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SPACES HAVING NOETHERIAN BASES 

Gary Grabner 

Let K be an infinite cardinal. A collection of subsets 

of a set is said to be Noetherian (K-Noetherian) provided 

every subcollection well ordered set inclusion is finite 

(has at most K elements). Clearly, as in ring theory, a 

collection of sets is Noetherian if and only if every sub­

collection contains a maximal element. The concept of a 

Noetherian base for a topological space was introduced in 

[N ], [GN], and [LN]. The concept of an w-Noetherian col­l 

lection of sets was introduced in [N ] where it is shown,3

for example, that a topological space (X,]) is hereditarily 

Lindelof if and only if ] is w-Noetherian. 

It is not difficult to show that for any topological 

space X and any x E X every neighborhood base for x contains 

a Noetherian neighborhood base for x (see [dG] 'for the analo­

gous result for covers). This fact was used in [Gr] to 

show that a topological space is globular [Sc] if and only 

if every point has a neighborhood base with subinfinite rank. 

Clearly, a To-space need not have a Noetherian base. How­

ever, to the best of my knowledge, the following is the only 

result con~erning the existence of Tl-spaces without Noether­

ian bases. 

Theorem 0.1 [vD]. If a E Ord then a with the order 

topology has a Noetherian base if and only if a < K where K 

is the first strongly inaccessible cardinal. 
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Since Con(ZFC) ~ Con(ZFC + there are no strongly 

inaccessible cardinals), see [Je], no "real" Tl-space has 

been shown to not have a Noetherian base. 

A collection of subsets of a set is said to have 

subinfinite (countable) rank provided every infinite 

(uncountable) subcollection with nonempty intersection has 

two members related by set inclusion. The concept of a base 

with subinfinite (countable) rank was introduced in [GN] 

and studied further in [FG], [G], [LN], [N ], [N ], [N ]
l 2 3

among others. 

Although a Noetherian base appears to be a very weak 

base property, spaces having Noetherian bases with subin­

finite rank have been shown to possess many interesting 

properties, see [GN] and [N 4]. In this paper it is observed 

that a weakly uniform base is Noetherian. This fact is 

used to show that, although a weakly uniform base need not 

be point countable, a weakly uniform base with subinfinite 

rank is a-point finite (Theorem 1.6). We also show that, 

even though the perfect image of a space having a Noetherian 

base need not have a Noetherian base (Theorem 3.5), the 

per£ect image of a space with a Noetherian base with sub­

infinite rank has an w-Noetherian base (Proposition 3.6). 

Noetherian (K-Noetherian) collections can.be used to 

characterize certain covering properties. For example in 

this paper T meta-Lindelof spaces are characterized asl 

those Tl-spaces for which every open cover has a Noetherian 

open refinement with countable rank (Theorem 2.4). We also 

use certain w-Noetherian collections to characterize 

paracompact Go-spaces (Corollary 2.8). 
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We show that various classes of Tl-spaces, for example 

those with point countable bases, have Noetherian bases 

(Theorem 1.2 and Corollary 1.3). It is also shown that the 

product of spaces with K-Noetherian bases has a K-Noetherian 

base (Theorem 3.1) and the uncountable product of nontrivial 

Tl-spaces never has a base of countable rank (Theorem 3.3). 

We will use Greek letters to denote ordinals and for 

convenience will not distinguish between the cardinal K and 

the first ordinal having cardinality K. The ftrst infinite 

cardinal will be denoted by w. For any set A the cardinality 

of A will be denoted by IAI. If H is a collection of sub­

sets	 of a set X and x E X then (/I) {H E H: x E H}. When x 

we say that a collection of sets is K-Noetherian it is 

understood that K is an infinite cardinal. 

1.	 Spaces Having Special Noetherian Bases 

Suppose a topological space X has a base with some 

property. It is natural to ask if X has a Noetherian base 

with the same property [LN]. In general, the answer is no. 

For example, wI with the order topology has a Noetherian 

base and a clopen base of intervals. However, Brian Scott 

has shown that it does .not have a Noetherian clopen base 

and in [LN] it is observed that it does not have a Noetherian 

base of intervals. Also, the Sorgenfrey line has'a 

Noetherian base and a base of subinfinite rank but does 

not have a Noetherian base of subinfinite rank. 

Theorem 1.1 [F]. A T1-spaae with a base with (point-) 

finite rank has a Noetherian base with (point-)finite 

rank. 
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Using Theorem 1.1 one can greatly simplify the proofs 

of many theorems concerning spaces with bases of point­

finite rank. 

Theorem 1.2. A Tl-space with a point countabZe base 

has a Noetherian point countabZe base. 

Proof. Let X be a Tl-space having a point countable 

base B. Let S = {x E X: x is isolated} and 5= {{x}: xES}. 

Well order X\S, say X\S = {x(a): a < K} and for every a < K 

let B(a) = {B E B: a = min{y < K: x(y) E B}}. For a < K 

with \ B(a) I < w let B' (a) = B(a). 

Suppose a < K and \B(a) \ = w. Let B(a) = {B(a,n): 

n < w}, B' (a,D) B(a,O) and choose y(a,O) E B(a,O)\{x(a)}. 

Suppose for all m < n, B' (a,m) ~ B(a,m) has been defined 

and y(a,m) E B' (a,m)\{x(a)} has been chosen. Let B' (a,n) 

B(a,n)\{y(a,m): m < nand B' (a,m) ~ B(a,n)}. Let B' (a) = 

{B'(a,n): n < w} and B' = 5 u (u{B'(a): a < K}). 

Suppose for every m < w, a(m) < K and n(m) < w have 

been chosen such that if m < k < w then B' (a(m),n(m)) c 

B'(a(k),n(k)). If a < S < K then x(a) ~ UB(S) and so 

x(a) ~ uBi (6). Thus if m < k < w then a(m) ~ a(k) and so 

there is an n < w such that if n < m < w then a(n) = a(m). 

Hence to show that B' is Noetherian we need only show that 

for each a < K, B' (a) is Noetherian. 

Suppose a < K and \B(a) I. = wand for all m < w, 

n(m) < w has been chosen. There is an infinite A c w such 

that if k,m E A with k < m then n(k) ~ n(m). If k,m E A 

with k < m then B' (a,n(k)) ¢ B' (a,n(m)). Thus B' (a) does 

not contain an infinite well ordered increasing subset, i.e. 

it is Noetherian. 
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Since B' is clearly point countable all that remains 

to be shown is that it is a base. Let x E X\S and V an 

open neighborhood of x. There is an a < K and an n < w 

such that x E B(a,n) c V. If there is an m < n with 

x E B' (a,m) c B(a,n) then we are done. Thus suppose that 

if m < nand B' (a,m) ~ B(a,n) then x ~ B' (a,m). Then by 

the definition of B' (a,n), x E B' (a,n) c B(a,n) c V. Thus 

B' is a base for X. 

Corollary 1.3. If a Tl-space has a base which is any 

of the following then it has a Noetherian base witn the same 

property: 

(1) a-point finite 

(2) a-disjoint 

(3) a-discrete 

(4) a-locally finite 

(5) a-locally countable 

(6) locally countable. 

Proof. If the base 8 in the proof of Theorem 1.2 

satisfies any of the conditions (1)-(6) then so does 8'. 

A base B for a topological space X is called a (weakly) 

uniform base provided if x E X and § is any infinite subset 

of (B)x then y is a neighborhood base at x (ny = {x}). 

The concept of a uniform base was introduced in [A] and 

weakly uniform base was introduced in [HL]. 

Theorem 1.4 [F]. A base for a topological space is a 

uniform base if and only if it is a Noetherian base of 

countable order with subinfinite rank. 
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The following is ~asily proved. 

Proposition 1.5. A weakly uniform base for a topologi­

cal space is Noetherian. 

A space having a weakly uniform base need not have a 

base with subinfinite rank (see Theorem 3 [DRW]) nor a base 

of countable order (the Michael line, Example 71 of [55]). 

2wIn [DRW] under the assumption of Martin's Axiom and w < ,2 

they construct a first countable Tl-space with a weakly 

uniform base which does not have a point countable base. 

For spaces having weakly uniform bases with subinfinite 

rank the situation is different. 

Proposition 1.6. If B is a weakly uniform base with 

subinfinite rank for a topological space X then B is 

a-point finite. 

Proof. Let B(O) be the set of all maximal elements in 

the partially ordered set (B,~). Notice that if B E B\B(O) 

then there is a B' E B(O) such that B c B'. Also, since B 

is Noetherian and has subinfinite rank the collection B(o) 

is point finite. Suppose for m ~ n < w, B(m) ~ B has been 

chosen. Let B(n+l) be the set of all maximal elements in 

the partially ordered set (B\U{B(m): m ~ n},~). Since 

B\U{B(m): m < n} is Noetherian and has subinfinite rank 

B(n+l) is point finite and if B E B\U{B(m): m < n+l} then 

there is a B' E B(n+l) such that B C B'. 

Let B(w) {{x}: x E x,{x} E B\u{B(n): n < w}}. 

Clearly U{B(a): a < w} is a-point finite. Suppose 

B E B\U{B(n): n < w}. Then for every n < w there is a 
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B(n) E B(n) such that B c B(n). Since, for n,m < w with 

m ~ n, B(n) n B(m) = ¢, the collection {B(n): n < w} is a 

countable subset of Band B c n{B(n): n < w}. Hence, since 

B is a weakly uniform base, IBI = 1 and so B E B(w). Thus 

B = u{ B(a): a < w}. 

A T2-space with a a-point finite base (and hence, by 

Corollary 1.3, a Noetherian a-point finite base) need not 

have a base with subinfinite rank (Example 1 of [BL]). The 

Michael line is a space with a weakly uniform base with 

subinfinite rank which does not have a uniform base. 

A base B for a topological space X is called a (weak) 

base of countable order provided if {B(n): n < w} c B such 

that n < m < w implies B(n) ~ B(m) and x E n{B(n): n < w} 

then the collection {B(n): n < w} is a neighborhood base at 

x (n{B(n): n < w} = {x}). The concept of a base of counta­

ble order was introduced in [Ar]. The following is the 

natural analog of Theorem 1.4. It follows directly from 

Proposition 1.5 and Lemma 3.6. 

Theorem 1.7. A base for a topological space is a 

weakZy uniform base with subinfinite rank if and onZy if it 

is a Noetherian weak base of countable order with subinfinite 

rank. 

In Theorem 1.7 the subinfinite rank condition is needed, 

since w with the order topology has a Noetherian base ofl 

countable order but does not have a weakly uniform base. 

Suppose K is a strongly inaccessible cardinal. By 

Theorem 0.1, K with the order topology does not have a 
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Noetherian base. In fact, if S is any stationary subset of 

K then S with the subspace topology does not have a Noether­

ian base. Thus {a < K: cf(a) ~ w} has a base of countable 

order but does not have a Noetherian base. It is not 

known if a T developable space must have a Noetherianl 

base (and therefore a Noetherian development). 

2.	 Covering Properties 

A cover ~ of a set X is called minimaZ provided no 

proper subcollection of ~ covers X. A topological space is 

called irreduaibZe provided every open cover has a minimal 

open refinement. Clearly a minimal cover of a set X is 

Noetherian. However, w with the order topology has al 

Noetherian base but is not irreducible. If ~ is a Noetherian 

cover of a set X then the subcover H consisting of all 

maximal elements of (~,~) has the property that for every 

H,H I E H, H ¢ HI and HI ¢ H. This subcover shows that a 

Noetherian cover is a natural generalization of a minimal 

cover. 

Wicke and Worrell observed that e-refinaole spaces are 

irreducible [WW]. Although weakly e-refinable spaces need 

not be irreducible (see [BL] and [vDW]), in [5] it is 

shown that weakly e-refinable spaces are irreducible. It 

is not known if T weakly 86-refinable (or even meta­l 

Lindelof) spaces are irreducible. It is also not known if 

every	 open cover of a T weakly e-refinable space has al 

Noetherian open refinement. 

The following lemma is proved in the same way as 

Theorem 1.2. 
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Lemma 2.1. Suppose ~ is a collection of open subsets 

of a space X and A c: U~ such that for every G E ~, A n G ~ <P 

and for every x E A, I (~) xl .s. w. Then for every G E ~ there 

is an open B(G) c:=. G such that U{B(G): G E ~} = u~ and 

{B(G): G E ~} is Noetherian. 

Proposition 2.2. If X is a Tl weakly 86-refinable 

space then every open cover of X has an open Noetherian weak 

IT-refinement. 

Proof. Let ~ = u{~(n): n < w} be an open cover of X 

satisfying the following conditions: 

(i) for each x E X there is an n(x) < w such that 

o < I (~(n(x))) I < w x 

(ii) {U~(n): n < w} is point finite, 

i.e. ~ is a weak 86-cover. For each m < w let A(m) = 

{x E X: m n(x)} and H(m) {G E ~(m): G n A(m) ~ <P}. 

By Lemma 2.1 for each n < wand each H E H(n) there is 

an open W(H) ~ H such that U{W(H): H E H(n)} = UH(n) and 

{W(H): H E H(n)} is Noetherian. For each n < w let 

W(n) = {W(H): H E H(n)}. By (ii) {UW(n): n < w} is point 

finite and so W U{W(n): n < w} is Noetherian. Since 

conditions (i) and (ii) hold for W, W is a Noetherian weak 

88-refinement of ~. 

When subinfinite rank is introduced things become clear. 

Theorem 2.3 [GN]. A topological space is metacompact 

if and only if every open cover has a Noetherian open 

refinement with subinfinite rank. 
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The following analog of the above theorem follows from 

Lemma 2.1. 

Theorem 2.4. A Tl-space is metaLindelof if and only 

if every open cover has a Noetherian open refinement with 

countable rank. 

Theorem 2.5 [FG]. A T 3-space is metacompact if and 

only if every open cover has an w-Noetherian open refinement 

with subinfinite rank. 

It is not known if the metaLindelof analog of Theorem 

2.5 holds. 

For generalized ordered spaces (Go-spaces) we can use 

certain w-Noetherian collections to characterize paracom­

pactness. First we state the following well known charac­

terization of paracompact Go-spaces. 

Theorem 2.6 [EL]. The following are equivalent for a 

generalized ordered space X: 

(a) X is not paraaompaat 

(b) for some ordinal A with cf(A) = A > w, some 

stationary subset of A is homeomorphic to a closed subspace 

of x. 

Lemma 2.7. Suppose K is an ordinal with cf(K) K > w 

and 5 is a stationary subset of K. The open cover 

lj = {[O,a] n 5: a E 5} of 5 does not have an w-Noetherian 

open refinement consisting of intervals in 5. 

Proof. Let V be an open refinement of lj consisting 

of intervals in 5. For every V E V let y(V) E 5 and 
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a(V) ,6(V) E K such that (a(V),S(V)) n S = V and V ~ [O,y(V)]. 

For every 0 E S nLim let V (0) E (V) , a (0) = a (V (0) ) , 
o 

6(0) = 6(V(o)) and y(o) y(V(o)). Notice that for all 

o E S n Lim, a (0) < o. 

Since S is a stationary subset of K, so is S n Lim. 

Thus, by the "Pressing Down Lemma" (see [Fl] 2.2), there is 

a A E K and an A c S n Lim with IAI = K such that for all 

v E A, a(v) = A. Since IAI = K, sup(A) = K. Also for 

v E A, since V(v) ~ [O,y(v)] and y(v) < K, IV(v) I < K. 

Thus there is an A' c A with IA'I = K such that if v,v' E A' 

and v < v' then V(v) c V(v l 
). Thus V is not w-Noetherian. 

In fact, for any infinite cardinal ~ < K, V is not 

~-Noetherian. 

Corollary 2.8. A generalized ordered space X is para-

compact if and only if every closed subspace H has the pro­

perty that every relatively open cover of H has an 

w-Noetherian refinement consisting of relatively open 

intervals in H. 

In Corollary 2.8 we cannot avoid looking at closed 

subspaces. The following example is a non-paracompact 

Go-space having a Noetherian base of intervals. 

Example 2.9. Let X be constructed from WI by placing 

between each ordinal a and its successor a+l a copy of 

WI (say w x {a}). Topologize X with the obvious order
l 

topology and let X* be the Go-space obtained from X by 

isolating all elements of X except the limit ordinals of 

the original copy of w Since w is a closed subspace of
l

. 
l 
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X*, by Theorem 2.6, X* is not paracornpact. The collection 

{{x}: x E X\ (w 1 n Lim)} U {( (S, a) , S] : a < Sand SEw 1 n Lim} 

is a Noetherian base for X* consisting of intervals. 

3.	 Products and Perfect Images of Spaces Having Noether Bases 

In [LN] it is noted that the product of spaces having 

Noetherian bases has a Noetherian base. This is also true 

for products of spaces having K-Noetherian bases. 

Theorem 3.1. LetK be an infinite cardinal, A a non­

empty set and for every a E A let X be a topological space
a 

having a K-Noetherian base. The space X = ITaEAX has a a 

K-Noetherian base. 

Theorem 3.2 [GN]. The finite product of spaces having 

Noetherian bases of subinfintie rank has a Noetherian base 

of subinfinite rank. 

The 50rgenfrey line 5 has an w-Noetherian base with 

subinfinite rank. However 52 does not have a base of count­

able	 rank [LN]. 

A collection of sets is said to be well ranked pro­

vided it is the countable union of Noetherian subcollec­

tions with subinfinite rank. In [GN] it is shown that the 

countable product of spaces with well ranked bases has a 

well ranked base. It is not known if the countable product 

of spaces with Noetherian bases of subinfinite rank must 

have a Noetherian base of subinfinite rank. However such 

products do have Noetherian well ranked bases. It follows 

from the next proposition that the uncountable product of 

nontrivial Tl-spaces can never have a well ranked base. 
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Proposition 3.3. Suppose X is the product of uncounta­

bly many Tl-spaces eaah having at least 2 points. Then no 

point of X has a neighborhood base with countable rank. 

Proof. Since having a neighborhood base of countable 

rank is hereditary, it suffices to show: 

If X = IT < {O,l} where for all a < w ' {O,l}a is 
a wI a l 

{O,l} with the discrete topology, f = < 0: a < w ),
l 

and B is a neighborhood base for f then B does not 

have countable rank. 

-1
For all a < wl let B(a) E B such that B(a) ~ TI 

a 
({ol). 

It is a straightforward application of the "delta 

system lemma" (see [J] A2.2) to find an uncountable incom­

parable subset of {B(a): a < w }.
l 

A mapping f from a topological space X onto a topologi­

cal space Y is said to be perfect provided f is closed, 

continuous and for every y E Y, f-l(y) is compact. Dennis 

Burke has observed that the construction in Lemma 1 and 

Theorem 2 of [B ] gives a Noetherian base. Thus Corollary2

5 of [B 2 ] can be restated as follows: 

Theorem 3.4 (Burke). A Noetherian base is not neces­

sarily preserved under a perfect map. In fact, if Y is any 

space then Y is the image, under an open perfect mapping, 

of a space with a Noetherian base. 

It is not known if the perfect image of a space having 

a Noetherian base with subinfinite rank must have a Noether­

ian base with subinfinite rank or even a Noetherian base. 

However the following.proposition does imply that the perfect 
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image of a space with a Noetherian base with subinfinite 

rank does have an w-Noetherian base. 

The following lemma follows from w + (w l ;, (see 

[J] A4). 

Lemma 3.5. Suppose X is a set~ A is an infinite sub­

set of wand for each n E A~ S(n) ~ X such that {S(n): n E A} 

is Noetherian~ has subinfinite rank and n{S(n): n E A} ~ ¢. 

Then there is an AI c A with IAII = w such that if n,m E AI 

and n < m then S(n) ~ S(m). 

The proof of the following proposition is based on the 

proof of Theorem 4.1 of [B ].l 

Proposition 3.6. The perfect image of a topological 

space having a well ranked base has a base which is the 

countable union of Noetherian collections. 

Proof. Suppose X is a topological space having a base 

B = U{B : 0 < n < w} where for each n E w\{O}, B is n n 

Noetherian and has subinfinite rank and if 0 < m < n < w 

then B =B . Also, suppose f is a perfect mapping from Xm	 n 

onto	 a topological space Y. 

For n,m E w\{O} let F(n,m) = {J c B : IJI m}, for - n 

J E F(n,m) let V(J) = Y\f(X\UJ) and let U(n,m) {V(J): 

J E F(n,m)}. Let BI = U{U(n,m): n,m E w\{O}} ... The collec­

tion BI is easily seen to be a base for Y. We will show 

that for each n,m E w\{O} the collection U(n,m) is 

Noetherian. 

Let n,m E w\{O} and suppose U(n,m) is not Noetherian. 

Then for all k E w there is an J(k) E F(n,m) such that if 
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k < t <	 w then V(](k)) c V(](t)). Let y(o) E V(](O)), 

-1x(O) E f (y(O)) and for all k < w, A(k,O) E ](k) such that 

x(O) E A(k,O). Since {A(k,O): k < w} c B with nonempty
- n 

intersection, by Lemma 3.5 there is an infinite set 

S(l) ~ w such that if k,t E S(l) and k < t then A(k,O) ~ 

A(t,O) . 

Suppose for ° < t < m the infinite set S(t) and for 

all k E S(t) and all j < t, A(k,j) E ](k) have been chosen 

satisfying the following conditions: 

(l)t If	 k E S(t) and i,j < t with i ~ j then 

A(k,i) ~ A(k,j). 

(2) t If i, j E S (t.) and i < j then U{A (i ,k) :' k < t} ~ 

U{A(j,k): k < t}. 

Let a(t) = minS(t) and b(t) = min(S(t)\{a(t)}). Choose 

y(t) E V(](b(t))) such that y(t) ~ V(](a(t))). Since 

y(t) ~ V(](a(t))), we can choose an x(t) E f-l(y(t)) such 

that x(t) ~ U](a(t)). By (2)t for every k E S(t)\{a(t)} 

we can choose an A(k,t) E ](k) such that x(t) E A(k,t). 

The collection {A(k,t): k E S(t)\{a(t)}} c B has nonempty
n 

intersection. Thus by Lemma 3.5 there is an infinite 

S(t+l) ~ S(t)\{a(t)} such that if i,j E S(t+l) and i < j 

then A(i,t) =A(j,t). Conditions (l)t+l and (2)t+l hold. 

Thus there is an infinite S(m) ~ wand for each k E S(m) 

and t < m a set A(k,t) E ](k) satisfying (l)m and (2)m. For 

each k E S(m), since I](k) I m, by condition (l)m' ](k) 

{A(k,i): i < m}. Let k,j E S(m) with k < j. By (2)m' 

=	 =
U](k) U](j) and so V(](k)) V(](j)), a contradiction. 

Therefore U(n,m) is Noetherian. 
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