TOPOLOGY PROCEEDINGS Volume 8, 1983 Pages 237–240

http://topology.auburn.edu/tp/

ON A THEOREM OF PEREGUDOV

by

D. K. BURKE AND S. W. DAVIS

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON.	0146 4194

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON A THEOREM OF PEREGUDOV

D. K. Burke and S. W. Davis

1. Introduction

We present an easy proof of the result that every locally compact Hausdorff space with a weakly uniform base is metrizable [P].

A collection \mathcal{G} of subsets of a space X is a weakly uniform family provided that if # is any infinite subcollection of \mathcal{G} , then $| \cap \# | \leq 1$. A weakly uniform base for a space X is a base for X which is a weakly uniform family [HL].

We shall need the following lemmas. We assume that all spaces are Hausdorff.

Lemma 1 [HL]. If X has a weakly uniform base, then X has a G_{δ} -diagonal.

Lemma 2 [S]. If X is compact and has a $\boldsymbol{G}_{\delta}\text{-diagonal},$ then X is metrizable.

Lemma 3 [HL]. If β is a weakly uniform base for a separable space X, then β is countable.

Lemma 4 [HL]. If x is a non-isolated point of a first countable space X which has a weakly uniform base B, then B has countable order at x.

Lemma 5 [CM]. If X is a locally compact space with a point-countable base, then X is metrizable.

Lemma 6 [DRW]. If X is a regular first countable space and \mathcal{G} is a weakly uniform family of open sets covering E, the set of all nonisolated points in X, such that

(1) each element of $\mathcal G$ contains at most one point of $\mathbf E$, and

(2) for each $D \subseteq E$, $|M| \leq |D| + \omega$ where M is the set of all nodes of $\mathcal{G}(D) = \{G \in \mathcal{G}: G \cap D \neq \emptyset\}$, then \mathcal{G} has a point-finite open partial refinement covering E.

In Lemma 6, a *node* of a collection of sets is a point which is in more than one element of the collection.

2. The Result

We now proceed to the proof of the theorem. This result was obtained by Peregudov in [P] by a much more elaborate argument.

Theorem. Every locally compact space with a weakly uniform base is metrizable.

Proof. Suppose X is a locally compact space with a weakly uniform base β . For each $x \in X$, choose open U_X with $x \in U_X$ and \overline{U}_X compact. The collection $\{B \in \beta : B \subseteq U_X \text{ for some } x\}$ is a weakly uniform base for X, so WLOG we assume that β is made up of sets with compact closures. Since X has a G_{δ} -diagonal, we have that for each $B \in \beta$, \overline{B} is a compact metric space. Hence B is separable, and by Lemma 3, $\{G \in \beta : G \subset B\}$ is a countable base for B.

Let E denote the nonisolated points of X. Then β = {E \cap B: B $\in \beta$ } is a point-countable base for the locally compact space E. Thus E is metric by Lemma 5. Choose a σ -discrete open cover $\bigcup_{n \in \omega} \bigcup_n'$ of E such that for each n, \bigcup_n' is a discrete collection of nonempty open sets in E and is a precise partial refinement of β' . For U $\in \bigcup_n'$, choose the B $\in \beta$ corresponding to U such that U \subseteq E \cap B. Let $V_U = U \cup (B - E)$. Then let $\bigvee_n = \{V_U: U \in \bigcup_n'\}$. For each U $\in \bigcup_n' \{B \in \beta: \overline{B} \subseteq V_U\}$ is a countable open cover of V_U , and we index it by $\{B(U,k): k \in \omega\}$. For each $n \in \omega$, $k \in \omega$, let $X_{n,k} = \{\overline{B(U,k)} \cap E: U \in \bigcup_n\} \cup (X - E)$ with the quotient topology.

For each n,k, since $\overline{B(U,k)} \cap E$ is compact and V_U is a second countable space, we have that $X_{n,k}$ is a regular first countable space, and $\{\overline{B(U,k)} \cap E\} \cup (V_U - E): \cup \in U_n\}$ is a weakly uniform open cover of the non-isolated points of $X_{n,k}$. Let $W'_{n,k}$ be a point-finite open partial refinement which covers the non-isolated points by Lemma 6, say $W'_{n,k} = \{\overline{B(U,k)} \cap E\} \cup W(U,k): \cup \in U_n\}$. Then $W_{n,k} =$ $\{(B(U,k) \cap E) \cup W(U,k): \cup \in U_n\}$ is an open (in X) partial refinement of V_n which is point-finite in X and covers $\cup \{B(U,k) \cap E: \cup \in U_n\}$. Now $\cup_{n,k} W_{n,k}$ is a point countable collection of second countable open subsets of X, and

> {B $\in \beta$: B \subseteq W for some W $\in \bigcup_{n,k} \mathscr{U}_{n,k}$ U {{x}: x $\notin \bigcup_{n,k} \mathscr{U}_{n,k}$ }

is a point-countable base for X. Hence, by Lemma 5, X is metrizable.

Remark. Note that it follows immediately from the above theorem and Corollary 6 of [HL] that every locally countably compact regular space with a weakly uniform base is metrizable.

References

- [CM] H. H. Corson and E. A. Michael, Metrizability of certain countable unions, Illinois J. Math. 8 (1964), 351-360.
- [DRW] S. W. Davis, G. M. Reed and M. L. Wage, Further results on weakly uniform bases, Houston J. Math. 2 (1976), 57-63.
- [HL] R. W. Heath and W. F. Lindgren, Weakly uniform bases, Houston J. Math. 2 (1976), 85-90.
- [P] S. A. Peregudov, On metrizability in a class of topological spaces with a weakly uniform base, Bull.
 Pol. Acad. Nauk 28 (1980), 609-612 [in Russian, English summary].
- [S] V. Sneider, Continuous images of Souslin and Borel sets; metrization theorems, Dokl. Acad. Nauk USSR 50 (1945), 77-79.

Miami University

Oxford, Ohio 45056