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SPACES HAVING NOETHERIAN BASES

Gary Grabner

Let k be an infinite cardinal. A collection of subsets
of a set is said to be Noetherian (k-Noetherian) provided
every subcollection well ordered set inclusion is finite
(has at most k elements). Clearly, as in ring theory, a
collection of sets is Noetherian if and only if every sub-
collection contains a maximal element. The concept of a
Noetherian base for a topological space was introduced in
[Nl]’ [GN], and [LN]. The concept of an w-Noetherian col-
lection of sets was introduced in [N3] where it is shown,
for example, that a topological space (X,J) is hereditarily
Lindeldf if and only if J is w-Noetherian.

It is not difficulp to show that for any topological
space X and any x € X every neighborhood base for x contains
a Noetherian neighborhood base for x (see [dG] for the analo-
gous result for covers). This fact was used in [Gr] to
show that a topological space is globular [Sc] if and only
if every point has a neighborhood base with subinfinite rank.
Clearly, a T,-space need not have a Noetherian base. How-
ever, to the best of my knowledge, the following is the only
result concerning the existence of Tl-spaces without Noether-

ian bases.

Theorem 0.1 [vD]. If o € Ord then o with the order
topology has a Noetherian base if and only if o < K where K

ie the first strongly inaccessible cardinal.
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Since Con(ZFC) + Con(ZFC + there are no strongly
inaccessible cardinals), see [Je], no "real" T,-space has
been shown to not have a Noetherian base.

A collection of subsets of a set is said to have
subinfinite (countable) rank provided every infinite
(uncountable) subcollection with nonempty intersection has
two members related by set inclusion. The concept of a base
with subinfinite (countable) rank was introduced in [GN]
and studied further in [FG], [G], [LN], [Nl]’ [N2], [N3]
among others.

Although a Noetherian base appears to be a very weak
base property, spaces having Noetherian bases with subin-
finite rank have been shown to possess many interesting
properties, see [GN] and [N4]. In this paper it is observed
that a weakly uniform base is Noetherian. This fact is
used to show that, although a weakly uniform base need not
be point countable, a weakly uniform base with subinfinite
rank is o-point finite (Theorem 1.6). We also show that,
even though the perfect image of a space having a Noetherian
base need not have a Noetherian base (Theorem 3.5), the
perfect image of a space with a Noetherian base with sub-
infinite rank has an w-Noetherian base (Proposition 3.6).

Noetherian (k-Noetherian) collections can be used to
characterize certain covering properties. For example in
this paper Tl meta-Lindeldf spaces are characterized as
those Tl—spaces for which every open cover has a Noetherian
open refinement with countable rank (Theorem 2.4). We also
use certain w-Noetherian collections to characterize

paracompact Go-spaces (Corollary 2.8).
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We show that various classes of Tl-spaces, for example
those with point countable bases, have Noetherian bases
(Theorem 1.2 and Corollary 1.3). It is also shown that the
product of spaces with k-Noetherian bases has a k-Noetherian
base (Theorem 3.1) and the uncountable product of nontrivial
Tl—spaces never has a base of countable rank (Theorem 3.3).

We will use Greek letters to denote ordinals and for
convenience will not distinguish between the cardinal k and
the first ordinal having cardinality k. The first infinite
cardinal will be denoted by w. For any set A the cardinality
of A will be denoted by |A|. If A is a collection of sub-
sets of a set X and x € X then (//)x = {H € /: x € H}. When
we say that a collection of sets is k-Noetherian it is

understood that k is an infinite cardinal.

1. Spaces Having Special Noetherian Bases

Suppose a topological space X has a base with some
property. It is natural to ask if X has a Noetherian base
with the same property [LN]. In general, the answer is no.

For example, w, with the order topology has a Noetherian

1
base and a clopen base of intervals. However, Brian Scott
has shown that it does not have a Noetherian clopen base

and in [LN] it is observed that it does not have a Noetherian
base of intervals. Also, the Sorgenfrey line has a

Noetherian base and a base of subinfinite rank but does

not have a Noetherian base of subinfinite rank.

Theorem 1.1 [F]l. A T,-space with a base with (point-)

finite rank has a Noetherian base with (point-)finite

rank.



270 Grabner

Using Theorem 1.1 one can greatly simplify the proofs
of many theorems concerning spaces with bases of point-

finite rank.

Theorem 1.2. A Tl-space with a point countable base
has a Noetherian point countable base.

Proof. Let X be a Tl—space having a point countable
base B. Let S = {x € X: x is isolated} and § = {{x}: x € s}.
Well order X\S, say X\S = {x(a): a < k} and for every a < k
let B(a) = {B € B: o = min{y < k: x(y) € B}}. For a < k
with |B(a)| < w let B'(a) = B(a).

Suppose o < k and |B(a)| = w. Let B(a) = {B(a,n):

n < w}, B'(a,0) = B(a,0) and choose y(a,0) € B(a,0)\{x(a)}.
Suppose for all m < n, B'(o,m) < B(a,m) has been defined
and y(o,m) € B'(a,m)\{x(a)} has been chosen. Let B'(a,n) =
B(a,n)\{y(a,m): m < n and B'(a,m) < B(a,n)}. Let B'(a) =
{B'(a,n): n < w} and B' =S U (U{B'"(a): a < Kk}).

Suppose for every m < w, a(m) < k and n(m) < w have
been chosen such that if m < k < w then B'(a(m),n(m)) <
B'(a(k),n(k)). If a < B < k then x(a) € UB(B) and so
x(a) € UB'(B). Thus if m < k < w then a(m) > a(k) and so
there is an n < w such that if n < m < w then a(n) = a(m).
Hence to show that B' is Noetherian we need only show that
for each o < k, B' (o) is Noetherian.

Suppose a < k and |8(a)| = w and for all m < w,

n(m) < w has been chosen. There is an infinite A < w such
that if k,m € A with k < m then n(k) < n(m). If k,m€ A
with k < m then B'(o,n(k)) ¢ B'(a,n(m)). Thus B'(a) does
not contain an infinite well ordered increasing subset, i.e.

it is Noetherian.
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Since B' is clearly point countable all that remains
to be shown is that it is a base. Let x € X\S and V an
open neighborhood of x. There is an a < kK and an n < w
such that x € B(a,n) € V. If there is an m < n with
x € B'(a,m) < B(a,n) then we are done. Thus suppose that
if m < n and B'(a,m) < B(a,n) then x ¢ B'(a,m). Then by
the definition of B'(a,n), x € B'(a,n) < B(a,n) < V. Thus

B8' is a base for X.

Corollary 1.3. If a T,-space has a base which is any
of the following then it has a Noetherian base witn the same
property:

(1) o-point finite

(2) o-disjoint

(3) o-discrete

(4) o-loecally finite

(5) o-locally countable

(6) locally countable.

Proof. 1If the base B in the proof of Theorem 1.2

satisfies any of the conditions (1)-(6) then so does j§'.

A base 8 for a topological space X is called a (weakly)
uniform base provided if x € X and ¢ is any infinite subset
of (B)x then ¢ is a neighborhood base at x (n§ = {x}).

The concept of a uniform base was introduced in [A] and

weakly uniform base was introduced in [HL].

Theorem 1.4 [F]l. A base for a topological space is a
uniform base if and only if it is a Noetherian base of

countable order with subinfinite rank.
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The following is easily proved.

Proposition 1.5. A weakly uniform base for a topologi-

cal space is Noetherian.

A space having a weakly uniform base need not have a
base with subinfinite rank (see Theorem 3 [DRW]) nor a base
of countable order (the Michael line, Example 71 of [SS]).
In [DRW] under the assumption of Martin's Axiom and wy < 2,
they construct a first countable Tl-space with a weakly
uniform base which does not have a point countable base.

For spaces having weakly uniform bases with subinfinite

rank the situation is different.

Proposition 1.6. If B is a weakly uniform base with
subinfinite rank for a topological space X then B is
o-point finite.

Proof. Let B(0) be the set of all maximal elements in
the partially ordered set (B,c). Notice that if B € B\5(0)
then there is a B' € B(0) such that B €« B'. Also, since S
is Noetherian and has subinfinite rank the collection B(0)
is point finite. Suppose for m < n < w, B(m) = B has been
chosen. Let B(n+l) be the set of all maximal elements in
the partially ordered set (B\U{B8(m): m < n},c). Since
B\U{B(m): m < n} is Noetherian and has subinfinite rank
B(n+l) is point finite and if B € A\U{B(m): m < n+l} then

there is a B' € B(n+l) such that B « B'.

Let B(w) {{x}: x € X,{x} € B\U{B(n): n < wl}}.
Clearly U{B(a): o < w} is o-point finite. Suppose

B € BA\U{B(n): n < w}. Then for every n < w there is a
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B(n) € B(n) such that B < B(n). Since, for n,m < w with
m# n, B(n) N B(m) = ¢, the collection {B(n): n < w} is a
countable subset of 8 and B = N{B(n): n < w}. Hence, since
B is a weakly uniform base, |B| = 1 and so B € B(w). Thus

B =u{B(a): a < w}.

A T_-space with a o-point finite base (and hence, by

2
Corollary 1.3, a Noetherian o-point finite base) need not
have a base with subinfinite rank (Example 1 of [BL]). The
Michael line is a space with a weakly uniform base with
subinfinite rank which does not have a uniform base.

A base B for a topological space X is called a (weak)
base of countable order provided if {B(n): n < w} < B such
that n < m < w implies B(n) » B(m) and x € N{B(n): n < w}
then the collection {B(n): n < w} is a neighborhood base at
x (N{B(n): n < w} = {x}). The concept of a base of counta-
ble order was introduced in [Ar]. The following is the

natural analog of Theorem 1.4. It follows directly from

Proposition 1.5 and Lemma 3.6.

Theorem 1.7. A base for a topological space is a
weakly uniform base with subinfinite rank <if and only if it
18 a Noetherian weak base of countable order with subinfinite

rank.

In Theorem 1.7 the subinfinite rank condition is needed,
since wy with the order topology has a Noetherian base of
countable order but does not have a weakly uniform base.

Suppose K is a strongly inaccessible cardinal. By

Theorem 0.1, k with the order topology does not have a
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Noetherian base. In fact, if S is any stationary subset of
K then S with the subspace topology does not have a Noether-
ian base. Thus {a < k: cf(a) < w} has a base of countable
order but does not have a Noetherian base. It is not

known if a Tl developable space must have a Noetherian

base (and therefore a Noetherian development) .

2. Covering Properties

A cover § of a set X is called minimal provided no
proper subcollection of § covers X. A topological space is
called irreducible provided every open cover has a minimal
open refinement. Clearly a minimal cover of a set X is
Noetherian. However, wy with the order topology has a
Noetherian base but is not irreducible. If § is a Noetherian
cover of a set X then the subcover # consisting of all
maximal elements of (g,g) has the property that for every
H,H' € #, H ¢ H' and H' ¢ H. This subcover shows that a
Noetherian cover is a natural generalization of a minimal
cover.

Wicke and Worrell observed that 6-refinable spaces are
irreducible [WW]. Although weakly 6-refinable spaces need
not be irreducible (see [BL] and [vDW]), in [S] it is
shown that weakly B-refinable spaces are irreducible. It

is not known if T, weakly 66-refinable (or even meta-

1
LindelS8f) spaces are irreducible. It is also not known if
every open cover of a Tl weakly 6-refinable space has a
Noetherian open refinement.

The following lemma is proved in the same way as

Theorem 1.2.
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Lemma 2.1. Suppose § is a collection of open subsets
of a space X and A c UG such that for every GE€ G, AN G # ¢
and for every x € A, |(§)x| < w. Then for every G € § there
is an open B(G) < G such that U{B(G): G € ¢} = UG and

{B(G): G € G} is Noetherian.

Proposition 2.2. If X is a T, weakly 8§8-refinable
space then every open cover of X has an open Noetherian weak
§6-refinement.

Proof. Let § = u{§(n): n < w} be an open cover of X
satisfying the following conditions:

(i) for each x € X there is an n(x) < w such that
0 < [(Gnx))) | < w

(ii) {u¢(n): n < w} is point finite,

i.e. § is a weak §6-cover. For each m < w let A(m) =
{x € X: m=n(x)} and #(m) = {G € ¢(m): G N A(m) # ¢}.

By Lemma 2.1 for each n < w and each H € #(n) there is
an open W(H) < H such that U{W(H): H € #(n)} = U#(n) and
{W@H): H € #(n)} is Noetherian. For each n < w let
W(n) = {W(H): H € #(n)}. By (ii) {UW#(n): n < w} is point
finite and so W = U{W/(n): n < w} is Noetherian. Since
conditions (i) and (ii) hold for W/, W is a Noetherian weak

§6-refinement of §.
When subinfinite rank is introduced things become clear.

Theorem 2.3 [GN]. A topological space is metacompact
if and only if every open cover has a Noetherian open

refinement with subinfinite rank.
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The following analog of the above theorem follows from

Lemma 2.1.

Theorem 2.4. A T,-space 18 metalLindelof if and only
if every open cover has a Noetherian open refinement with

countable rank.

Theorem 2.5 [FG]. A T3—space i8 metacompact 1f and
only if every open cover has an w-Noetherian open refinement

with subinfinite rank.

It is not known if the metaLindeldf analog of Theorem
2.5 holds.

For generalized ordered spaces (Go-spaces) we can use
certain w-Noetherian collections to characterize paracom-
pactness. First we state the following well known charac-

terization of paracompact Go-spaces.

Theorem 2.6 [EL]. The following are equivalent for a
generalized ordered space X:

(a) X Zs not paracompact

(b) for some ordinal X with cf(A) = A > w, some

stationary subset of A 18 homeomorphic to a closed subspace

of X.

Lemma 2.7. Suppose K is an ordinal with cf(k) = k > w
and S 18 a stationary subset of k. The open cover
U= {10,a] N S: o € S} of S does not have an w-Noetherian
open refinement consisting of intervals in S.

Proof. Let V be an open refinement of (/ consisting

of intervals in S. For every V € [/ let y(V) € S and
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a(v),B(V) € k such that (a(V),B(V)) N S =V and Vc [0,y(V)].
For every 0 € S N Lim let V(o) € (V)o’ a(o) = a(v(o)),

B(o) = B(V(og)) and yY(o) = y(V(o)). Notice that for all

0 € SN Lim, a(o) < o.

Since S is a stationary subset of k, so is S N Lim.
Thus, by the "Pressing Down Lemma" (see [Fl] 2.2), there is
a X €k and an A c SN Lim with |A| = « such that for all
v € A, a(v) = A. Since |A| =k, sup(A) = k. Also for
v € A, since V(v) < [0,y (v)] and y(v) < k, |V(V)]| < k.

Thus there is an A' < A with |A'| = k such that if v,v' € A"
and v < v' then V(v) < V(v'). Thus / is not w-Noetherian.
In fact, for any infinite cardinal u < x, V is not

u-Noetherian.

Corollary 2.8. A generalized ordered space X is para-
compact if and only if every closed subspace H has the pro-
perty that every relatively open cover of H has an
w-Noetherian refinement consisting of relatively open

intervals in H.

In Corollary 2.8 we cannot avoid looking at closed
subspaces. The following example is a non-paracompact

Go-space having a Noetherian base of intervals.

Example 2.9. Let X be constructed from wy by placing
between each ordinal o and its successor a+l a copy of
wy (say wy X {a}). Topologize X with the obvious order
topology and let X* be the Go-space obtained from X by
isolating all elements of X except the limit ordinals of

the original copy of Wy - Since wy is a closed subspace of
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X*, by Theorem 2.6, X* is not paracompact. The collection

{{x}: x € X\(w; 0 Lim)} U {((B,a),B]l: o < B and B € w, N Lim}

1

is a Noetherian base for X* consisting of intervals.

3. Products and Perfect Images of Spaces Having Noether Bases

In [LN] it is noted that the product of spaces having
Noetherian bases has a Noetherian base. This is also true

for products of spaces having k-Noetherian bases.

Theorem 3.1. Let x be an infinite cardinal, A a non-
empty set and for every a € A let X, be a topological space
having a x-Noetherian base. The space X = Ha€Axa has a

K-Noetherian base.

Theorem 3.2 [GN]. The finite product of spaces having
Noetherian bases of subinfintie rank has a Noetherian base

of subinfinite rank.

The Sorgenfrey line S has an w-Noetherian base with
subinfinite rank. However 52 does not have a base of count-
able rank [LN].

A collection of sets is said to be well ranked pro-
vided it is the countable union of Noetherian subcollec-
tions with subinfinite rank. 1In [GN] it is shown that the
countable product of spaces with well ranked bases has a
well ranked base. It is not known if the courtable product
of spaces with Noetherian bases of subinfinite rank must
have a Noetherian base of subinfinite rank. However such
products do have Noetherian well ranked bases. It follows
from the next proposition that the uncountable product of

nontrivial Tl-spaces can never have a well ranked base.
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Proposition 3.3. Suppose X is the product of uncounta-
bly many T,-spaces each having at least 2 points. Then no
point of X has a neighborhood base with countable rank.

Proof. Since having a neighborhood base of countable
rank is hereditary, it suffices to show:

If X = Hu {O,I}Q is

<wl{0'l}a where for all a < wg,
{0,1} with the discrete topology, f = (0: a < wl),
and B is a neighborhood base for f then B does not
have countable rank.

For all o < w, let B(az) € B such that B(a) c n;l({o}).

1
It is a straightforward application of the "delta
system lemma" (see [J] A2.2) to find an uncountable incom-

parable subset of {B(a): a < w ke

A mapping f from a topological space X onto a topologi-
cal space Y is said to be perfect provided f is closed,
continuous and for every y € Y, f—l(y) is compact. Dennis
Burke has observed that the construction in Lemma 1 and
Theorem 2 of [B2] gives a Noetherian base. Thus Corollary

5 of [B2] can be restated as follows:

Theorem 3.4 (Burke). A Noetherian base is not neces-
sarily preserved under a perfect map. In fact, 1f Y is any
space then Y is the image, under an open perfect mapping,

of a space with a Noetherian base.

It is not known if the perfect image of a space having
a Noetherian base with subinfinite rank must have a Noether-
ian base with subinfinite rank or even a Noetherian base.

However the following.proposition does imply that the perfect
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image of a space with a Noetherian base with subinfinite
rank does have an w-Noetherian base.
The following lemma follows from w - (w)z, (see

[J] A4).

Lemma 3.5. Suppose X is a set, A is an infinite sub-
set of w and for each n € A, S(n) < X such that {S(n): n € A}
is Noetherian, has subinfinite rank and N{S(n): n € A} # ¢.
Then there is an A' < A with |A'| = w such that if n,m € A’

and n < m then S(n) S(m).

U

The proof of the following proposition is based on the

proof of Theorem 4.1 of [Bl].

Proposition 3.6. The perfect image of a topological
space having a well ranked base has a base which is the
countable union of Noetherian collections.

Proof. Suppose X is a topological space having a base
B = U{Bn: 0 < n < w} where for each n € w\{0}, Bn is
Noetherian and has subinfinite rank and if 0 < m < n < w

then Bm < Bn. Also, suppose f is a perfect mapping from X

onto a topological space Y.

m}, for
v :

7€ F(nm)}. Let B' = u{l(n,m): n,m € w\{0}}.. The collec-

For n,m € w\{0} let F(n,m) = {fc Bn: | #|

7 € F(n,m) let V(F) = Y\f(X\UF and let {/(n,m)

tion B' is easily seen to be a base for Y. We will show
that for each n,m € w\{0} the collection (/(n,m) is
Noetherian.

Let n,m € w\{0} and suppose (/(n,m) is not Noetherian.

Then for all k € w there is an F(k) € F(n,m) such that if
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k < t < w then V(F(k)) « V(F(t)). Let y(0) € V(7(0)),

x(0) € f_l(y(O)) and for all k < w, A(k,0) € F(k) such that
x(0) € A(k,0). Since {A(k,0): k < w} < Bn with nonempty
intersection, by Lemma 3.5 there is an infinite set

§(1) <« w such that if k,t € S(1) and k < t then A(k,0) 2
A(t,0).

Suppose for 0 < t < m the infinite set S(t) and for
all k € S(t) and all j < t, A(k,j) € F(k) have been chosen
satisfying the following conditions:

(1)t If k € S(t) and i,j < t with i # j then
A(k,1) # A(k,]).

(2), If i, € S(t) and i < j then U{A(i,k): k < t} >

t
U{A(F,k): k < t}.

Let a(t) = minS(t) and b(t) = min(S(t)\{a(t)}). Choose
y(t) € V(F(b(t))) such that y(t) € V(F(a(t))). Since

y(t) € V(F(a(t))), we can choose an x(t) € f LT(y(t)) such
that x(t) ¢ UF(a(t)). By (2), for every k € s(t)\{a(t)}
we can choose an A(k,t) € J(k) such that x(t) € A(k,t).
The collection {A(k,t): k € s(t)\{a(t)}} < Bn has nonempty
intersection. Thus by Lemma 3.5 there is an infinite
S(t+l) < s(t)\{a(t)} such that if i,j € S(t+l) and i < j

and (2) - hold.

(L) 41 £+1
Thus there is an infinite S(m) < w and for each k € S(mj

then A(i,t) 2 A(j,t). Conditions

and t < m a set A(k,t) € (k) satisfying (l)m and (2)m. For

each k € S(m), since |#(k)| = m, by condition (l)m, 7 (k)
{A(k,i): i <m}. Let k,j € S(m) with k < j. By (2)_,
U7 (k) 2 uF(j) and so V(F(k)) 2 V(#(j)), a contradiction.

Therefore {/(n,m) is Noetherian.
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