

http://topology.auburn.edu/tp/

$s\mbox{-}{\rm CONNECTED}$ SPACES AND THE FIXED POINT PROPERTY

by

M. M. Marsh

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

s-CONNECTED SPACES AND THE FIXED POINT PROPERTY

M. M. Marsh

We wish to establish a general procedure for showing that certain spaces have the fixed point property. In particular, we will be interested in spaces which resemble products.

Consider the topological disk $D = [0,1] \times [0,1]$. It is a well known property of D that if H is a closed subset of D then either some component of D - H intersects both the top and bottom of D or some component of H intersects both the right and left sides of D. One can use this property to show that D has the fixed point property. The argument goes like this. Let $f: D \rightarrow D$ be a continuous function. Let $H = \{x \in D \mid \pi_2(x) = \pi_2 f(x)\}$. The set H is non-empty since π_2 : D \rightarrow [0,1] is universal. No component C of D - H can intersect both top and bottom, for otherwise we could write C as a union of mutually separated sets {x \in C | π_2 (x) < $\pi_2 f(x)$ and $\{x \in C \mid \pi_2(x) > \pi_2 f(x)\}$. Thus, some component K of H intersects both the right and left sides of D. So, $\pi_1 |_{K}$ maps K onto [0,1] and is therefore universal. Hence, there is a point $x \in K$ such that $\pi_1(x) = \pi_1 f(x)$. Since $x \in K \subset H$, $\pi_{2}(x) = \pi_{2}f(x)$. Thus, x is a fixed point for f.

Haskell Cohen [2] used an argument of a similar nature to show that the product of ordered spaces has the fixed point property. We generalize this property possessed by D to a property which holds for a large class of spaces. In a manner similar to the one outlined above, we establish several fixed point results.

A continuum is a nondegenerate compact connected metric space. A continuous function will be referred to as a map or mapping. A continuum X has the fixed point property provided that whenever f is a mapping of X into X, there is a point x in X such that f(x) = x. A mapping f: $X \rightarrow Y$ is said to be universal provided that whenever g: $X \rightarrow Y$ is a mapping, there is a point $x \in X$ such that f(x) = g(x). In [1], R. E. Basye defined the terms "weakly disconnect," "simple connected," and "simply connected in the weak sense." A definition similar to "weakly disconnect" has been used by F. B. Jones with different terminology. We adopt Jones' terminology and introduce some new definitions of a similar nature.

Let A and B be closed disjoint subsets of the connected topological space X. The closed set H cuts A from B in X provided that no component of X - H intersects both A and B. The closed set H cuts weakly between A and B in X provided that whenever C is a closed connected set in X that intersects each of A and B, then C intersects H. Notice that, in our definition of cuts weakly, H may intersect A U B. We say that X is s-connected between A and B provided that whenever H is a closed set in X that cuts weakly between A and B, then some component K of H cuts weakly between A and B. A connected space X is said to be s-connected provided that whenever A and B are disjoint closed connected subsets of X, then X is s-connected between A and B.

86

We notice that, in a locally connected metric space, the properties of "cutting" and "cutting weakly" coincide.

As an immediate consequence of Theorem 4 in [1], we have

Lemma 1. If a metric space is s-connected, it is unicoherent.

The following theorem generalizes, in the compact case, results of Haskell Cohen [2, Lemma 2] and R. E. Basye [1, Theorem 6].

Theorem 1. A locally connected continuum is unicoherent if and only if it is s-connected.

Proof. Let X be a locally connected continuum. If X is s-connected, by Lemma l it is unicoherent.

Suppose that X is unicoherent. We will show that X is s-connected. Let A and B be disjoint continua in X and let H be a closed set that cuts weakly between A and B. Suppose no component of H cuts weakly between A and B. Let $\{W_i\}_{i=1}^{\infty}$ be the components of X - H. Since X is locally connected, each W_i is a connected open set. Also, no W_i intersects both A and B, for otherwise, we could construct an arc in W_i which intersects both A and B, contradicting the fact that H cuts weakly between A and B.

Let $C_0 = X$ and $U_1 = W_1$. Since U_1 does not intersect both A and B, one of A or B must be contained in a component C_1 of $C_0 - U_1$. Now, C_1 cuts A from B. Proceeding by induction, assume that continua $\{C_i\}_{i=0}^k$ and connected open sets $\{U_i\}_{i=1}^k$ have been defined so that, for $1 \le i \le k$, i) $U_{i} = W_{j}$ for some $j \ge 1$,

ii) $U_i \subset C_{i-1}$,

iii) C_i is a component of $C_{i-1} - U_i$, and

iv) C; cuts A from B.

Notice that each C_i is a component of $X - U_{r=1}^{i}U_{r}$.

Suppose that, for some $j \ge 1$, $W_j \cap C_k \ne \emptyset$. Then $C_k \cup W_j$ is a subset of $X - \bigcup_{r=1}^k U_r$. Since C_k is a component of $X - \bigcup_{r=1}^k U_r$, it follows that $W_j \subset C_k$.

Now, by assumption, $C_k \notin H$; so, let U_{k+1} be the first member of $\{W_i\}_{i=1}^{\infty}$ such that $U_{k+1} \cap C_k \neq \emptyset$. Then we have that $U_{k+1} \subset C_k$. Now, U_{k+1} cannot intersect both A and B. Assume that A \cap U_{k+1} = \emptyset . If A \cap (C_k - U_{k+1}) \neq \emptyset , let C_{k+1} be any component of $C_k - U_{k+1}$ that intersects A. Otherwise, let \boldsymbol{I}_{A} be an irreducible continuum from A to \boldsymbol{C}_{k} and let C_{k+1} be any component of $C_k - U_{k+1}$ that intersects I_{λ} . We need to show that C_{k+1} cuts A from B in order to complete the inductive step. Suppose that C_{k+1} does not cut A from B in X. Let Q be a continuum in X - C_{k+1} that intersects both A and B. Since C_k cuts A from B, Q must intersect C_k . Let I_{O} be an irreducible continuum in Q from A to C_{k} (I_{Q} could be degenerate). Since $Q \cap C_{k+1} = \emptyset$, $I_{O} \cap C_{k+1} = \emptyset$. So, I_{Ω} intersects a different component of $C_k - U_{k+1}$ than C_{k+1} . Let R be the component of X - U_{k+1} that contains A. If C_{k+1} intersects A, then R intersects C_{k+1} . If $C_{k+1} \cap A = \emptyset$, then R intersects $C_{k+1} \cup I_A$. In either case, we have that R intersects two components of $C_k - U_{k+1}$. So, $R \neq C_k$. Let S be the uinon of C_k and all components (if any) of X - U_{k+1} other than R. Now, R and S are continua

whose union is X. Also, $R - S \neq \emptyset$ and $S - R \neq \emptyset$. By the unicoherence of X, $R \cap S$ must be a continuum. But $R \cap S \subset C_k - U_{k+1}$ and $R \cap S$ intersects two components of $C_k - U_{k+1}$, which is a contradiction. Hence, C_{k+1} cuts A from B and the induction step is complete.

Let $C = \bigcap_{i=1}^{\infty} C_i$. Now, since each C_i cuts A from B, it follows that C is a continuum which cuts A from B. We claim that $C \subset X - \bigcup_{i=1}^{\infty} W_i$. Let $x \in C$ and suppose there is an integer j such that $x \in W_j$. Then $x \in W_j \cap C_i$ for each $i \ge 1$. As we have previously seen, W_j must be a subset of C_i for each $i \ge 1$; i.e., $W_j \subset C$. However, there must be an integer $n \ge 1$ such that W_j is the first member of $\{W_i\}_{i=1}^{\infty}$ such that $W_j \subset C_n$. By construction of the C_i 's, C_{n+1} is a component of $C_n - W_j$. But then $W_j \cap C_{n+1} = \emptyset$, a contradiction. Hence, C is a subcontinuum of H that cuts A from B. This contradicts our original assumption. Thus, X is s-connected.

We are indebted to Eldon J. Vought and E. E. Grace who suggested the proof above, which greatly simplified the original proof of the author.

Theorem 2. In a metric space X, let $\{S_i\}_{i=1}^{\infty}, \{A_i\}_{i=1}^{\infty}$, and $\{B_i\}_{i=1}^{\infty}$ be monotonic decreasing sequences of continua with respective intersections S, A, and B. Suppose that, for each $i \ge 1$, A_i and B_i are disjoint, $A_i \cup B_i \subset S_i$, and S_i is s-connected between A_i and B_i . Then S is s-connected between A and B.

Proof. Let F be a closed set in S that cuts weakly between A and B in S. Let $\{D_i\}_{i=1}^{\infty}$ be a sequence of open

sets in X whose intersection is F. For each $i \ge 1$, the closed set \overline{D}_i cuts weakly between A_j and B_j in S_j for some $j \ge i$. For suppose otherwise. Then, for each $j \ge i$, there is a continuum C_j in S_j which intersects each of A_j and B_j but does not intersect \overline{D}_i . Some subsequence of $\{C_j\}_{j=i}^{\infty}$ has a sequential limiting set C. The set C is a subcontinuum of S which intersects each of A and B. Since F is a subset of D_i , it follows that C does not intersect F. But this contradicts the fact that F cuts weakly between A and B in S.

For each $i \ge 1$, let S_{n_i} be the first member of $\{S_j\}_{j=1}^{\infty}$ such that $n_i \ge i$ and \overline{D}_i cuts weakly between A_{n_i} and B_{n_i} in S_{n_i} . Since each S_{n_i} is s-connected between A_{n_i} and B_{n_i} , there is a component d_i of $S_{n_i} \cap \overline{D}_i$ that cuts weakly between A_{n_i} and B_{n_i} in S_{n_i} . Some subsequence of $\{d_i\}_{i=1}^{\infty}$ has a sequential limiting set d. Now, $d \in F$ and d cuts weakly between A and B in S. For suppose that L is a subcontinuum of S which intersects each of A and B but does not intersect d. Then there is an integer r such that d_r and L are disjoint. Since L intersects each of A and B, it follows that L intersects each of A_j and B_j for each $j \ge i$. Also, recall that $L \in S$. This implies that d_r does not cut weakly between A_{n_r} and B_{n_r} in S_{n_r} , which is a contradiction. Thus, S is s-connected between A and B.

Corollary 2.1. In a metric space, if G is a monotonic decreasing sequence of continua each of which is s-connected, then nG is s-connected.

Corollary 2.2. Every plane continuum which does not separate the plane is s-connected.

Proof. Since each nonseparating planar continuum is a countable intersection of nested topological disks, this corollary follows from Theorem 1 and Corollary 2.1.

Theorem 3. If X is an inverse limit of absolute retracts, then X is s-connected.

Proof. It is a well known fact that if X is an inverse limit of absolute retracts, then X is the intersection of a monotonic decreasing sequence of absolute retracts (see [7, Lemmas 1.152 & 1.153]). Since absolute retracts are unicoherent and locally connected, this result follows from Theorem 1 and Corollary 2.1.

Theorem 4. The monotone image of an s-connected space is s-connected.

Proof. The proof is straightforward and is omitted.

The property of being s-connected is especially useful in obtaining fixed point results in certain spaces. In particular, we will demonstrate a general procedure which works nicely in cones and products. The theorems we establish generalize existing results in this area.

Let X be a continuum. We say that Z is the cone over X if Z = X × $[0,1]/_{X \times \{1\}}$. The surjective semi-span of X is zero, denoted by $\sigma_0^*(X) = 0$, provided that whenever C is a continuum in X × X such that $\pi_1(C) = X$, then C intersects the diagonal in X × X. We will say that a continuum X is tree-like (arc-like) provided that X is an inverse limit of trees (arcs); see [7, 1.162 & 1.163] and [6].

Theorem 5. If $\sigma_0^*(X) = 0$ and Z is the cone over X, then Z has the fixed point property.

Proof. Let $\eta: X \times [0,1] \rightarrow Z$ be the identification mapping and let $v = \eta(X \times \{1\})$. Let $\pi_1: Z - \{v\} \rightarrow X$ and $\pi_2: Z \rightarrow [0,1]$ be the natural projection mappings.

Suppose that f: Z \rightarrow Z is a fixed point free mapping. Let H = {z \in Z | $\pi_2 f(z) = \pi_2(z)$ }. The set H is not empty since π_2 : Z \rightarrow [0,1] is a universal mapping.

Suppose that $v \in H$. Then $\pi_2 f(v) = \pi_2(v) = 1$. But then f(v) = v, which is a contradiction. So, $v \notin H$. Similarly, $v \notin f(H)$.

Suppose there is a continuum C in Z - H that intersects both {v} and X × {0}. Then $\pi_2(C) = [0,1]$. Since $C \subset Z$ - H, we may write C as a union of sets

> $R = \{z \in C | \pi_2 f(z) > \pi_2(z) \} \text{ and}$ $S = \{z \in C | \pi_2 f(z) < \pi_2(z) \}.$

Now, $v \in S$, $C \cap (X \times \{0\}) \subset R$, and each of R and S is an open set relative to C. This contradicts the fact that C is connected. Hence, H cuts weakly between $\{v\}$ and $X \times \{0\}$ in Z.

Since $\sigma_0^*(X) = 0$, X is tree-like. Now, Z can be realized as an inverse limit of cones over trees. Hence, by Theorem 3, Z is s-connected. So, there is a continuum K in H that cuts weakly between $\{v\}$ and $X \times \{0\}$.

Suppose that $\mathbf{x} \in X$ and $\{\mathbf{x}\} \times [0,1]$ does not intersect K. Then $\{\mathbf{x}\} \times [0,1]$ is a continuum that intersects

both {v} and X × {0} but does not intersect K, a contradiction. So, $\pi_1(K) = X$. Since $\sigma_0^*(X) = 0$, $\pi_1: K \neq X$ is universal. Hence, there is a point $z \in K$ such that $\pi_1(z) = \pi_1 f(z)$. Also, since $z \in H$, $\pi_2(z) = \pi_2 f(z)$. We have that z = f(z), which is a contradiction.

Corollary 5.1. If X is either

(1) weakly chainable and in Class(W), or

(2) weakly chainable and tree-like,

and $\sigma_0(X) = 0$ for each proper subcontinuum X of X, then the cone over X has the fixed point property.

Proof. Oversteegen and Tymchatyn [8] have shown that $\sigma_0(X) = 0$ in each of the cases listed above. Since $\sigma_0(X) = 0$ implies that $\sigma_0^*(X) = 0$, the result follows immediately from Theorem 6.

Jack Segal [10] and J. T. Rogers, Jr. [9] have shown that the hyperspace of subcontinua of an arc-like continuum has the fixed point property. Rogers' proof works equally well for the cone over an arc-like continuum. As a corollary to Theorem 5, we get Rogers' result.

Corollary 5.2. The cone over an arc-like continuum has the fixed point property.

The proof of the next theorem is similar to the proof of Theorem 5. However, a few modifications are necessary. Also, the method of proof further illustrates the general procedure mentioned in the introduction of this paper. Theorem 6. If $\sigma_0^*(X) = 0$, Y is arc-like, and $Z = X \times Y$, then Z has the fixed point property.

Proof. Suppose that $f: Z \rightarrow Z$ is a fixed point free mapping. Let ρ be a metric for Z and d a metric for Y. Let ε be a positive number such that $\rho(z, f(z)) \geq \varepsilon$ for $z \in Z$. Since Y is arc-like there is a mapping g: Y \rightarrow [0,1] such that, for each t \in [0,1], diam(g⁻¹(t)) < ε . We refer to g as an ε -map.

Let $H = \{z \in Z | g\pi_2(z) = g\pi_2 f(z)\}$. The set H is not empty since $g\pi_2: Z \rightarrow [0,1]$ is a universal mapping. Let $p \in g^{-1}(0)$ and $q \in g^{-1}(1)$. Let $X_p = X \times \{p\}$ and $X_q = X \times \{q\}$.

Suppose there is a continuum C in Z - H that intersects both x_p and x_q . Then $g\pi_2(C) = [0,1]$ and C is the union of sets

 $R = \{ z \in C | g\pi_2 f(z) > g\pi_2(z) \} \text{ and}$ $S = \{ z \in C | g\pi_2 f(z) < g\pi_2(z) \}.$

Now, $C \cap X_p \subset R$, $C \cap X_q \subset S$, and each of R and S is an open set relative to C. This contradicts the fact that C is connected. Hence, H cuts weakly between X_p and X_q in Z.

As in Theorem 5, Z is s-connected. So, there is a continuum K in H that cuts weakly between X_p and X_q .

Suppose that $x \in X$ and $\{x\} \times Y$ does not intersect K. Then $\{x\} \times Y$ is a continuum that intersects both X_p and X_q but does not intersect K, a contradiction. So, $\pi_1(K) = X$. Since $\pi_1: K \neq X$ is universal, there is a point $z \in K$ such that $\pi_1(z) = \pi_1 f(z)$. Also, since $z \in H$, $g\pi_2(z) = g\pi_2 f(z)$. Since g is an ε -map, it follows that $d(\pi_2(z), \pi_2 f(z)) < \varepsilon$. But then $\rho(z, f(z)) < \varepsilon$, which is a contradiction.

94

Let D be the unit disk in the plane with polar coordinates; i.e., D = { $(r,\theta) \mid 0 \leq r \leq 1$ }. Let π : D - {(0,0)} + S¹ be radial projection and let α : D + [0,1] be projection into the first coordinate.

A mapping f from a continuum X onto D is said to be AH-essential provided that $f|_{f^{-1}(S^1)} : f^{-1}(S^1) + S^1$ cannot be extended to a mapping F: X + S¹.

Theorem 7. Suppose that $X = \lim_{i \to \infty} \{X_i, g_i^{i+1}\}$, where for each $i \ge 1$, $X_i = D$, $g_i^{i+1}(S^1) = S^1$, and $(g_i^{i+1})^{-1}(0,0) =$ $\{(0,0)\}$. Suppose also that for each $i \ge 1$, $g_i^{i+1}\pi = \pi g_i^{i+1}$ on $D - \{(0,0)\}$. Then X has the fixed point property.

Proof. For each $i \ge 1$, let $g_i: X \to X_i$ be projection onto the ith coordinate. Let v be the point of X such that $g_i(v) = (0,0)$ for each $i \ge 1$. We let d denote the metric on X. Also, we write S¹ for each set $\{x \in X_i \mid \alpha(x) = 1\}$.

Suppose there is an integer m such that if $n \ge m$, then $g_n |_{g_n^{-1}(S^1)} : g_n^{-1}(S^1) + S^1$ is essential. We claim that, for $n \ge m$, $g_n : X \ne D$ is AH-essential. Suppose that g_n is not AH-essential. Let $g: X \ne S^1$ be an extension of $g_n' = g_n |_{g_n^{-1}(S^1)}$. Since X is disk-like and Cech cohomology with integer coefficients is continuous, it follows that $H^1(X) \approx 0$. By [3, 8.1], g is inessential. Since g is an extension of g_n', g_n' is inessential. But this contradicts our assumption. So, for $n \ge m$, $g_n: X \ne D$ is AH-essential and by [5] g_n is universal. It follows from Lemma 1 in [4] that X has the fixed point property. Suppose for each positive integer m, there is an n > m such that g'_n is inessential. Suppose that $f: X \to X$ is a fixed point free mapping and ε is a positive number such that $d(x, f(x)) \ge \varepsilon$ for each $x \in X$. Let n be an integer such that g'_n is an ε -map and g'_n is inessential.

Let $H = \{x \in X | ag_n(x) = ag_nf(x)\}$. The set H is not empty since ag_n is universal. Let $X_0 = \lim_{\leftarrow} \{S^1, g_i^{i+1} | s_1\}$. Then X_0 is a subcontinuum of X and $X_0 = g_n^{-1}(S^1)$. Now, as in the proof of Theorem 5, H cuts weakly between $\{v\}$ and X_0 . Since X is s-connected, there is a continuum K in H that cuts weakly between $\{v\}$ and X_0 .

Since g'_n is inessential, so is $g'_n|_{X_0}$. Let $\hat{g}_n = g'_n|_{X_0}$ and let $\psi: X_0 \to E^1$ be a mapping such that $\hat{g}_n(x) = e^{i\psi(x)}$ for each x in X_0 . Let $n: X - \{v\} \to X_0$ be defined by $g_i n(x) = \pi g_i(x)$ for each $i \ge 1$. Now, $\psi(X_0)$ is an arc or a point; so, $\psi n|_K : K \to \psi(X_0)$ is universal. Hence, there is a point x \in K such that $\psi n(x) = \psi n f(x)$. Thus,

 $\hat{g}_n(\eta(x)) = e^{i\psi\eta(x)} = e^{i\psi\eta f(x)} = \hat{g}_n(\eta(x)).$ By definition of η , this gives us that $\pi g_n(x) = \pi g_n f(x).$ Since $x \in K$, $\alpha g_n(x) = \alpha g_n f(x)$. These last two equalities give us that $g_n(x) = g_n f(x)$. But then $d(x, f(x)) < \varepsilon$, which is a contradiction.

J. T. Rogers, Jr. [9] has shown that the hyperspace of subcontinua of a circle-like continuum has the fixed point property. Again, Rogers' proof works equally well for the cone over a circle-like continuum. We get Rogers' result as a corollary to Theorem 7. Corollary 7.1. The cone over a circle-like continuum has the fixed point property.

Proof. Suppose that X is the cone over a circle-like continuum; let $X = \operatorname{cone}(X_0)$, where $X_0 = \lim_i \{S_i, f_i^{i+1}\}$ with each $S_i = S^1$. Now, X is homeomorphic to $\lim_i \{\operatorname{cone}(S_i), f_i^{i+1} \times id\}$. For each $i \ge 1$, $\operatorname{cone}(S_i)$ is homeomorphic to D with the vertex of $\operatorname{cone}(S_i)$ mapping to (0,0). The other conditions in the hypothesis of Theorem 7 follow easily. Hence, X has the fixed point property.

Bibliography

- R. E. Basye, Simply connected sets, AMS Transactions 38 (1935), 341-356.
- H. Cohen, Fixed points in products of ordered spaces, AMS Proceedings 7 (1956), 703-706.
- 3. C. H. Dowker, Mapping theorems for non-compact spaces, American Journal Math 69 (1947), 200-242.
- W. Holsztynski, Universal mappings and fixed point theorems, Bull. Pol. Acad. Sci. 15 (1967), 433-438.
- O. W. Lokuciewski, On a theorem on fixed points, Ycπ. Mat. Hayκ 12 3(75) (1957), 171-172 (Russian).
- S. Mardesic and J. Segal, ε-mappings onto polyhedra, AMS Transactions 109 (1963), 146-164.
- S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York and Basel (1978).
- 8. L. G. Oversteegen and E. D. Tymchatyn, On span and weakly chainable continua (preprint).
- J. T. Rogers, Jr., Hyperspaces of arc-like and circlelike continua, Topology Conference (V.P.I. and S.U., 1973), Lecture Notes in Math., Vol. 375, Springer-Verlag, New York, N.Y. (1974), 231-235.
- J. Segal, A fixed point theorem for the hyperspaces of a snake-like continuum, Fundamenta Math. 50 (1962), 237-248.

```
California State University
```

Sacramento, California 95801