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s-CONNECTED SPACES AND THE 

FIXED POINT PROPERTY 

M. M. Marsh 

We wish to establish a general procedure for showing 

that certain spaces have the fixed point property. In 

particular, we will 'be interested in spaces which resemble 

products. 

Consider the topological disk D = [0,1] x [0,1]. It 

is a well known property of D that if H is a closed subset 

of D then either some component of D - H intersects both 

the top and bottom of D or some component of H intersects 

both the right and left sides of D. One can use this pro­

perty to show that D has the fixed point property. The argu­

ment goes like this. Let f: D ~ D be a continuous function. 

Let H = {x E DITI (x) TI f(x)}. The set H is non-empty2 2

since TI 2 : D ~ [0,1] is universal. No component C of D - H 

can intersect both top and bottom, for otherwise we could 

write C as a union of mutually separated sets {x E CI TI 2(x) < 

TI2f(x)} and {x E cITI (x) > TI f(x)}. Thus, some component2 2

K of H intersects both the right and left sides of D. So, 

TIll K maps K onto [0,1] and is therefore universal. Hence, 

there is a point x E K such that TIl(x) TIlf(x). Since 

x EKe H, TI (x) TI 2f(x). Thus, x is a fixed point for f.2 

Haskell Cohen [2] used an argument of a similar nature 

to show that the product of ordered spaces has the fixed 

point property. 
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We generalize this property possessed by D to a property 

which holds for a large class of spaces. In a manner similar 

to the one outlined above, we establish several fixed point 

results. 

A aontinuum is a nondegenerate compact connected metric 

space. A continuous function will be referred to as a map 

or mapping. A continuum X has the fixed point property 

provided that whenever f is a mapping of X into X, there is 

a point x in X such that f(x) ~ x. A mapping f: X ~ Y is 

said to be universal provided that whenever g: X ~ Y is a 

mapping, there is a point x E X such that f(x) g(x). In 

[1], R. E. Basye defined the terms "weakly disconnect," 

"simple connected," and "simply connected in the weak sense." 

A definition similar to "weakly disconnect" has been used 

by F. B. Jones with different terminology. We adopt Jones' 

terminology and introduce some new definitions of a similar 

nature. 

Let A and B be closed disjoint subsets of the connected 

topological space X. The closed set H auts A from B in X 

provided that no component of X - H intersects both A and 

B. The closed set H auts weakly between A and B in X pro­

vided that whenever C is a closed connected set in X that 

intersects each of A and B, then C intersects H. Notice 

that, in our definition of cuts weakly, H may intersect 

A U B. We say that X is S-aonneated between A and B provided 

that whenever H is a closed set in X that cuts weakly between 

A and B, then some component K of H cuts weakly between A 

and B. A connected space X is said to be S-aonneated pro­

vided that whenever A and B are disjoint closed connected 

subsets of X, then X is s-connected between A and B. 
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We notice that, in a locally connected metric space, 

the properties of "cutting" and "cutting weakly" coincide. 

As an immediate consequence of Theorem 4 in [1], we 

have 

Lemma 1. If a metric space is s-connected, it is uni­

coherent. 

The following theorem generalizes, in the compact case, 

results of Haskell Cohen [2, Lemma 2] and R. E. Basye [1, 

Theorem 6] . 

Theorem 1. A locally connected continuum is unico­

herent if and only if it is s-connected. 

Proof. Let X be a locally connected continuum. If 

X is s-connected, by Lemma 1 it is unicoherent. 

Suppose that X is unicoherent. We will show that X is 

s-connected. Let A and B be disjoint continua in X and 

let H be a closed set that cuts weakly between A and B. Sup­

pose no COITL!?Onent of H cuts weakly between A and B. Let {Wi}:=1 be 

the components of X-H. Since X is locally connected, each 

Wi is a connected open set. Also, no Wi intersects both A 

and B, for otherwise, we could construct an arc in Wi which 

intersects both A and B, contradicting the fact that H cuts 

weakly between A and B. 

W Since U does not intersect
l

. l 

both A and B, one of A or B must be contained in a component 

Cl of Co - Ul · Now, Cl cuts A	 from B. Proceeding by induc­

ktion, assume that continua and connected open sets{Ci}i=O 
k defined so that·, for 1 < i < k,{Ui}i=l have been 
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W. for some j > 1,
J
 

ii) Ui c Ci - l ,
 

iii) Ci is a component of Ci - - Ui' andl
 

iv) C cuts A from B.
i 

Notice that each Ci is a component of X - U~=lUr 

Suppose that, for some j ~ 1, W n C ~~. Then
j k 

kC U W. is a subset of X - Since C is a componentk Ur=lUr · J k 

of X - it follows that W. cuk
r=l

U
r' J Ck · 

Now, by assumption, .Ck ¢. Hi so, let Uk + l be the first 

member of {W. }~ 1 such that Uk + l n Ck ~ ~. Then we have
1 1= 

that U c Ck . Now, Uk + cannot intersect both A and B.k + l l 

Assume that A n =~. If A n (C - U ~ ~, letUk + l k k + l ) 

C be any component of C - U that intersects A. Other­
k

+
k

+l k l 

wise, let I be an irreducible continuum from A to C andA k 

let C be any component of C - U that intersects Ik +
k

+ A.l k l 

We need to show that Ck + cuts A from B in order to completel 

the inductive step. Suppose that Ck + does not cut A froml 

B in X. Let Q be a continuum in X - Ck + that intersectsl 

both A and B. Since C cuts A from B, Q must intersect Ck .k 

Let I Q be an irreducible continuum in Q from A to C (Ik Q 

could be degenerate). Since Q n Ck + l ~,IQ n Ck + l = ~. 

SO, I Q intersects a different component of C - U + thank k l 

Ck+l . Let R be the component of X - Uk+ that contains A.l 

If Ck+l intersects A, then R intersects Ck +l . If 

Ck +l n A = ~, then R intersects C + U I A. In either case,k l 

we have that R intersects two components of C - U + So,l .k k

R ¢ Ck . Let S be the uinon of C and all components (if
k 

any) of X - U other than R. Now, Rand S are continuak +l 
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whose union is X. Also, R - S ~ ~ and S - R ~~. By the 

unicoherence of X, R n S must be a continuum. But 

R n SeCk - Uk + and R n S intersects two components ofl 

C - Uk +l , which is a contradiction. Hence, C + cuts Ak k l 

from B and the induction step is complete. 

Let C = n~=lci. Now, since each Ci cuts A from B, 

it follows that C is a continuum which cuts A from B. We 

claim that C c X - U~ lW'. Let x E C and suppose there is 
1= 1 

an integer j such that x E W.. Then x E W. n C. for each 
] ] 1 

i > 1. As we have previously seen, W. must be a subset of 
] 

C. for each i > 1; i.e., W~ c C. However, there must be 
1 - ] 

an integer n > 1 such that W. is the first member of 
] 

{W.}~ 1 such that W. c C. By construction of the C ' '5,
1 1= ] n 1 

C +l is a component of C - W . But then W n C +1 = ~, a n n j j n 

contradiction. Hence, C is a subcontinuum of H that cuts 

A from B. This contradicts our original assumption. Thus, 

X is s-connected. 

We are indebted to Eldon J. Vought and E. E. Grace 

who suggested the proof above, which greatly simplified the 

original proof of the author. 

Theorem 2. In a metric space X, let {Si}~=l' {Ai}~=l' 

and {Bi}~=l be monotonic decreasing sequences of continua 

with respective intersections S, A, and B. Suppose that, 

for each i ~ 1, Ai and Bi are disjoint, Ai U B c Si' andi 

S. is s-connected between A. and B.o Then S is s-connected 
111 

between A and B. 

Proof. Let F be a closed set in S that cuts weakly 

between A and B in S. Let {Di}~=l be a sequence of open 
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sets in X whose intersection is F. For each i ~ 1, the 

closed set 51' cuts weakly between A. and B. in S. for some 
J J J
 

j ~ i. For suppose otherwise. Then, for each j > i, there
 

is a continuum C. in S. which intersects each of A. and B. 
J J J J 

but does not intersect 5 .. Some subsequence of {C.}~ . has
1 J J=l 

a sequential limiting set C. The set C is a subcontinuum 

of S which intersects each of A and B. Since F is a subset 

of Di' it follows that C does not intersect F. But this 

contradicts the fact that F cuts weakly between A and B 

in S. 

For each i ~ 1, let Sn. be the first member of {Sj}j=l 
1 

such that n i ~ i and Di cuts weakly between Ani and B in 
ni 

Sn. Since each Sn. is s-connected between An. and B . ' n
1 1 1 1 

there is a component d. of S n 5. that cuts weakly between 
1 n. 1 

1 

A and B in S Some subsequence of {d.}~ 1 has a n. n. n. 1 1= 
1 1 1 

sequential limiting set d. Now, d c F and d cuts weakly 

between A and B in S. For suppose that L is a subcontinuum 

of S which intersects each of A and B but does not inter­

sect d. Then there is an integer r such that d and L are r 

disjoint. Since L intersects each of A and B, it follows 

that L intersects each of A. and B. for each j > i. Also,
J J 

recall that L c S. This implies that d does not cut r 

weakly between A in S ,which is a contradiction. 
n nr r 

Thus, S is s-connected between A and B. 

Corollary 2.1. In a metric space, if ~ is a monotonic 

decreasing sequence of continua each of which is s-connected, 

then n,y is s-connected. 
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Corollary 2.2. Every plane continuum which does not 

separate the plane is s-connected. 

Proof. Since each nonseparating planar continuum is 

a countable intersection of nested topological disks, this 

corollary follows from Theorem 1 and Corollary 2.1. 

Theorem 3. If X is an inverse limit of absolute 

retracts, then X is s-connected. 

Proof. It is a well known fact that if X is an inverse 

limit of absolute retracts, then X is the intersection of 

a monotonic, decreasing sequence of absolute retracts (see 

[7, Lemmas 1.152 & 1.153]). Since absolute retracts are 

unicoherent and locally connected, this result follows from 

Theorem 1 and Corollary 2.1. 

Theorem 4. The monotone image of an s-connected 

space is s-connected. 

Proof. The proof is straightforward and is omitted. 

The property of being s-connected is especially useful 

in obtaining fixed point results in certain spaces. In 

particular, we will demonstrate a general procedure which 

works nicely in cones and products. The theorems we estab­

lish generalize existing results in this area. 

Let X be a continuum. We say that Z is the cone 

over X if Z = X x [O,l]/xx{l}· The surjective semi-span 

of X is zero, denoted by °O(X) = 0, provided that whenever 

C is a continuum in X x X such that TIl (C) = X, then C 

intersects the diagonal in X x X. We will say that a 

continuum X is tree-like (arc-like) provided that X is 
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an inverse limit of trees (arcs); see [7, 1.16~ & 1.163] 

and [6]. 

Theorem 5. If 00(X) = 0 and Z is the cone over X3 

then Z has the fixed point property. 

Proof. Let n: X x [0,1] ~ Z be the identification 

mapping and let v = n(X x {I}). Let TIl: Z - {v} ~ X and 

TI : Z ~ [0,1] be the natural projection mappings.2
 

Suppose that f: Z ~ Z is a fixed point free mapping.
 

Let H = {z E ZITI f(Z) = TI (z)}. The set H is not empty2 2 

since TI 2 : Z ~ [0,1] is a universal mapping. 

Suppose that v E H. Then TI f(v) = TI (v) 1. But2 2 

then f(v) = v, which is a contradiction. So, v ~ H. 

Similarly, v ~ f(H). 

Suppose there is a continuum C in Z - H that inter­

sects both {v} and X x {O}. Then TI 2 (C) = [0,1]. Since 

C c Z - H, we may write C as a union of sets 

R {z E CITI 2f(z) > TI (z)} and2
 

5 {z E CI TI 2 f (z) < TI (z)}.

2 

Now, v E S, C n (X x {oJ) c R, and each of Rand S is an 

open set relative to C. This contradicts the fact that,C 

is connected. Hence, H cuts weakly between {v} and X x {O} 

in Z. 

Since 00(X) = 0, X is tree-like. Now, Z can be 

realized as an inverse limit of cones over trees. Hence, 

by Theorem 3, Z is s-connected. So, there is a continuum 

K in H that cuts weakly between {v} and X x {O}. 

Suppose that x E X and {x} x [0,1] does not inter­

sect K. Then {x} x [0,1] is a continuum that intersects 
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both {v} and X x {o} but does not intersect K, a contradic­

tion. So, 7T (K) = X. Since °O(X) 0, 7T l : K -+ X is uni­l 

versal. Hence, there is a point z E K such that 7T 1 (z) = 

7T l f(z) · Also, since z E H, 7T (Z) = 7T 2 f(z) · We have that2 

z = f (z) , which is a contradiction. 

Corollary 5.1. If X is either 

(1) weakly chainable and in Class (W), or 

(2) weakly chainable and tree-like, 

and °O(Y) = 0 for each proper subcontinuum Y of X" then 

the cone over X has the fixed point property. 

Proof· Oversteegen and Tymchatyn [8] have shown that 

0o(X) = 0 in each of the cases listed above. Since 00(X) = 0 

implies that 00(X) = 0, the result follows immediately from 

Theorem 6. 

Jack Segal [10] and J. T. Rogers, Jr. [9] have shown 

that the hyperspace of subcontinua of an arc-like continuum 

has the fixed point property. Rogers' proof works equally 

well for the cone over an arc-like continuum. As a corol­

lary to Theorem 5, we get Rogers' result. 

Corollary 5.2. The aone over an ara-Zike aontinuum has 

the fixed point property. 

The proof of the next theorem is similar to the proof 

of Theorem 5. However, a few modifications are necessary. 

Also, the method of proof further illustrates the general 

procedure mentioned in the introduction of this paper. 
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Theorem 6. If 00(X) = 0, Y is arc-Zike, and Z x x Y, 

then Z has the fixed point property. 

Proof. Suppose that f: Z ~ Z is a fixed point free 

mapping. Let p be a metric for Z and d a metric for Y. 

Let £ be a positive number such that p(z,f(z» > £ for 

z E Z. Since Y is arc-like there is a mapping g: Y ~ [0,1] 

such that, for each t E [0,1], diam(g-l(t» < £. We refer 

to 9 as an £-map. 

Let H = {z E zlgTI 2 (z) = gTI f(z)}. The set H is not2

empty since g7T Z ~ [0 ,1] is a universal mapping. Let2 : 

-1 
p E g-l(O) and q E 9 (1). Let X = X x {p} and X = X x {q} . p q 

Suppose there is a continuum C in Z - H that intersects 

both X and X. Then g7T (C) = [0,1] and C is the union of 
p q 2 

sets 

R {z E clgTI f(z) > gTI (z)} and2 2
 

S {z E clg7T 2f(z) < gTI 2 (z)}.
 

Now, C n X C R, C n X C S, and each of Rand S is an openp q 

set relative to C. This contradicts the fact that C is con­

nected~ Hence, H cuts weakly between X and X in Z. p q 

As in Theorem 5, Z is s-connected. So, there is a con­

tinuum K in H that cuts weakly between X and X . p q 

Suppose that x E X and {x} x Y does not intersect K. 

Then {x} x Y is a continuum that intersects both X and X p q 

but does not intersect K, a contradiction. So, TIl(K) = X. 

Since TIl: K ~ X is universal, there is a point z E K such 

that TIl(z) = TIlf(z). Also, since z E H, g7T 2 (Z) = gTI 2f(z). 

Since 9 is an £-map, it follows that d(TI 2 (z),TI f(z» < £.2

But then p(z,f(z» < £, which is a contradiction. 
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Let D be the unit disk in the plane with polar coordi­

nates i i. e., D = {( r, e) 1 a ~ r < l}. Let IT: D - {( 0, a)} -.. sl 

be radial projection and let a: D -.. [0,1] be projection into 

the first coordinate. 

A mapping f from a continuum X onto D is said to be 

AH-essential provided that fl -1 1: f-l(Sl) -.. sl cannot 
f (S) 

be extended to a mapping F: X -.. Sl. 

Theorem 7. Suppose that X = lim{X. ,g~+1}3 where for 
-+- J.. J.. 

each i > 1 3 XJ..' = D3 g~+l(Sl) = s13 and (g~+l)-l(O,O) = 
J.. J.. 

i+l i+l
{(O,O)}. Suppose also that for each i ~ 1 3 gi IT = lTgi 

on D - {(O,O)}. Then X has the fixed point property. 

Proof· For each i > 1, let gi: X -.. Xi be projection 

thonto the i coordinate. Let v be the point of X such that 

gi(v) = (0,0) for each i > 1. We let d denote the metric 

on X. Also, we write Sl for each set {x € X. \a(x) = l}.J.. 

Suppose there is an integer m such that if n ~ m, then 

-1 1 ~ sl . .
9 I -1 1 : 9 (S) ~ J..S essentJ..al. We claim that, for 

n gn (S) n 

n ~ m, gn: X -.. D is AH-essential. Suppose that gn is not 

AH-essential. Let g: X -.. Sl be an extension of 

g~ = gn l -1 1· Since X is disk-like and Cech cohomology 
gn (S ) 

with integer coefficients is continuous, it follows that 

Hl(X) ~ O. By [3, 8.1], g is inessential. Since 9 is an 

extension of g~, g~ is inessential. But this contradicts 

our assumption. So, for n ~ m, gn: X -.. D is AH-essential 

and by [5] gn is universal. It follows from Lemma 1 in [4] 

that X has the fixed point property. 
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Suppose for each positive integer m, there is an n > m 

such that g~ is inessential. Suppose that f: X ~ X is a 

fixed point free mapping and E is a positive number such 

that d(x,f(x» ~ E for each x E X. Let n be an integer 

such that gn is an £-map and g~ is inessential. 

Let H = {x E xlagn(x) = agnf(x)}. The set H is not 

. 1 i+l 
empty since agn is universal. Let Xo lim{S ,gi lsI}· 

Then X is a subcontinuum of X and X C g~l(Sl). Now, aso o 
in the proof of Theorem 5, H cuts weakly between {v} and 

X • Since X is s-connected, there is a continuum K in Ho
that cuts weakly between {v} and Xo• 

Since g' is inessential, so is g' I X · Let gn = g'ln n Xn 0 o 
l eiljJ (x)and let ljJ: X ~ E be a mapping such that gn(x)o 

for each x in Xo• Let n: X - {v} ~ Xo be defined by 

gin(x) = ngi(x) for each i ~ 1. Now, ljJ(XO) is an arc or 

a point; so, ljJnl : K ~ ljJ(X ) is universal. Hence, there is
K O

a point x E K such that ljJn(x) = ljJnf(x). Thus, 

gn(n(x)) = ei~n(x) = ei~nf(x) = gn(nf(x)). 

By definition of n, this gives us that TIgn(x) = TIgnf(x). 

Since x E K, agn(x) = agnf(x). These last two equalities 

give us that gn(x) = gnf(x). But then d(x,f(x» < £, which 

is a contradiction. 

J. T. Rogers, Jr. [9] has shown that the hyperspace 

of subcontinua of a circle-like continuum has the fixed 

point property. Again, Rogers' proof works equally well for 

the cone over a circle-like continuum. We get Rogers' 

result as a corollary to Theorem 7. 
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Corollary 7.1. The cone over a circle-like continuum 

has	 the fixed point property. 

Proof. Suppose that X is the cone over a circle-like 

continuum; let X = cone (X ) , where X 1!m{Si,ft+1 } witho o 
each	 S. = sl. Now, X is homeomorphic to 1im{cone(S.),

1	 + 1 

1ft+	 x id}. For each i ~ 1, cone (Si) is homeomorphic to D 

with	 the vertex of cone(Si) mapping to (0,0). The other 

conditions in the hypothesis of Theorem 7 follow easily. 

Hence, X has the fixed point property. 
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