

http://topology.auburn.edu/tp/

CAPACITY SPACES

by

HAROLD R. BENNETT, WAYNE LEWIS AND MLADEN LUKSIC

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CAPACITY SPACES

Harold R. Bennett, Wayne Lewis and Mladen Luksic

In 1976 E. V. Scepin $[S_1]$ defined a capacity on a T_3 -space X to be a function ε (called the capacity) from X × \mathcal{F} (where \mathcal{F} is the class of all closed subsets of X) into the set of non-negative real numbers such that (c-1) ε (x,F) > 0 if and only if x ε Int(F) (Interior of F) (c-2) if $F_1 \subseteq F_2$, then ε (x, F_1) $\leq \varepsilon$ (x, F_2) (c-3) if F is fixed, then ε is continuous in the first variable, and (c-4) if $\{F_{\alpha}\}$ is a family of closed sets linearly ordered by set inclusion, then ε (x, $\cap F_{\alpha}$) = $\inf_{\alpha} \{\varepsilon$ (x, F_{α})}, where x ε X and each $F_{\alpha} \in \mathcal{F}$.

A space with a capacity is called a capacity space. If (X,d) is a metric space then a capacity may be defined on X by

 $\varepsilon(\mathbf{x},\mathbf{F}) = \mathbf{d}(\mathbf{x},\mathbf{X}-\mathbf{F})$

Thus a capacity space is a generalization of a metric space.

Recall that a closed subset A of space X is regularly closed if A = Cl(Int(A)) and the complement of a regularly closed set is called a regularly open set (where Cl(A) is the closure of A in X). Also, recall that a space is perfectly κ -normal if any two non-intersecting regularly closed sets have non-intersecting neighborhoods and every regularly closed set is the countable intersection of regularly open sets. Capacity spaces were evidently introduced as a tool to study perfectly κ -normal spaces. Using (c-1) and (c-3) it can be shown that each capacity space is perfectly κ -normal.

It can be shown that Heath's sticker space, Example 1 of [H], is not perfectly κ -normal (and hence not a capacity space). It can also be shown that the Moore plane [W, exercise 4B] does have a capacity. Thus the property of having a capacity is a differentiating feature for the class of Moore spaces.

In [S₁] there were nine theorems (Theorems 5-13) involving capacity spaces that were given without proof. One of these theorems asserted that a LOTS (=linearly ordered topological space) with a capacity is metrizable. In [BL] this result is obtained as a corollary to the more general result.

Theorem 1. A GO-space (=generalized ordered space) with a capacity has a G_{δ} -diagonal and is perfect (=closed sets are G_{δ} -sets).

The question of what subspaces of a capacity space have a capacity naturally arises.

Theorem 2. Let Y be a subspace of a capacity space X. If Y is either a regularly closed, or open subset of X, then Y is a capacity space.

Proof. Let ε be a capacity on X. If Y is a regularly closed subspace of X define

 $\eta(\mathbf{x},\mathbf{F}) = \varepsilon(\mathbf{x},\mathbf{F} \cup Cl(\mathbf{X}-\mathbf{F}))$

for $x \in Y$ and F closed in Y.

If Y is an open subspace of X define

30

 $\eta(\mathbf{x},\mathbf{F}) = \varepsilon(\mathbf{x},\mathbf{F} \cup (\mathbf{X}-\mathbf{F}))$

for $x \in Y$ and f closed in Y. In either case it is not difficult to verify that η is a capacity in Y.

It will be shown later that closed subspaces of capacity spaces need not have a capacity. To solve the dense subspace problem we need the following definition.

Definition. A capacity for a space X is faithful if (c-5) F_1 , $F_2 \in \mathcal{F}$ such that Int $F_1 = Int F_2$, then $\varepsilon(x,F_1) = \varepsilon(x,F_2)$.

Theorem 3. If Y is a dense subspace of a faithful capacity space X, then Y is a faithful capacity space.

Proof. Let ε be a faithful capacity on X. Define $\eta(x,F) = \varepsilon(x,Cl(F,X))$ where Cl(F,X) is the closure of F in X. It is routine to verify that η is a faithful capacity on Y.

The condition (c-5) leads to the following question.

Question 1. Does there exist a capacity space that does not have a faithful capacity?

The following example gives a non-faithful capacity of [0,1] with the usual topology. Since this space is metric it also has a faithful capacity.

Example. For a closed set F in X = [0,1] with the usual topology let $\varepsilon(x,F) = d(x,X-F) \cdot m^*(F)$ where d is the usual metric on [0,1] and $m^*(F)$ is the outer Lebesgue measure of F.

It is straight forward to verify that this is a nonfaithful capacity on [0,1].

In 1980 in another paper $[S_2]$ by Scepin, the notion of a κ -metric on a completely regular space X is introduced. Let (be the class of all regularly closed subsets of X. Then a nonnegative real-valued function ρ with domain $X \times ($ is a κ -metric on X if $(k-1) \ \rho(x,C) = 0$ if and only if $x \in C$, (k-2) if C_1 and C_2 are in (and $C_1 \subset C_2$, then $\rho(x,C_1) \ge \rho(x,C_2)$ (k-3) if C is fixed, then ρ is continuous in the first variable, and (k-4) if $\{C_{\alpha}\}$ is a transfinite increasing collection of elements of (, then $\rho(x,C1(\cup_{\alpha} \{C_{\alpha}\})) = \inf_{\alpha} \{\rho(x,C_{\alpha})\}$.

In $[S_2]$ proofs for the theorems in $[S_1]$ are indicated except for Theorem 12 of $[S_1]$ which is stated as an open problem in $[S_2]$. These proofs are given in the κ -metrizable setting rather than the capacity setting. This is due, perhaps, to the unproven statement that spaces with a capacity "are identical with κ -metrizable spaces," ($[S_2]$, p. 411).

The following theorem indicates that this may not be true and if the answer to Question 1 is yes then the theorems in $[S_1]$ do need to be addressed in a capacity space setting.

Theorem 4. A completely regular space X has a faithful capacity if and only if X is κ -metrizable.

Proof. Let X have a faithful capacity ε . For each

32

 $C \in (let)$

 $\rho(\mathbf{x}, \mathbf{C}) = \varepsilon(\mathbf{x}, \mathbf{Cl}(\mathbf{X}-\mathbf{C}))$

Conditions (k-1), (k-2), and (k-3) are readily obtainable. To see that (k-4) is true, let $\{C_{\alpha}\}$ be an increasing collection of elements of (. Then $\rho(\mathbf{x}, \text{Cl}(\text{UC}_{\alpha})) = \epsilon(\mathbf{x}, \text{Cl}(\text{UC}_{\alpha})))$. On the other hand

 $\inf_{\alpha} \{ \rho(\mathbf{x}, C_{\alpha}) \} = \inf_{\alpha} \{ \varepsilon(\mathbf{x}, Cl(\mathbf{X}-C_{\alpha}) \} = \varepsilon(\mathbf{x}, \Omega Cl(\mathbf{X}-C_{\alpha}))$ since $\{ Cl(\mathbf{X}-C_{\alpha}) \}$ is a decreasing collection of closed sets. Since ε is faithful capacity we must show

 $Int(Cl(X-Cl(UC_{\alpha}))) = Int(\cap Cl(X-C_{\alpha}))$

To this end let $z \in Int(Cl(X-Cl(UC_{\alpha})))$. Then there is an open set U containing z such that U $\subset Cl(X-Cl(UC_{\alpha}))$. Since each C_{α} is regularly closed and $\{C_{\alpha}\}$ is an increasing collection, U $\cap C_{\alpha} = \emptyset$ for each α . Thus U $\subset X-C_{\alpha} \subset Cl(X-C_{\alpha})$. Hence U $\subset \cap Cl(X-C_{\alpha})$ and it follows that $z \in Int(\cap Cl(X-C_{\alpha}))$.

If $z \in Int(\cap Cl(X-C_{\alpha}))$ then there is an open set U containing z such that $U \subset \cap Cl(X-C_{\alpha})$. Hence for each α , $U \subset Cl(X-C_{\alpha})$ and, since C_{α} is regularly closed, $U \cap C_{\alpha} = \emptyset$. Thus $U \cap (UC_{\alpha}) = \emptyset$. It follows that $U \cap Cl(UC_{\alpha}) = \emptyset$. Thus $U \subset X-Cl(UC_{\alpha})$. Hence $z \in Int(Cl(X-Cl(UC_{\alpha})))$. Hence $Int(Cl(X-Cl(UC_{\alpha}))) = Int(\cap Cl(X-C_{\alpha}))$ and, since ε is faithful, we have $\varepsilon(x, Cl(X-Cl(UC_{\alpha}))) = \varepsilon(x, \cap Cl(X-C_{\alpha}))$ from which it follows that $\rho(x, Cl(UC_{\alpha})) = inf\{\rho(x, C_{\alpha})\}$.

Conversely, let ρ be a κ -metric on X. For each $x \in X$ and closed set F in X let $\varepsilon(x,F) = \rho(x,Cl(X-F))$. Notice that ε is well-defined since if F is closed then Cl(X-F) is regularly closed. Conditions (c-1), (c-2) and (c-3) are readily obtainable. $\varepsilon(\mathbf{x}, \cap \mathbf{F}_{\alpha}) = \rho(\mathbf{x}, \operatorname{Cl}(\mathbf{X} - \cap \mathbf{F}_{\alpha}))$

and

 $\inf_{\alpha} \{ \varepsilon (x, F_{\alpha}) \} = \inf_{\alpha} \{ \rho (x, Cl(X-F_{\alpha})) \} = \rho (x, Cl(UCl(X-F_{\alpha}))).$ Thus, it must be shown that

 $Cl(X-\cap F_{\alpha}) = Cl(UCl(X-F_{\alpha})).$ To this end let $z \in Cl(X-\cap F_{\alpha}) = Cl(U(X-F_{\alpha})).$ For each open set U containing z, it follows that U $\cap (U(X-F_{\alpha})) = \emptyset.$ Hence

 $z \in Cl(U(X-F_{\alpha})) \subseteq Cl(UCl(X-F_{\alpha})).$

Let $z \in Cl(UCl(X-F_{\alpha}))$. Then for each open set U containing z there is a member M(U) of the well-ordered indexing set to which α belongs, such that if M(U) precedes α in the well-ordering, then U \cap Cl(X- \cap F_{\alpha}) \neq 0 and z \in Cl(X- \cap F_{\alpha}). Hence ε is a capacity for X.

If F_1 and F_2 are closed sets such that Int $F_1 = Int F_2$, then $Cl(X-F_1) = Cl(X-F_2)$. Thus, if $x \in X$,

 $\rho(\mathbf{x}, Cl(X-F_1)) = \rho(\mathbf{x}, Cl(X-F_2)).$

From this it follows that

 $\varepsilon(\mathbf{x}, \mathbf{F}_1) = \varepsilon(\mathbf{x}, \mathbf{F}_2)$

and ε is a faithful capacity on X.

In $[S_2]$ it is shown that the product of κ -metrizable spaces is a κ -metrizable space. This fact is used in the next example.

Example. There is a κ -metrizable space X with a closed subspace Y that does not have a capacity.

Let Z be an uncountable subset of [0,1] whose only compact (with regard to the usual topology) subsets are countable (see [K]). Let Y = Cl(Z,[0,1]. Topologize Y with a finer topology τ than the relative Euclidean topology by letting points of Y-Z be discrete. It follows that (Y, τ) is a quasi-developable, [B₁], GO-space which is not metrizable. If (Y, τ) had a capacity, then, by Theorem 1, (Y, τ) would be perfect and, hence, developable [B₁]. Since (Y, τ) is a GO-space it would be metrizable. From this contradiction it follows that (Y, τ) cannot have a capacity.

It is not difficult to prove that (Y,τ) is a Lindelöf space and, hence, realcompact. Thus (Y,τ) can be closed embedded in a product of real lines. Let $X = \prod_{\alpha} R_{\alpha}$ (where each R_{α} is a copy of the real line) contain a homeomorphic copy of (Y,τ) as a closed subset. Since each R_{α} is κ -metrizable it follows that X is κ -metrizable [S₂, pg. 408]. Hence closed subspaces of κ -metrizable spaces need not have a capacity.

References

(1964).

- [B₁] H. R. Bennett, A note on the metrizability of M-spaces, Proc. Jap. Acad. 45, No. 1 (1969).
 [BL] ______ and D. J. Lutzer, Generalized ordered spaces with capacities, Pac. J. of Math. (to appear).
 [H] R. W. Heath, Screenability, pointwise paracompactness and metrization of Moore spaces, Can. J. Math. 16
- [K] C. Kuratowski, Topologie I, Mono. Mat. 20 (1958), Warsaw.

- [S₁] E. V. Scepin, On topological products, groups and a new class of spaces more general than metric spaces, Sov. Math. Dokl. 17, No. 1 (1976).
- [S2] _____, On K-metrizable spaces, Math. USSR Izvestija 14, No. 2 (1980).
- [W] S. Willard, General topology, Addison-Wesley Series in Mathematics, 1970.

Texas Tech University

Lubbock, Texas 79409