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DENSE HOMEOMORPHIC SUBSPACES 

OF X* AND OF (EX)* 

Thomas J. Peters 

1. Introduction and Motivation 

The problem, "Characterize those spaces X for which X* 

and (EX)* have dense homeomorphic subspaces," was posed by 

R. G. Woods [wo p. 350]. A partial solution is given in3 , 

this paper: "Let X be a nowhere locally compact space. 

Then X* and (EX)* have dense homeomorphic subspaces if and 

only if there exists a dense subspace of X* such that SX 

is extremally disconnected at each point of that dense sub­

space." 

That Sx is extremally disconnected at each remote point 

of X was demonstrated by E. K. van Douwen [vD, 5.2]. Thus 

it is often useful to determine when a space has the property 

that its set of remote points is dense in its remainder. 

It is shown that many of the G-spaces defined by Chae and 

Smith [CS] have this property. In particular the following 

theorem is proven: "Let X be a nearly realcompact G-space. 

If X is normal or extremally disconnected, then its set of 

remote points is dense in X*." 

This work generalizes theorems of N. J. Fine and 

L. Gillman [FG], D. Plank [PI], S. M. Robinson [R], E. K. 

van Douwen [vD] , C. L. Gates [G], and R. G. Woods [wo ].3

2. Basic Preliminaries 

All spaces are assumed to be completely regular and 

Hausdorff. Let X be a space. The notation bX denotes a 
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compactification of X; -EX denotes the absolute of X [wo
3

, 

p. 326ff]; TbX(X) denotes the set of bX-remote points of 

X (defined below); T*(X) denotes the family of non-empty 

open subsets of X. The subspace SX - X will be abbreviated 

as X*. A space X is said to be nearly realcompact if SX - vX 

is dense in X* [B]; [vD, 2.7]. Other notation and terminology 

are standard as in [GJ] or [W], with the exceptions noted 

below. 

2.1 Definition. Let X be a space. A point p E bX - X 

is bX-remote for X if there is no nowhere dense subset A 

of X such that p E clbXA. When a point is eX-remote, it 

will simply be called a remote point (for X). Similarly, 

TSX(X) will simply be denoted as TX. 

2.2 Definition [vD, 1.7]. A space X is said to be 

extremally disconnected at the point p if for every two 

disjoint open sets U and V in X 

p ~ clxU n clxV 

or, equivalently, 

for each U E T*(X), if p E clxU, then p E intxclxU. 

3. A Partial Response to Woods' Problem 

Throughout this section let k: EX ~ X be a closed, 

perfect, irreducible continuous surjection and let 

k: SEX ~ SX be its Stone extension. 

3.1 Lemma. Let p E eX. Then I (k) -1 (p) I 1 if and 

only if SX is extremally disconnected at p. 
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Proof· (.) In [G, 2.3], it is shown that if 

I (k),-l (p) I > 1, then there exists W E T* U3X) such that 

p E cZaxW\intaxcZaxW. Thus aX,is not extremally discon­

nected at p. 

(~) IfaX is not extremally disconnected at p, then 

there exist disjoint U 'U E T*(SX) such thatl 2 

p E cZaXUl n cZ SXU2 ­

Since k is closed, it is clear that for i 1,2, 

- - -1 
P E cZSXUi = k(cZaEx(k) (Ui ». 

But (k)-l(U ) n (k)-1(U ) =~. So, the extremal discon­
l 2

nectedness of SEX implies that 

- -1 - -1 
cZSEX(k) (Ul ) n cZSEX(k) (U 2 ) ~ [GJ, lH4]. 

Thus, I (k) -1 (p) I > 1. 

3.2 Remark. Let S be a subspace of X* and suppose that 

(k)-l(S) is dense in (EX) *. Thus, in order for kl (k) -1 (S) : 

(k)-l(S) -+ S to be homeomorphism between dense subspaces 

of (EX)* and X*, it is essential that aX be extremally dis­

connected at each point of S. (More generally, note that 

if T is any dense subset of (EX)* such that kiT: T-+ k[T] 

is a homeomorphism, then k[(EX)*\T] = X*\k[T], [GJ, 6.11]. 

Thus, it is necessary that I (k)-l(p) I = 1 for each p E k[T].) 

In particular, whenever aX is not extremally disconnected 

at any point of X*, the indicated mapping is not a homeo­

morphism. It is conceivable that some other unrelated homeo­

morphism between dense subspaces may exist, but its construc­

tion would necessarily be achieved via other methods. How­

ever, for the class of nowhere locally compact spaces, it 

can be shown that (EX)* and X* have dense homeomorphic 
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subspaces if and only if there exists a subspace 5 of X* 

such that kl (k)-l(5) is a homeomorphism between dense sub­

spaces. 

3.3 Remark. Let X be a space and let bX be a compacti­

fication of X. Recall that a space is nowhere locally 

compact if and only if bX - X is dens~ in bX. 

The easy proof of the following lemma is left as an 

exercise. 

3.4 Lemma. Let 5 be a dense subspace of a space X. 

Then 5 is an extremally disconnected space if and only if 

X is extremally disconnected at each point of 5~ 

3.5 Theorem. Let X be a nowhere locally compact space 

and let 5 be a dense subspace of X*. Then the following 

are equivalent: 

(a) 5 is an extremally disconnected space. 

(b) SX is extremally disconnected at each point of 5. 

(c) s is a homeomorph of a dense subspace of (EX)*. 

Proof· (a) ~ (b). Remark 3.3 and Lemma 3.4. 

(b) ~ (c). 5ince X is nowhere locally compact, the 

function k I(EX)* is a perfect, irreducible, continuous 

function [Wo 2.7, 3.1], [Wo 5.3]. Hence, (k)-l(5) is
l

, 3 , 

a dense subspace of (EX)* [Wol , 1.5]. To see that 

kl (k)-l(5) is closed, note that any closed subset of 

(k)-l(5) is of the form C n (k)-l(5) for some closed subset 

C of SEX. Then, 
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(k I(k) -1 (S» [C n (k) -1 (S)] = k[C n (k) -1 (S)] = k[C] n S, 

where the last inequality follows since k l(k)-l(S) is one-one 

by Lemma 3.1. But k[C] n S is a closed subset of S. 

The other properties required for k l(k)-l(S) to be a 

homeomorphism are easily deduced from its construction and 

from Lemma 3.1. 

(c) ~ (a). Let g: So ~ S be a homeomorphism of dense 

subspaces of (EX)* and X*. (Note that g is not assumed to 

be related to k). 

Since EX is nowhere locally compact, So is actually a 

dense subspace of SEX, and thus, the space So is extremally 

disconnected [GJ, lH4]. As the homeomorphism g preserves 

extremal disconnectedness, it is clear that the space S is 

also extremally disconnected. 

3.6 Corollary. Let X be a nowhere locally compact 

space. Then X* and (EX)* have dense homeomorphic subspaces 

if and only if there exists a dense subspace of X* such 

that SX is extremally disconnected at each point of that 

dense subspace. 

There exist nowhere locally compact, realcompact 

spaces X such that X* and (EX)* fail to have dense homeo­

morphic subspaces. In particular, any nowhere locally 

compact realcompact space X such that SX is not extreamally 

disconnected at any point of X* has this property. 

3.7 Example. Let U(w ) denote the space of uniform2

ultrafilters of the discrete space w • That is,
2 

U(w 2 ) = {p E S(w 2): IAI = w2 for all A E pl. 
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Let Q denote the rationals with the usual topology. Let 

X = Q x U(w 2 ) x U(w 2 ). Then X is a nowhere locally compact, 

realcompact space, but eX is not extremally disconnected at 

any point of X* [vDvM, p. 73]. 

3.8 Remark. The results of this section indicate that 

an initial attack on Woods' problem might include the char­

acterization of all those spaces X such that X* has a 

dense subspace S where eX is extremally disconnected at 

each point of S. Such a characterization would not neces­

sarily completely solve Woods' problem (other homeomorphisms 

unrelated to k may exist), but it would provide more informa­

tion than in currently known. The difficulty of such a 

characterization led to the consideration of spaces X having 

the more tractable property that TX is dense in X*. Since 

eX is extremally disconnected at each remote point of X 

[vD, 5.2], it is clear that the density of TX in x* is 

sufficient to imply that X* and (EX)* have dense homeo­

morphic subspaces whenever the function k I(EX)* is perfect 

and irreducible (see the proof of 3.5 (b) ~ (c)). It is 

known that kl (EX)* is a perfect irreducible continuous 

3 ,function if X is nearly realcompact [Wo pp. 347-349], 

or nowhere locally compact [Wo l ' 2.7, 3.1]; [wo 3 , 5.3]. 

4. Density ofTX in X* 

The work of Chae and Smith [CS] established the existence 

of remote points for nonpseudocompact, normal, G-spaces. The 

next lemma shows that the hypothesis of normality may be 

replaced by extremal disconnectedness. 
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4.1	 Lemma. If X is a nonpseudocompact, extremaZZy 

cdisconnected G-space, then ITXI > 2 . 

Proof. Let U E T*{X), n < w, and let J{U,n) be a 

G-family for U and n [P 2.3]. Without loss of generality,2 , 

each F E J(U,n) is assumed to be regular closed [P 7.15].2 , 

Since X is extremally disconnected, each such F is clopen. 

Using the construction of [CS, Theorem 1] it is clear that 

there exist remote families consisting of clopen subsets of 

X, where each such family has the finite intersection pro­

perty. Let Cbe any such family and let D be a nowhere 

dense subset of X. Then there exists ED E C such that 

D n ED =~. But, since ED is clopen, it is clear that 

CZSXD n CZSXED =~. Hence, n{cZSxE: E E C} is a non-empty 

2csubset of TX. Clearly, ITXI > [CS, Theorem 1]. 

4.2 Remark. Since EX is a G-space if and only if X is 

a G-space [P 7.12], it is clear that if X is a nonpseudo­2 , 

compact G-space, then TEX ~~. This observation prompts 

the following question. 

4.3 Question. For a nonpseudocompact G-space X, does 

TEX ~ ~ imply that TX ~~? (For an equivalent problem see 

Remark 4.4 below.) 

4.4 Remark. Note that a crucial element in the proof 

of Lemma 4.1 is the construction of a remote family C such 

that for each nowhere dense D c X, there exists an ED E C 
with the property that D and ED are completely separated. 

In particular, if a nonpseudocompact G-space X is almost 

normal [SA, 2.1] (i.e., a space X is almost normal if every 
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pair of disjoint closed sets, one of which is regular closed, 

can.be completely separated [L, 3.5]), then a remote family 

C of regular closed sets can be constructed [CS, Theorem 1] ; 

[P 7.15] and TX will be non-empty. Thus, an equivalent2 , 

formulation of Question 4.3 is: "Does there exist a non­

pseudocompact G-space X (which necessarily cannot be almost 

normal) such that TX = {J?" 

The following lemma appears under a slightly different 

guise in [R, §3]. For the sake of clarity and completeness, 

its statement and a proof are included here. 

4.5 Lemma. Let X be a space which is extremally dis­

connected or normal and let R be a regular closed subset of 

x. If P is a remote point for R, then p is a remote point 

for x. 

Proof. If X is extremally disconnected, then R is 

clopen and the result is obvious. 

If X is normal, then claxR SR [GJ, 3D]. Since p is 

remote for R, p E (claxR) - R. Hence p E X*. 

Suppose p is not a remote point for X. Then there 

exists a closed nowhere dense subset A of X such that 

P E claxA. Clearly, 

p E claxR n claxA = clax(R n A), 

where the set equality is due to the normality of X [Wi, 

19K]. But, RnA is a nowhere dense subset of R, contra­

dicting the fact that p is a remote point for R. 

The following lemma merely consolidates some results 

from the literature and is included for reference. 
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4.6 Lemma. Let X be a space and W E T*(X). Then 

cluxW is compact if and only if clxW is pseudocompact. 

Proof. (~) This implication appears in [HJ]. (See 

also [We, 11.24].) 

(~) That cluxW is pseudocompact may be seen via [CN, 

2.5b(ii)]. Hence, cluxW is compact [GJ, 8.10]; [W, 1.58]. 

The folloiwng definition appears in [C], where it is 

accredited to Frolik. 

4.7 Definition. A space X is locally pseudocompact at 

the point x E X if x admits a pseudocompact neighborhood. 

The terminology "X is nowhere locally pseudocompact" 

will have the obvious meaning. 

4.8 Lemma. Let X be a non-compact space and consider 

the following three conditions: 

(a) X is nowhere locally pseudocompact. 

(b) X is nearly realcompact. 

(c) Each basis lj of X* has the property that if U E lj 

and if V E T*(SX) such that U = V n X*, then the space 

alx(V n X) is nonpseudoaompaat. 

Conditions (b) and (c) are equivalent and are implied by 

(a). Furthermore, condition (b) does not imply (a). 

Proof· (a) ~ (b). [JM, 6.1]. 

(b) ~ (c). Let lj be a basis for X*, let U E lj and 

let V E T*(SX) such that U = V n X*. Since X is nearly 

realcompact, it is clear that V n SX - uX ~~. Hence, 

cluxV = clux(V n X) is not compact. So, clx(V n X) is non­

pseudocompact, by Lemma 4.6. 
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(c) ~ (b). Let H E T*{X*) and let H E T*{SX) such
O 

that H = HO n X*. Let U E T*{SX) such that U n X* ~ ~ o o 
and cZ.SXUO c HO. 

Let lj be a basis for X*, let U E lj such that U c U n X*o 
and let V E T*{SX) such that U = V n X*. Without loss of 

generality, V may be chosen such that V c UO. 

Since cZ.x{V n X) is nonpseudocompact, it is clear from 

Lemma 4.6 that 

But, 

cZ.SXV n (SX - uX) c cZ.SXUO n (SX - uX) c HO n (SX - uX) 

c HO n X* = H. 

Thus, X is nearly realcompact. 

(b) ~ (a). The relevant example is a noncompact 

locally compact metric space, because every metric space is 

nearly realcompact [R]; [w0 p. 349].
3

, 

4.9 Theorem. Let X be a space which is extremaz.z.y 

disconnected or normaz.. If X is a nearz.y reaz.compact G-space, 

then TX is dense in X*. Furthermore, X* and (EX)* have dense 

homeomorphic subspaces. 

Proof· Let H E T* (X*) and let H E T*{SX) such that
O 

H = H n X*. Let U T* (SX) such that U n X* ~ ~ andO o E o 
cZ.SXUO HO·c 

Let lj be the basis for X*, let U E lj such that 

U c U n X* and let V E T*{SX} such that U = V n X* ando 
V c UO. 

Then cZ.x{V n X) is a nonpseudocompact G-space [CS~ p. 

244]. Furthermore, cZ.x{V n X) is extremally disconnected 
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or normal and, therefore, has at least 2
c 

remote points [CS]. 

Let p be a remote point for clx(V n X). Then p is a remote 

point for X and 

P E clex(V n X) - clx(V n X) = (clexV) - X
 

c (clsxU ) - X c H - X = H.
O O 

The last statement of the theorem now follows from 

Remark 3.8. 

4.10 Corollary. If X is a metric space, then TX is 

dense in x*. 

Of course, Corollary 4.10 could be more directly deduced 

merely by citing Theorems 1 and 3 of [CS], the lemma of 

Sec. 3 of [R] and by observing that in the class of metric 

spaces, pseudocompactness is equivalent to compactness. 

However, Corollary 4.10 is not the primary result of the 

arguments given here. It is merely a pleasant by-product. 

In general, the class of G-spaces is much richer than the 

class of metric spaces. Thus, consideration of the class 

of G-spaces lends a much broader context to Woods' problem. 

Further examples of the value of considering the class 

of G-spaces are given below. 

Lemma 4.11 appears in the author's doctoral disserta­

tion [PI' 4.1]. Its statement and proof are included here 

for the sake of clarity and completeness. 

4.11 Lemma. If bX is a compactification of a space 

X and if f is the continuous function f: ex + bX such that 

f restricted to X is the identity function, then 

f (TbX(X)) c TX. 
-1 



296 Peters 

-1Proof. Let pE TbX(X). Suppose there exists q E f (p) 

such that q ~ TX. Since f is perfect and p E bX - X, it is 

clear that q E SX - X and, hence, there must exist some 

nowhere dense subset A of X such that q E clSXA. But then, 

p = f(q) E f[clSXA] c clbXA, 

which is a contradiction. 

4.12 Theorem. If X is a nowhere locally compact space 

and bX is a compactification of X such that TbX(X) is dense 

in bX - X, then TX is dense in X*. Furthermore, x* and 

(EX)* have dense homeomorphic subspaces. 

Proof. Let f be the continuous function f: SX + bX such 

that f restricted to X is the identity function. Since X 

is nowhere locally compact, it is clear that TbX(X) is 

dense in bX. 

Furthermore, since f is a closed, irreducible function, 

the set f-l(TbXX) is dense in SX [Wo 1.5]. Hence, TX isl , 

dense in SX, by Lemma 4.11. Therefore, TX is dense in X*. 

The second statement follows from Remark 3.8. 

4.13 Example. Let a and y be infinite cardinals, 

where y ~ a and y has the discrete topology. Let X = Y
a 

. 

For each ~ < w, let Y~ = Y and for w ~ ~ < a, let Y~ be the 

one-point compactification of Y. Let Y = TI~<aY~. Then Y 

is a nonpseudocompact, normal [5], G-space [P2' 6.2] and Y 

is nearly realcompact [W0 3 , p. 349]. So, by Theorem 4.9, 

TY is dense in Y*. Let bX = SY. Then TY c TbXX. 

Let V E T*(SY). Then, 

~ ~ TY n (V\Y) c TbX(X) n (V\X). 
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Hence, TbX(X) is dense in bX - X, which, by Theorem 4.12, 

suffices to show that TX is dense in X*. 

Since the space X is nowhere locally compact, it is 

also obvious that TX is dense in SX. 

The hypothesis of Theorem 4.9 that the space be nearly 

realcompact cannot be entirely eliminated as Example 4.14 

demonstrates; that is, there exist nonpseudocompact normal 

G-spaces and nonpseudocompact extremally disconnected 

G-spaces, whose sets of remote points are not dense in 

their remainders. 

4.14 Example. Let W be the countable infinite dis­

crete space. Let W(w ) and W(w + 1) be, respectively,l l 

the spaces w and w + 1, each having the well-orderedl l 

topology. Let ~ denote disjoint topological union. 

(a) For a normal space, let X = W ~ W(w ). Then
l 

SX Sw ~ W(w + 1) and TX w*, but X* = w* ~ {w }.
l	 l 

(b) For an extremally disconnected space, let Y EX 

W ~ E(W(w l ». It is easy to see that (E(W(w »)* ~ ~.l 

However, since E(W(W » is pseudocompact with nonmeasurable
l 

cellularity, it has no remote points [T, p. 265]. So, 

TY =	 w*, but y* = w* m (E(W(w l »)*. 

5.	 A Related Theorem and Some Examples 

The following theorem is related to previous results. 

It is a modest generalization of Corollary 8.3 of [P 2 ], 

where the space X was assumed to be realcompact. 

5.1 Definition. A space X is a strong G-space if both 

X and 8X are G-spaces. 
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5.2 Theorem. If X is nearty reatcompact and X 

is a strong G-space~ then TX is dense in X*. 

Furthermore~ x* and (EX)* have dense homeomorphic sub­

spaces. 

Proof. If X is pseudocompact, then the statement is 

vacuously true, so, without loss of generality, assume X 

is nonpseudocompact. 

The space uX is a strong G-space [P 7.17]. Hence2 , 

T(UX) is dense in aX - uX [P 8.3]. But T(uX) c TX.2 , 

Since X is nearly realcompact, it is easily seen that TX 

is dense in X*. 

The second statement follows from Remark 3.8. 

5.3 Examples. (a) Let TO be the "Oieudonne Plank" 

[w0 p. 344]. That T is a strong G-space is seen by3 , 
D 

reference to [P 4.2]. Furthermore, TO is non-normal,
2

, 

but TO satisfies the hypotheses of Theorem 5.2 above 

[w0 p. 344, pp. 348-349].3 , 

(b) Let X be Mrowka's example of an almost-realcompact,o 
non-realcompact space [M] (see [w0 2 , 4.1] for a concise 

readable description). Let K be any cardinal (finite or 

infinite). Then X~ is a strong G-space [P 2 , 8.7], satisfy­

ing the hypotheses of Theorem 5.2 above [w0 pp. 348-349].
3

, 
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