TOPOLOGY PROCEEDINGS Volume 8, 1983

Pages 267–283

http://topology.auburn.edu/tp/

SPACES HAVING NOETHERIAN BASES

by

GARY GRABNER

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SPACES HAVING NOETHERIAN BASES

Gary Grabner

Let κ be an infinite cardinal. A collection of subsets of a set is said to be *Noetherian* (κ -*Noetherian*) provided every subcollection well ordered set inclusion is finite (has at most κ elements). Clearly, as in ring theory, a collection of sets is Noetherian if and only if every subcollection contains a maximal element. The concept of a Noetherian base for a topological space was introduced in $[N_1]$, [GN], and [LN]. The concept of an ω -Noetherian collection of sets was introduced in $[N_3]$ where it is shown, for example, that a topological space (X, \mathcal{I}) is hereditarily Lindelöf if and only if \mathcal{I} is ω -Noetherian.

It is not difficult to show that for any topological space X and any $x \in X$ every neighborhood base for x contains a Noetherian neighborhood base for x (see [dG] for the analogous result for covers). This fact was used in [Gr] to show that a topological space is globular [Sc] if and only if every point has a neighborhood base with subinfinite rank. Clearly, a T_o -space need not have a Noetherian base. However, to the best of my knowledge, the following is the only result concerning the existence of T_1 -spaces without Noetherian bases.

Theorem 0.1 [vD]. If $\alpha \in \text{Ord}$ then α with the order topology has a Noetherian base if and only if $\alpha < \kappa$ where κ is the first strongly inaccessible cardinal. Since $Con(ZFC) \rightarrow Con(ZFC + there are no strongly inaccessible cardinals), see [Je], no "real" <math>T_1$ -space has been shown to not have a Noetherian base.

A collection of subsets of a set is said to have subinfinite (countable) rank provided every infinite (uncountable) subcollection with nonempty intersection has two members related by set inclusion. The concept of a base with subinfinite (countable) rank was introduced in [GN] and studied further in [FG], [G], [LN], [N₁], [N₂], [N₃] among others.

Although a Noetherian base appears to be a very weak base property, spaces having Noetherian bases with subinfinite rank have been shown to possess many interesting properties, see [GN] and $[N_4]$. In this paper it is observed that a weakly uniform base is Noetherian. This fact is used to show that, although a weakly uniform base need not be point countable, a weakly uniform base with subinfinite rank is σ -point finite (Theorem 1.6). We also show that, even though the perfect image of a space having a Noetherian base need not have a Noetherian base (Theorem 3.5), the perfect image of a space with a Noetherian base with subinfinite rank has an ω -Noetherian base (Proposition 3.6).

Noetherian (K-Noetherian) collections can be used to characterize certain covering properties. For example in this paper T_1 meta-Lindelöf spaces are characterized as those T_1 -spaces for which every open cover has a Noetherian open refinement with countable rank (Theorem 2.4). We also use certain ω -Noetherian collections to characterize paracompact Go-spaces (Corollary 2.8). We show that various classes of T_1 -spaces, for example those with point countable bases, have Noetherian bases (Theorem 1.2 and Corollary 1.3). It is also shown that the product of spaces with κ -Noetherian bases has a κ -Noetherian base (Theorem 3.1) and the uncountable product of nontrivial T_1 -spaces never has a base of countable rank (Theorem 3.3).

We will use Greek letters to denote ordinals and for convenience will not distinguish between the cardinal κ and the first ordinal having cardinality κ . The first infinite cardinal will be denoted by ω . For any set A the cardinality of A will be denoted by |A|. If # is a collection of subsets of a set X and x \in X then $(\#)_{x} = \{H \in \#: x \in H\}$. When we say that a collection of sets is κ -Noetherian it is understood that κ is an infinite cardinal.

1. Spaces Having Special Noetherian Bases

Suppose a topological space X has a base with some property. It is natural to ask if X has a Noetherian base with the same property [LN]. In general, the answer is no. For example, ω_1 with the order topology has a Noetherian base and a clopen base of intervals. However, Brian Scott has shown that it does not have a Noetherian clopen base and in [LN] it is observed that it does not have a Noetherian base of intervals. Also, the Sorgenfrey line has a Noetherian base and a base of subinfinite rank but does not have a Noetherian base of subinfinite rank.

Theorem 1.1 [F]. A T₁-space with a base with (point-) finite rank has a Noetherian base with (point-)finite rank. Using Theorem 1.1 one can greatly simplify the proofs of many theorems concerning spaces with bases of pointfinite rank.

Theorem 1.2. A T₁-space with a point countable base has a Noetherian point countable base.

Proof. Let X be a T_1 -space having a point countable base β . Let S = {x \in X: x is isolated} and β = {{x}: x \in S}. Well order X\S, say X\S = {x(α): $\alpha < \kappa$ } and for every $\alpha < \kappa$ let $\beta(\alpha)$ = {B $\in \beta$: α = min{ $\gamma < \kappa$: x(γ) \in B}}. For $\alpha < \kappa$ with $|\beta(\alpha)| < \omega$ let $\beta'(\alpha) = \beta(\alpha)$.

Suppose $\alpha < \kappa$ and $|\beta(\alpha)| = \omega$. Let $\beta(\alpha) = \{B(\alpha, n):$ $n < \omega\}$, $B'(\alpha, 0) = B(\alpha, 0)$ and choose $y(\alpha, 0) \in B(\alpha, 0) \setminus \{x(\alpha)\}$. Suppose for all m < n, $B'(\alpha, m) \subseteq B(\alpha, m)$ has been defined and $y(\alpha, m) \in B'(\alpha, m) \setminus \{x(\alpha)\}$ has been chosen. Let $B'(\alpha, n) =$ $B(\alpha, n) \setminus \{y(\alpha, m): m < n \text{ and } B'(\alpha, m) \subseteq B(\alpha, n)\}$. Let $\beta'(\alpha) =$ $\{B'(\alpha, n): n < \omega\}$ and $\beta' = S \cup (\cup \{\beta'(\alpha): \alpha < \kappa\})$.

Suppose for every $m < \omega$, $\alpha(m) < \kappa$ and $n(m) < \omega$ have been chosen such that if $m < k < \omega$ then $B'(\alpha(m), n(m)) \subseteq$ $B'(\alpha(k), n(k))$. If $\alpha < \beta < \kappa$ then $x(\alpha) \notin U\beta(\beta)$ and so $x(\alpha) \notin U\beta'(\beta)$. Thus if $m < k < \omega$ then $\alpha(m) \ge \alpha(k)$ and so there is an $n < \omega$ such that if $n < m < \omega$ then $\alpha(n) = \alpha(m)$. Hence to show that β' is Noetherian we need only show that for each $\alpha < \kappa$, $\beta'(\alpha)$ is Noetherian.

Suppose $\alpha < \kappa$ and $|\beta(\alpha)| = \omega$ and for all $m < \omega$, $n(m) < \omega$ has been chosen. There is an infinite $A \subseteq \omega$ such that if k,m \in A with k < m then $n(k) \leq n(m)$. If k,m \in A with k < m then B'(α , n(k)) $\not\in$ B'(α , n(m)). Thus β '(α) does not contain an infinite well ordered increasing subset, i.e. it is Noetherian. Since β' is clearly point countable all that remains to be shown is that it is a base. Let $x \in X \setminus S$ and V an open neighborhood of x. There is an $\alpha < \kappa$ and an $n < \omega$ such that $x \in B(\alpha, n) \subseteq V$. If there is an m < n with $x \in B'(\alpha, m) \subseteq B(\alpha, n)$ then we are done. Thus suppose that if m < n and $B'(\alpha, m) \subseteq B(\alpha, n)$ then $x \notin B'(\alpha, m)$. Then by the definition of $B'(\alpha, n)$, $x \in B'(\alpha, n) \subseteq B(\alpha, n) \subseteq V$. Thus β' is a base for X.

Corollary 1.3. If a T₁-space has a base which is any of the following then it has a Noetherian base with the same property:

- (1) σ -point finite
- (2) o-disjoint
- (3) σ -discrete
- (4) σ -locally finite
- (5) σ -locally countable
- (6) locally countable.

Proof. If the base β in the proof of Theorem 1.2 satisfies any of the conditions (1)-(6) then so does β '.

A base β for a topological space X is called a (weakly) uniform base provided if $x \in X$ and ζ is any infinite subset of $(\beta)_X$ then ζ is a neighborhood base at x ($\cap \zeta = \{x\}$). The concept of a uniform base was introduced in [A] and weakly uniform base was introduced in [HL].

Theorem 1.4 [F]. A base for a topological space is a uniform base if and only if it is a Noetherian base of countable order with subinfinite rank. The following is easily proved.

Proposition 1.5. A weakly uniform base for a topological space is Noetherian.

A space having a weakly uniform base need not have a base with subinfinite rank (see Theorem 3 [DRW]) nor a base of countable order (the Michael line, Example 71 of [SS]). In [DRW] under the assumption of Martin's Axiom and $\omega_2 < 2^{\omega}$, they construct a first countable T_1 -space with a weakly uniform base which does not have a point countable base. For spaces having weakly uniform bases with subinfinite rank the situation is different.

Proposition 1.6. If β is a weakly uniform base with subinfinite rank for a topological space X then β is σ -point finite.

Proof. Let $\beta(0)$ be the set of all maximal elements in the partially ordered set $(\beta, \underline{\subset})$. Notice that if $B \in \beta \setminus \beta(0)$ then there is a $B' \in \beta(0)$ such that $B \subset B'$. Also, since β is Noetherian and has subinfinite rank the collection $\beta(0)$ is point finite. Suppose for $m \leq n < \omega$, $\beta(m) \subseteq \beta$ has been chosen. Let $\beta(n+1)$ be the set of all maximal elements in the partially ordered set $(\beta \setminus \bigcup \{\beta(m) : m \leq n\}, \underline{\subset})$. Since $\beta \setminus \bigcup \{\beta(m) : m \leq n\}$ is Noetherian and has subinfinite rank $\beta(n+1)$ is point finite and if $B \in \beta \setminus \bigcup \{\beta(m) : m \leq n+1\}$ then there is a $B' \in \beta(n+1)$ such that $B \subset B'$.

Let $\beta(\omega) = \{\{x\}: x \in X, \{x\} \in \beta \setminus \bigcup \{\beta(n): n < \omega\}\}$. Clearly $\bigcup \{\beta(\alpha): \alpha \leq \omega\}$ is σ -point finite. Suppose $B \in \beta \setminus \bigcup \{\beta(n): n < \omega\}$. Then for every $n < \omega$ there is a B(n) ∈ β (n) such that B ⊂ B(n). Since, for n,m < ω with m ≠ n, β (n) ∩ β (m) = ϕ , the collection {B(n): n < ω } is a countable subset of β and B ⊂ ∩{B(n): n < ω }. Hence, since β is a weakly uniform base, |B| = 1 and so B ∈ β (ω). Thus β = ∪{ β (α): $\alpha \le \omega$ }.

A T_2 -space with a σ -point finite base (and hence, by Corollary 1.3, a Noetherian σ -point finite base) need not have a base with subinfinite rank (Example 1 of [BL]). The Michael line is a space with a weakly uniform base with subinfinite rank which does not have a uniform base.

A base β for a topological space X is called a (weak) base of countable order provided if $\{B(n): n < \omega\} \subset \beta$ such that $n < m < \omega$ implies $B(n) \supset B(m)$ and $x \in \cap\{B(n): n < \omega\}$ then the collection $\{B(n): n < \omega\}$ is a neighborhood base at x ($\cap\{B(n): n < \omega\} = \{x\}$). The concept of a base of countable order was introduced in [Ar]. The following is the natural analog of Theorem 1.4. It follows directly from Proposition 1.5 and Lemma 3.6.

Theorem 1.7. A base for a topological space is a weakly uniform base with subinfinite rank if and only if it is a Noetherian weak base of countable order with subinfinite rank.

In Theorem 1.7 the subinfinite rank condition is needed, since ω_1 with the order topology has a Noetherian base of countable order but does not have a weakly uniform base.

Suppose κ is a strongly inaccessible cardinal. By Theorem 0.1, κ with the order topology does not have a

Noetherian base. In fact, if S is any stationary subset of κ then S with the subspace topology does not have a Noetherian base. Thus { $\alpha < \kappa$: cf(α) $\leq \omega$ } has a base of countable order but does not have a Noetherian base. It is not known if a T₁ developable space must have a Noetherian base (and therefore a Noetherian development).

2. Covering Properties

A cover \mathcal{G} of a set X is called *minimal* provided no proper subcollection of \mathcal{G} covers X. A topological space is called *irreducible* provided every open cover has a minimal open refinement. Clearly a minimal cover of a set X is Noetherian. However, ω_1 with the order topology has a Noetherian base but is not irreducible. If \mathcal{G} is a Noetherian cover of a set X then the subcover \mathcal{H} consisting of all maximal elements of (\mathcal{G}, \subseteq) has the property that for every H,H' $\in \mathcal{H}$, H \notin H' and H' \notin H. This subcover shows that a Noetherian cover is a natural generalization of a minimal cover.

Wicke and Worrell observed that θ -refinable spaces are irreducible [WW]. Although weakly θ -refinable spaces need not be irreducible (see [BL] and [vDW]), in [S] it is shown that weakly $\overline{\theta}$ -refinable spaces are irreducible. It is not known if T_1 weakly $\overline{\delta\theta}$ -refinable (or even meta-Lindelöf) spaces are irreducible. It is also not known if every open cover of a T_1 weakly θ -refinable space has a Noetherian open refinement.

The following lemma is proved in the same way as Theorem 1.2.

Lemma 2.1. Suppose \mathcal{G} is a collection of open subsets of a space X and $A \subseteq \cup \mathcal{G}$ such that for every $G \in \mathcal{G}$, $A \cap G \neq \phi$ and for every $x \in A$, $|(\mathcal{G})_{x}| \leq \omega$. Then for every $G \in \mathcal{G}$ there is an open $B(G) \subseteq G$ such that $\cup \{B(G) : G \in \mathcal{G}\} = \cup \mathcal{G}$ and $\{B(G) : G \in \mathcal{G}\}$ is Noetherian.

Proposition 2.2. If X is a T_1 weakly $\overline{\delta\theta}$ -refinable space then every open cover of X has an open Noetherian weak $\overline{\delta\theta}$ -refinement.

Proof. Let $\mathcal{G} = \bigcup{\mathcal{G}(n): n < \omega}$ be an open cover of X satisfying the following conditions:

(i) for each x \in X there is an n(x) < ω such that 0 < $|\left(\int (n\left(x\right) \right) \right)_{x}|$ < ω

(ii) $\{U\mathcal{G}(n): n < \omega\}$ is point finite,

i.e. \mathcal{G} is a weak $\overline{\delta\theta}$ -cover. For each m < ω let A(m) = {x \in X: m = n(x)} and $\#(m) = {G \in \mathcal{G}(m): G \cap A(m) \neq \phi}.$

By Lemma 2.1 for each $n < \omega$ and each $H \in \#(n)$ there is an open $W(H) \subseteq H$ such that $U\{W(H): H \in \#(n)\} = U\#(n)$ and $\{W(H): H \in \#(n)\}$ is Noetherian. For each $n < \omega$ let $\#(n) = \{W(H): H \in \#(n)\}$. By (ii) $\{U\#(n): n < \omega\}$ is point finite and so $\# = U\{\#(n): n < \omega\}$ is Noetherian. Since conditions (i) and (ii) hold for #, # is a Noetherian weak $\overline{\delta\theta}$ -refinement of \mathcal{G} .

When subinfinite rank is introduced things become clear.

Theorem 2.3 [GN]. A topological space is metacompact if and only if every open cover has a Noetherian open refinement with subinfinite rank. The following analog of the above theorem follows from Lemma 2.1.

Theorem 2.4. A T_l-space is metaLindelöf if and only if every open cover has a Noetherian open refinement with countable rank.

Theorem 2.5 [FG]. A T_3 -space is metacompact if and only if every open cover has an ω -Noetherian open refinement with subinfinite rank.

It is not known if the metaLindelöf analog of Theorem 2.5 holds.

For generalized ordered spaces (Go-spaces) we can use certain ω -Noetherian collections to characterize paracompactness. First we state the following well known characterization of paracompact Go-spaces.

Theorem 2.6 [EL]. The following are equivalent for a generalized ordered space X:

(a) X is not paracompact

(b) for some ordinal λ with $cf(\lambda) = \lambda > \omega$, some stationary subset of λ is homeomorphic to a closed subspace of X.

Lemma 2.7. Suppose κ is an ordinal with $cf(\kappa) = \kappa > \omega$ and S is a stationary subset of κ . The open cover $U = \{[0,\alpha] \cap S: \alpha \in S\}$ of S does not have an ω -Noetherian open refinement consisting of intervals in S.

Proof. Let V be an open refinement of U consisting of intervals in S. For every $V \in V$ let $\gamma(V) \in S$ and

 $\begin{array}{l} \alpha \left(V \right), \beta \left(V \right) \ \in \ \kappa \ \text{such that} \ \left(\alpha \left(V \right), \beta \left(V \right) \right) \ \cap \ S \ = \ V \ \text{and} \ V \ \subseteq \ \left[0, \gamma \left(V \right) \right]. \\ \\ \text{For every} \ \sigma \ \in \ S \ \cap \ \text{Lim} \ \text{let} \ V \left(\sigma \right) \ \in \ \left(V \right)_{\sigma}, \ \alpha \left(\sigma \right) \ = \ \alpha \left(V \left(\sigma \right) \right), \\ \\ \beta \left(\sigma \right) \ = \ \beta \left(V \left(\sigma \right) \right) \ \text{and} \ \gamma \left(\sigma \right) \ = \ \gamma \left(V \left(\sigma \right) \right). \\ \\ \text{Notice that for all} \\ \\ \sigma \ \in \ S \ \cap \ \text{Lim}, \ \alpha \left(\sigma \right) \ < \ \sigma. \end{array}$

Since S is a stationary subset of κ , so is S \cap Lim. Thus, by the "Pressing Down Lemma" (see [F1] 2.2), there is a $\lambda \in \kappa$ and an $A \subseteq S \cap$ Lim with $|A| = \kappa$ such that for all $\nu \in A$, $\alpha(\nu) = \lambda$. Since $|A| = \kappa$, $\sup(A) = \kappa$. Also for $\nu \in A$, since $V(\nu) \subseteq [0, \gamma(\nu)]$ and $\gamma(\nu) < \kappa$, $|V(\nu)| < \kappa$. Thus there is an $A' \subseteq A$ with $|A'| = \kappa$ such that if $\nu, \nu' \in A'$ and $\nu < \nu'$ then $V(\nu) \subset V(\nu')$. Thus V is not ω -Noetherian. In fact, for any infinite cardinal $\mu < \kappa$, V is not μ -Noetherian.

Corollary 2.8. A generalized ordered space X is paracompact if and only if every closed subspace H has the property that every relatively open cover of H has an ω -Noetherian refinement consisting of relatively open intervals in H.

In Corollary 2.8 we cannot avoid looking at closed subspaces. The following example is a non-paracompact Go-space having a Noetherian base of intervals.

Example 2.9. Let X be constructed from ω_1 by placing between each ordinal α and its successor α +1 a copy of ω_1 (say $\omega_1 \times \{\alpha\}$). Topologize X with the obvious order topology and let X* be the Go-space obtained from X by isolating all elements of X except the limit ordinals of the original copy of ω_1 . Since ω_1 is a closed subspace of X*, by Theorem 2.6, X* is not paracompact. The collection $\{\{x\}: x \in X \setminus (\omega_1 \cap \text{Lim})\} \cup \{((\beta, \alpha), \beta]: \alpha < \beta \text{ and } \beta \in \omega_1 \cap \text{Lim}\}$ is a Noetherian base for X* consisting of intervals.

3. Products and Perfect Images of Spaces Having Noether Bases

In [LN] it is noted that the product of spaces having Noetherian bases has a Noetherian base. This is also true for products of spaces having κ -Noetherian bases.

Theorem 3.1. Let κ be an infinite cardinal, A a nonempty set and for every $a \in A$ let X_a be a topological space having a κ -Noetherian base. The space $X = \prod_{a \in A} X_a$ has a κ -Noetherian base.

Theorem 3.2 [GN]. The finite product of spaces having Noetherian bases of subinfintie rank has a Noetherian base of subinfinite rank.

The Sorgenfrey line S has an ω -Noetherian base with subinfinite rank. However S² does not have a base of countable rank [LN].

A collection of sets is said to be *well ranked* provided it is the countable union of Noetherian subcollections with subinfinite rank. In [GN] it is shown that the countable product of spaces with well ranked bases has a well ranked base. It is not known if the countable product of spaces with Noetherian bases of subinfinite rank must have a Noetherian base of subinfinite rank. However such products do have Noetherian well ranked bases. It follows from the next proposition that the uncountable product of nontrivial T_1 -spaces can never have a well ranked base. Proposition 3.3. Suppose X is the product of uncountably many T_1 -spaces each having at least 2 points. Then no point of X has a neighborhood base with countable rank.

Proof. Since having a neighborhood base of countable rank is hereditary, it suffices to show:

 $\begin{cases} \text{If } X = \Pi_{\alpha < \omega_{1}} \{0,1\}_{\alpha} \text{ where for all } \alpha < \omega_{1}, \{0,1\}_{\alpha} \text{ is} \\ \{0,1\} \text{ with the discrete topology, } f = \langle 0: \alpha < \omega_{1} \rangle, \\ \text{and } \beta \text{ is a neighborhood base for f then } \beta \text{ does not} \\ \text{have countable rank.} \end{cases}$

For all $\alpha < \omega_1$ let $B(\alpha) \in \beta$ such that $B(\alpha) \subseteq \pi_{\alpha}^{-1}(\{0\})$.

It is a straightforward application of the "delta system lemma" (see [J] A2.2) to find an uncountable incomparable subset of $\{B(\alpha): \alpha < \omega_1\}$.

A mapping f from a topological space X onto a topological space Y is said to be *perfect* provided f is closed, continuous and for every $y \in Y$, $f^{-1}(y)$ is compact. Dennis Burke has observed that the construction in Lemma 1 and Theorem 2 of $[B_2]$ gives a Noetherian base. Thus Corollary 5 of $[B_2]$ can be restated as follows:

Theorem 3.4 (Burke). A Noetherian base is not necessarily preserved under a perfect map. In fact, if Y is any space then Y is the image, under an open perfect mapping, of a space with a Noetherian base.

It is not known if the perfect image of a space having a Noetherian base with subinfinite rank must have a Noetherian base with subinfinite rank or even a Noetherian base. However the following proposition does imply that the perfect image of a space with a Noetherian base with subinfinite rank does have an ω -Noetherian base.

The following lemma follows from $\omega \rightarrow (\omega)^2_3$, (see [J] A4).

Lemma 3.5. Suppose X is a set, A is an infinite subset of ω and for each $n \in A$, $S(n) \subseteq X$ such that $\{S(n): n \in A\}$ is Noetherian, has subinfinite rank and $\bigcap\{S(n): n \in A\} \neq \phi$. Then there is an $A' \subseteq A$ with $|A'| = \omega$ such that if $n, m \in A'$ and $n \leq m$ then $S(n) \supseteq S(m)$.

The proof of the following proposition is based on the proof of Theorem 4.1 of $[B_1]$.

Proposition 3.6. The perfect image of a topological space having a well ranked base has a base which is the countable union of Noetherian collections.

Proof. Suppose X is a topological space having a base $\beta = \bigcup \{\beta_n : 0 < n < \omega\}$ where for each $n \in \omega \setminus \{0\}, \beta_n$ is Noetherian and has subinfinite rank and if $0 < m < n < \omega$ then $\beta_m \subseteq \beta_n$. Also, suppose f is a perfect mapping from X onto a topological space Y.

For n,m $\in \omega \setminus \{0\}$ let $F(n,m) = \{\mathcal{J} \subseteq \beta_n : |\mathcal{J}| = m\}$, for $\mathcal{J} \in F(n,m)$ let $V(\mathcal{J}) = Y \setminus f(X \setminus U\mathcal{J})$ and let $\mathcal{U}(n,m) = \{V(\mathcal{J}):$ $\mathcal{J} \in F(n,m)\}$. Let $\mathcal{B}' = U\{\mathcal{U}(n,m): n,m \in \omega \setminus \{0\}\}$. The collection \mathcal{B}' is easily seen to be a base for Y. We will show that for each n,m $\in \omega \setminus \{0\}$ the collection $\mathcal{U}(n,m)$ is Noetherian.

Let n,m $\in \omega \setminus \{0\}$ and suppose l'(n,m) is not Noetherian. Then for all $k \in \omega$ there is an $\mathcal{F}(k) \in F(n,m)$ such that if

280

 $k < t < \omega$ then $\nabla(\mathcal{J}(k)) \subset \nabla(\mathcal{J}(t))$. Let $y(0) \in \nabla(\mathcal{J}(0))$, $x(0) \in f^{-1}(y(0))$ and for all $k < \omega$, $A(k,0) \in \mathcal{J}(k)$ such that $x(0) \in A(k,0)$. Since $\{A(k,0): k < \omega\} \subseteq \beta_n$ with nonempty intersection, by Lemma 3.5 there is an infinite set $S(1) \subseteq \omega$ such that if $k, t \in S(1)$ and k < t then $A(k,0) \supseteq$ A(t,0).

Suppose for 0 < t < m the infinite set S(t) and for all $k \in S(t)$ and all j < t, $A(k,j) \in J(k)$ have been chosen satisfying the following conditions:

(1)_t If $k \in S(t)$ and i,j < t with $i \neq j$ then A(k,i) \neq A(k,j).

(2)_t If i, j \in S(t) and i < j then $\bigcup \{A(i,k): k < t\} \ge \bigcup \{A(j,k): k < t\}$.

Let $a(t) = \min S(t)$ and $b(t) = \min (S(t) \setminus \{a(t)\})$. Choose $y(t) \in V(\mathcal{F}(b(t)))$ such that $y(t) \notin V(\mathcal{F}(a(t)))$. Since $y(t) \notin V(\mathcal{F}(a(t)))$, we can choose an $x(t) \in f^{-1}(y(t))$ such that $x(t) \notin U\mathcal{F}(a(t))$. By (2)_t for every $k \in S(t) \setminus \{a(t)\}$ we can choose an $A(k,t) \in \mathcal{F}(k)$ such that $x(t) \in A(k,t)$. The collection $\{A(k,t): k \in S(t) \setminus \{a(t)\}\} \subseteq \beta_n$ has nonempty intersection. Thus by Lemma 3.5 there is an infinite $S(t+1) \subseteq S(t) \setminus \{a(t)\}$ such that if i, j $\in S(t+1)$ and i < j then $A(i,t) \supseteq A(j,t)$. Conditions $(1)_{t+1}$ and $(2)_{t+1}$ hold.

Thus there is an infinite $S(m) \subseteq \omega$ and for each $k \in S(m)$ and t < m a set $A(k,t) \in \mathcal{J}(k)$ satisfying $(1)_m$ and $(2)_m$. For each $k \in S(m)$, since $|\mathcal{J}(k)| = m$, by condition $(1)_m$, $\mathcal{J}(k) =$ $\{A(k,i): i < m\}$. Let $k, j \in S(m)$ with k < j. By $(2)_m$, $U^{\mathcal{J}}(k) \ge U^{\mathcal{J}}(j)$ and so $V(\mathcal{J}(k)) \ge V(\mathcal{J}(j))$, a contradiction. Therefore $\mathcal{U}(n,m)$ is Noetherian.

References

- [A] P. S. Alexandroff, Some results in the theory of topological spaces obtained within the last twentyfive years, Russian Math. Surveys 15 (1960), 23-83.
- [Ar] A. V. Arhangl'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
- [BL] H. R. Bennett and D. J. Lutzer, A note on weak 0-refinability, Gen. Top. Appl. 2 (1972), 49-54.
- [B1] D. K. Burke, Paralindelof spaces and closed mappings, Topology Proceedings 5 (1980), 47-58.
- [B₂] ____, Construction of spaces with a σ-minimal base, Proc. Amer. Math. Soc. 81 (1981), 329-332.
- [DRW] S. W. Davis, G. M. Reed and M. L. Wage, Further results on weakly uniform bases, Hous. J. Math. 2 (1976), 57-63.
- [vD] E. K. van Douwen, Noetherian bases (manuscript).
- [vDW] _____ and H. H. Wicke, A real, weird topology on the reals, Hous. J. Math. 3 (1977), 141-152.
- [EL] R. Engelking and D. Lutzer, Paracompactness in ordered spaces, Fund. Math. 94 (1977), 49-58.
- [F1] W. G. Fleissner, Applications of stationary sets in topology, Surveys in General Topology, Academic Press, 1980, 163-193.
- [F] O. Förster, Spaces with bases of finite, point-finite or subinfinite rank, thesis, University of Manitoba, Winnipeg, Manitoba, 1982.
- [FG] _____ and G. Grabner, The metacompactness of spaces with bases of subinfinite rank, Top. Appl. 13 (1982), 115-121.
- [Gr] G. Grabner, Well partially ordered sets and local bases, Topology Proceedings 6 (1981), 45-58.
- [dG] J. de Groot, Subcompactness and the Baire category theorem, Indag. Math. 25 (1963), 761-767.
- [G] G. Gruenhage, Some results of spaces having an orthobase or a base of subinfinite rank, Topology Proceedings 2 (1977), 151-159.
- [GN] _____ and P. Nyikos, Spaces with bases of countable rank, Gen. Top. Appl. 8 (1978), 233-257.

- [HL] R. W. Heath and W. F. Lindgren, Weakly uniform bases, Hous. J. Math. 2 (1976), 85-90.
- [Je] T. J. Jech, Lectures in set theory with particular emphasis on the method of forcing, Lecture Notes in Mathematics, No. 217, Springer-Verlag, New York, 1971.
- [J] I. Juhasz, Cardinal functions in topology, Mathematical Centre, Amsterdam, 1975.
- [LN] W. Lindgren and P. Nyikos, Spaces with bases satisfying certain order and intersection properties, Pac. J. Math. 66 (1976), 455-476.
- [N₁] P. Nyikos, Some surprising base properties in topology, Studies in Topology, Academic Press, New York, 1975, 427-450.
- [N₂] _____, Some surprising base properties in topology II, Set-Theoretic Topology, Academic Press, New York, 1977, 277-305.
- [N₃] _____, Countable small rank and cardinal invariants, General Topology and its Relations to Modern Analysis and Algebra IV, Part B, Prague, 1976.
- [N4] _____, Order-theoretic base axioms, Surveys in General Topology, Academic Press, 1980, 367-398.
- [Sc] B. M. Scott, Local bases and product partial orders (preprint).
- [S] J. C. Smith, A remark on irreducible spaces, Proc.
 Amer. Math. Soc. 53 (1976), 133-139.
- [SS] L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rinehart, and Winston, New York, 1970.
- [WW] J. M. Worrell, Jr. and H. H. Wicke, Characteristics of developable topological spaces, Canad. J. Math. 17 (1965), 820-830.

The Pennsylvania State University Shenango Valley Campus Sharon, Pennsylvania 16146 now Slippery Rock University Slippery Rock, Pennsylvania 16057