise rigid [5] and [ll].

If X is a continuum and $A \subseteq X, T(A)$ is defined to be the complement of the set of points of X which have a continuum neighborhood missing A. A substantial body of litera ture exists on this set function and related topics. Rather than attempt to give a comprehensive list of references, we refer the interested reader to the articles in Sections II and v of [8], and the bibliographies thereof.

Lemma 1. Suppose W and M are subcontinua of $\mathrm{I} \times \mathrm{I}$ and that $\pi_{1}(M)=I$ while $\pi_{2}(W)=I$. Then $W \cap M \neq 0$.

Proof. This is an immediate consequence of Theorem 28 of $[10, \mathrm{p} .156]$.

Lemma 2. Suppose X and Y are chainable continua and $\mathrm{M}, \mathrm{W} \subseteq \mathrm{X} \times \mathrm{Y}$ are continua such that $\pi_{1}(\mathrm{M})=\mathrm{X}$ and $\pi_{2}(\mathrm{~W})=\mathrm{Y}$. Then $\mathrm{M} \cap \mathrm{W} \neq \varnothing$.

Proof. Suppose not. Choose $\varepsilon>0$ such that $\varepsilon<d(M, W)$, and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{I}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{I}$ be ε-maps. Then $\mathrm{f} \times \mathrm{g}: \mathrm{X} \times \mathrm{Y}$ $\rightarrow \mathrm{I} \times \mathrm{I}$ is an ε-map also, so that $(\mathrm{f} \times \mathrm{g})(\mathrm{M}) \mathrm{n}(\mathrm{f} \times \mathrm{g})(\mathrm{W})=\varnothing$, since a point in this intersection would have inverse image under $\mathrm{f} \times \mathrm{g}$ with diameter greater than ε.

However, $\pi_{1}((f \times g)(M))=f\left(\pi_{1}(M)\right)=I$ and $\pi_{2}((f \times g)(W))=$ $g\left(\pi_{2}(W)\right)=I$, so that by Lemma $1,(f \times g)(M) \cap(f \times g)(W) \neq \varnothing$, a contradiction.

Corollary 3. Let X and Y be chainable continua and suppose W and M dre subcontinua of $\mathrm{X} \times \mathrm{Y}$ such that $\pi_{1}(\mathrm{~W}) \subseteq \pi_{1}(\mathrm{M})$ while $\pi_{2}(\mathrm{M}) \subseteq \pi_{2}(\mathrm{~W})$. Then $\mathrm{W} \cap \mathrm{M} \neq \varnothing$.
.Proof. Subcontinua of chainable continua are chainable (or degenerate) so Lemma 2 applies to $\pi_{1}(M) \times \pi_{2}(W)$.

Lemma 4. If X and Y are continua and A is a closed subset of $X \times Y$, and $T(A)=X \times Y$, then either $\pi_{1}(A)=X$ or $\pi_{2}(A)=Y$.

Proof. This is a classical argument due to F. B. Jones. Suppose A is closed in $X \times Y, \pi_{1}(A) \neq X$, and $\pi_{2}(A) \neq Y$. Then there exists a nonempty open subset U of X with $\bar{U} \cap \pi_{1}(A)=\varnothing$, and there is a point $y \in Y-\pi_{2}(A)$. Then ($\bar{U} \times Y$) $U(X \times\{Y\})$ is a continuum in $X \times Y$ with nonvoid interior missing A so that $T(A) \neq X \times Y$.

Lemma 5. If X and Y are continua and X is indecomposable, then for any $a \in X$, in $X \times Y, T(\{a\} \times Y)=X \times Y$.

Proof. If $\mathrm{W} \subseteq \mathrm{X} \times \mathrm{Y}$ is a continuum with nonvoid interior, $\pi_{1}(W)=X$, since $\pi_{1}(W)$ must be a subcontinuum of X with interior. Thus, $a \in \pi_{1}(W)$ so that $W \cap(\{a\} \times Y) \neq \varnothing$.

Lemma 6. Suppose X and Y are indecomposable continua and $\mathrm{a} \in \mathrm{X}$ and $\mathrm{h}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X} \times \mathrm{Y}$ is a homeomorphism. Then either $\pi_{1}(h(\{a\} \times Y))=X$ or $\pi_{2}(h(\{a\} \times Y))=Y$.

Proof. For any set A and any homeomorphism h, $T(h(A))=h(T(A)) . A p p l y$ Lemmas 4 and 5.

In what follows, P denotes a pseudo-arc.

Lemma 7. Let $\mathrm{h}: \mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P} \times \mathrm{P}$ be any homeomorphism. Then either $\pi_{1}(h(\{p\} \times p))=P$ for every $p \in P$, or $\pi_{2}(h(\{p\} \times P))=P$ for every $p \in P$.

Proof. For $i=1,2$, let $M_{i}=\left\{p \in P \mid \pi_{i}(h(\{p\} \times P))=P\right\} ;$ by Lemma 6, $M_{1} \cup M_{2}=P$. Suppose $M_{1} \neq P$ and $M_{2} \neq P$. Then M_{1} and M_{2} are closed sets, and so there exist two distinct points $a, b \in M_{1} \cap M_{2}$, since P has no separating point. Then, $\pi_{1}(h(\{a\} \times P))=\pi_{2}(h(\{a\} \times P))=\pi_{1}(h(\{b\} \times P))=$ $\pi_{2}(h(\{b\} \times P))=P$. Thus, $h(\{a\} \times P)$ and $h(\{b\} \times P)$ satisfy the hypotheses of Lemma 2 , so that $h(\{a\} \times P) \cap h(\{b\} \times P) \neq \varnothing$. But then $(\{a\} \times P) \cap(\{b\} \times P) \neq \varnothing$, so that $a=b$, a contradiction. Hence, either $M_{1}=P$ or $M_{2}=P$, as claimed.

Let $\theta: P \times P \rightarrow P \times P$ be the homeomorphism which interchanges the factors.

Theorem. Let H: $\mathrm{P} \times \mathrm{P} \rightarrow \mathrm{P} \times \mathrm{P}$ be a homeomorphism. Then there exist homeomorphisms h,k: $\rightarrow \mathrm{P}$ such that either $\mathrm{H}=(\mathrm{h} \times \mathrm{k})$ or $\mathrm{H}=\theta \circ(\mathrm{h} \times \mathrm{k})$; in other words $\mathrm{P} \times \mathrm{P}$ is factorwise rigid.

Proof. By Lemma 7, either $\pi_{2}(H(\{p\} \times P))=P$ for every $p \in P$ or $\pi_{1}(H(\{p\} \times P))=P$ for every $p \in P$. Assume the latter; the other case is similar. Then $\pi_{2}(\theta \circ H(\{p\} \times P))=P$ for every $p \in P$. Suppose for some $p \in P, \pi_{1}(\theta \circ H(\{p\} \times P))$ is nondegenerate. Let $\left\langle W_{n}\right\rangle_{n=1}^{\infty}$ be a decreasing sequence of nondegenerate subcontinua of P whose intersection is $\{p\}$, and let $a \in P$. Then $\left\langle W_{n} \times\{a\}\right\rangle_{n=1}^{\infty}$ is a sequence of continua in $P \times P$ whose intersection is $\{(p, a)\}$, and so $\left.\left(\theta \circ H\left(W_{n} \times\{a\}\right)\right)\right\rangle_{n=1}^{\infty}$ has intersection equal to $\{\theta \circ \mathrm{H}(\mathrm{p}, \mathrm{a})\}$, and $\left\langle\pi_{1}\left(\theta \circ \mathrm{H}\left(\mathrm{W}_{\mathrm{n}} \times\{\mathrm{a}\}\right)\right)\right\rangle_{\mathrm{n}=1}^{\infty}$ is a decreasing sequence of continua in P whose intersection is. $\left\{\pi_{1}(\theta \circ H(p, a))\right\}$. In particular, $\pi_{1}(\theta(H(p, a))) \in$ $\pi_{1}\left(\theta\left(H\left(W_{n} \times\{a\}\right)\right)\right)$ for every n, so that for every n, $\pi_{1}\left(\theta \circ H\left(W_{n} \times\{a\} t\right) \cap \pi_{1}(\theta \circ H(\{p\} \times P))\right.$ is nonempty, and so for some $n, \pi_{1}\left(\theta \circ H\left(W_{n} \times\{a\}\right)\right) \subseteq \pi_{1}(\theta \circ H(\{p\} \times P))$, since P is hereditarily indecomposable and $\pi_{1}(\theta \circ H(\{p\} \times P))$ is nondegenerate and so cannot be a subset of $\pi_{1}\left(\theta \circ H\left(W_{m} \times\{a\}\right)\right)$ for every m. Let $q \in W_{n}$ with $q \neq p$. Then $\pi_{1}(\theta \circ H(\{q\} \times p)) \cap$ $\pi_{1}(\theta \circ \mathrm{H}(\{\mathrm{p}\} \times P)) \neq \varnothing$, so that one of these continua is a subset of the other. Without loss of generality, assume

$$
\pi_{1}(\theta \circ H(\{q\} \times P)) \subseteq \pi_{1}(\theta \circ H(\{p\} \times P))
$$

But $\pi_{2}(\theta \circ H(\{p\} \times P)) \subseteq \pi_{2}(\theta \circ H(\{q\} \times P))$ (since both of these are equal to P). Thus, by Corollary 3,

$$
\theta \circ H(\{q\} \times P) \cap \theta \circ H(\{p\} \times P) \neq \emptyset,
$$

and consquently $(\{q\} \times P) \cap(\{p\} \times P) \neq \emptyset$, since $\theta \circ H$ is l to l. This is a contradiction since $q \neq p$. Therefore, for every $p \in P, \pi_{1}(\theta \circ H(\{p\} \times P))=\{x\}$ for some $x \in P$. Define $h: P \rightarrow P$ by $h(p)=\pi_{1} \circ \theta \circ H \circ \pi_{1}^{-1}(p)$, which is well-defined by the above argument. A parallel argument will prove that
$k: P \rightarrow P$ defined by $k(q)=\pi_{2} \circ \theta \circ \mathrm{H}^{2} \pi_{2}^{-1}(q)$ well-defined. Then, for any $(p, q) \in P \times P, \theta \circ H(p, q)=(h(p), k(q))$, or $\theta \circ H=(h \times k)$, so that $H=\theta \circ(h \times k)$. (The other case, that $\pi_{2}(H(\{p\} \times P))=P$ for every $p \in P$, yields $H=h \times k$ for some h and k.)

The idea for this paper grew in part out of a conversation between Howard Cook and the first author in the Spring of 1980. At that time, it was proven that there is no homeomorphism of the product $P \times P$ which carries the diagonal to a fiber $\{a\} \times P$. This fact now follows as a corollary to the Theorem in this paper. This is a curious fact, since if X is either a topological group or an n -cell for $n \geq 1$, there is a homeomorphism of $x \times x$ carrying the diagonal to any $\{a\} \times x$, but though the pseudo-arc is homogeneous, and of trivial shape, no such homeomorphism exists.

References

1. D. P. Bellamy, Mapping hereditarily indecomposable continua onto a pseudo-arc, Lecture Notes in Math 375 (Topology Conference, Virginia Polytechnic Institute and State University, 1973) Springer Verlag, Berlin, 6-14.
2. R. H. Bing, Concerning hereditarily indecomposable continua, Pac. J. Math. 1 (1951), 43-51.
3. \qquad , A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742.
4. \qquad , Snake-like continua, Duke Math. J. 8 (1951), 653-663.
5. K. Kuperberg, W. Kuperberg, and W. R. R. Transue, On the two-homogeneity of Cartesian products, Fund. Math. 110 (1980), 131-134.
6. B. Knaster, Un continu dont tout sons-continu est indécomposable, Fund. Math. 3 (1922), 247-286.
7. I. W. Lewis, editor, Continua theory problems (Newsletter) (1983).
8. L. F. McAuley and M. M. Rao, editors, General topology and modern analysis, Academic Press, New York (1981).
9. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581-594.
10. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publications, Vol. XIII, Revised Edition. American Mathematical Society, Providence (1962).
11. J. Kennedy Phelps, Homeomorphisms of products of universal curves, Houston J. Math. 6 (1980), 127-134.

University of Delaware
Newark, Delaware 19716
and
Union College
Schenectady, New York 12308

[^0]: $\mathrm{l}_{\text {The }}$ first author was supported by NSF Grant Number MCS 8103402 .
 ${ }^{2}$ This paper was written when the second author was visiting the University of Delaware.

