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AN ADMISSIBLE CONDITION FOR
CONTRACTIBLE HYPERSPACES

Choon Jai Rhee and Togo Nishiura

Let X be a nonvoid metric continuum. Denote by 2X
and C(X) the hyperspaces of nonempty closed subsets and sub-
continua of X respectively and endow each with the Hausdorff
metric H.

In 1938 Wojkyslawski proved that 2X is contractible if
X is locally connected [11l]. In 1942 Kelley [l] proved
that the contractibility of 2X is equivalent to the con-
tractibility of C(X). Furthermore, he introduced a suffi-
cient condition, namely property (3.2), for the contracti-
bility of the hyperspaces of metric continua. In [5], a
necessary condition, namely admissibility,is given for a
space whose hyperspace is contractible. It was also proven
that the contractibility of the hyperspace C(X) is equiva-
lent to the existence of a continuous fiber map on X into
the hyperspaée CZ(X) of subcontinua of C(X) for the class
of metric continua with property c¢ (abbreviated as c-space).
In the present paper we show that if f: X + Y and g: ¥ + X
are continuous such that f ¢ g is homotopic to the identity
map idY on Y, and if X is a c-space then Y is also a c-space.
Hence if X and Y are homotopically equivalent, then X is a
c-space if and only if Y is. We also show that the product
space X x Y is a c—-space if and only if both X and Y are
c-spaces. Many corollaries to the above results are also

given which are generalizations of results in [4].
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Throughout the paper, the symbols I and p will be
reserved for the closed interval and a Whitney map [10]
with u(X) = 1 respectively. Note that u(X) = 1 necessarily
requires X to be nondegenerate, a condition which we will

assume whenever required without explicitly stating so.

1. Preliminaries

We collect in this section some definitions and known
facts and prove a new lemma. Let X be a nonvoid metric
continuum.

A map H: X x I + C(X) is inecreasing if h(x,t) < h(x,t")
for t < t' and x € X. A contraction of X in C(X) is a con-
tinuous homotopy h: X x I + C(X) such that, for each x € X,
h(x,0) = {x} and h(x,1) = A. A contraction of X in 2% is

analogously defined.

Theorem 1.1 [l]. ‘The following statements are equiva-

lent.

1. A contraction of X in C(X) exists.

2. 2% is contractible.

3. C(X) is contractible.

Theorem 1.2 [l]. If C(X) is contractible then an

inereasing contraction of X in C(X) exists.

The contractibility of C(X) implies the contractibility
of C2(X),by Theorem 1.1. Also, since the union may from C2(X)
onto C(X) is a retraction, the contractibility of C2(X)

implies the contractibility of C(X). Thus we have the

following.
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Theorem 1.3 [l]l. C(X) is contractible if and only if

the hyperspace C2(X) of subcontinua of C(X) is contractible.

We recall the definition of the Hausdorff metric H on
ZX. For A,B € 2X,

H(A,B) = max{max d(a,B), max d{(b,a)},
acA b€EB

where d(x,A) is the distance from x to A.

Lemma 1.4. If A,B,C,D € 2X then
H(A U B,C U D) < max{H(A,C) ,H(B,D)}.

Proof. Let n > max{H(A,C),H(B,D)}. Then C U D c
{x|da(x,n) < n} U {x|d(x,B) < n} = {x|d(x,A U B < n}. Also
AU Bc {x|]d(x,CUD) <n}.

Let X be a nonvoid continuum. We now define an
admissibility condition [5] and prove some propositions.

For x € X, let F(x) = {A € C(X)|x € A}, and for (x,t) € X x I,
Ft(x) = F(x) N u_l(t). An element A € F(x) is said to be
admissible at x if, for each ¢ > 0, there is § > 0 such that
each y in the §-neighborhood of x has an element B € F(y)

such that H(A,B) < ¢. For each x € X, the collection

Alx) = {A € F(x)|A is admissible at x} is called the
admissible fiber at x. We say that X is admissible if

At(x) = Ax) n p_l(t) is nonempty for each (x,t) € X x I.

Proposition 1.5. If A € A(g) and B € A(x) and £ € AN B
then A U B € A(x). Hence, if A € Alx), 1 =1,2,+++,n,

then U A, € Ax).
1 1

=1
Proof. Let € > 0. Since A € A(g), there is 1 < ¢ where
each point y of the tT-neighborhood V of £ has an element

C € F(y) such that H(A,C) < g. Since B € A(x) there is
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§ > 0 such that each point z of the §-neighborhood W of x
has an element D € F(z) such that H(B,D) < 1. One sees that
£ € Band H(B,D) < 1 imply Vn D # #. Hence, for each z € W
there are D € F(z), y € Vn D and C € F(y) such that

H(A,C) < g, H(B,D) < ¢ and C U D € F(z). By Lemma 1.4, we
have H(A v B,C U D) < max{H(A,C),H(B,D)} < ¢, and the

proposition is proved.

Proposition 1.6. For each x € X its admissible fiber
Ax) is closed in C(X), {x} € AX) and X € Ax).

Proof. Suppose An, n=1,2,+++, is a sequence in A(x)
which converges to A in C(X). Obviously, A € F(x). Let
¢ > 0. There is a positive integer N such that H(A,AN) < g/2.
Since AN € A(x), there is a §-neighborhood V of x such that
each point y of V has an element B € F(y) such that
H(AN,B) < g/2. From H(A,B) < H(A,AN) + H(AN,B) < g, we have
A € A(x) and hence A(x) is closed. The remaining parts of
the proposition are obvious.

We note that since C(X) is compact [l], A(x) is compact.

Proposition l1.7. Let B € F(x) and C = U{A € A(x)|A c B}
then C € Ax).
Proof. First we prove C is a subcontinuum of X. Clearly

C is connected and x € C. Let x n=1,2,-++-, be a sequence

nl
in C converging to Xg- For each n > 1 choose An € A(x) such
that x € A < B. Since A(x) is compact in C(X), we may

assume that the sequence An, n=1,2,+++, also converges to

an element AO € A(x). Obviously, X € AO < B. Hence

x0 € AO < C. We conclude that C is closed in X.
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Now suppose € > 0. Since C is compact in X, there are
points CprCpscesCy in C such that C is contained in the
g-neighborhood of the finite set {cl,c2,~~-,cn}. For each

n

i, let A, € A(x) such that c; € A, c B and let By = U;_;A;.

Since C o B, o {cl,c --,cn}, we have H(C,BO) < e. By

0 27"
Proposition 1.5, B, € A(x). Since A(x) is compact in C(X)

we have C € A(x).

Proposition 1.8 [7]. If h: X x I » C(X) s a continuous
inereasing map such that x € h(x,0) for x € X then

h(x,t) € A(x) for (x,t) € X x I.

Theorem 1.9 [7). If X 18 a nondegenerate metric con-
tinuum and C(X) is contractible, then X is an admissible

space.

2. Fiber Maps
In [5] it was shown that the contractibility of C(X)

is equivalent to an existence of a set-valued map a: X -+ .C(X)
possessing a certain property. In this section we prove
that this property is preserved by the homotopy equivalence
relation. Hence, we obtain generalizations of many of the

results in (4] and ([8].

Definition 2.1 [5]. A set-valued map a: X » C(X) is
said to be a c-map if, for each x € X, a(x) is a closed sub-
set of the admissible fiber A(x) such that

(1) {x}, X € a(x).

1 in o (x) with AO < Al, there is
an ordered segment [2, p. 57] in a(x) from AO to Al.

(2) For each pair AO,A
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(3) For each A € a(x), and € > 0, there is a neighbor-
hood W of x such that each point y of W has an element

B € a(y) such that H(A,B) < €.

We say that the space X is a c-space if there is a
set-valued c-map a: X > C(X). Clearly every c-space is an

admissible space.

Proposition 2.2 [5]. Every set-valued c-map a: X -+ C(X)
is lower semicontinuous. Furthermore, <1f G(x,t) =

a(x) N u—l(t), then G <1g lower semicontinuous on X X I.

Theorem 2.3 [5]. Let X be a metric continuum. Then
C(X) is contractible if and only if there is continuous

B

set-valued c-map on X into C(X).

In [1] Kelley defined a property (subsequently named
property K in Nadler [2]) and proved that the hyperspaces
of a space having property K are always contractible. The
class of metric continua having property K includes locally
connected continua and the hereditarily indecomposable con-

tinua. We now restate the result of Kelley.

Proposition 2.4 [1l]. If X has property K, then there
18 a continuous c-map o: X >C(X).

Proof. Since X has property K, F(x) = A(x) by (5,
Proposition 2.4] and F: X -+ C(X) is continuous by [9,
Theorem 2.2]. The existence of ordered segments in F(x) for
every pair Ay = Ay is given in [1l, p. 24]. Hence the admis-

sible fiber map A is a continuous set-valued c-map.
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Let X be a metric continuum. A function a: X - CZ(X)
is called admissible if, for each x € X,

(L)' {x} € a(x),

(2)' a(x) ¢ A(x) and a(x) is closed in A(x),

(3)' a(x) contains a maximal element AX, i.e., A c AX

for all A € a(x),

(4)' a(x) is segmentwise connected, i.e., for each pair
AO,Al in a(x) with AO c Al, there is an ordered segment
[2, p. 57) in a(x) from Ao to Al.

Let A& = {Axle is a maximal element in a(x), x € X}
and /Vi ={{ala € N} < c?(x).

Proposition 2.5. The following statements are equiva-
lent.

(1) C(X) is contractible.

(2) There is a continuous admiseible function
a: X » CZ(X) such that nA& £ 8.

(3) There is a continuous admissible function
a: X > CZ(X) such that the set N; 18 contractible in CZ(X).

Proof. (1) = (2). Suppose h: X x I + C(X) is an
increasing contraction. Let a(x) = {h(x,t)|t € I}. Then

the continuity of h provides the continuity of o and it is

obvious that o satisfies the admissible conditions (1')-(4")
with Ax = h(x,l) = nﬂh.
(2) = (3). Suppose a: X > CZ(X) is a continuous admis-

sible function such that nA@ # @. Let Xq € nﬂg and let

Y: I - C(X) be an ordered segment from {xo} to X. Define

8: /Vi x I+ c?(X) by

BUAY,E) = (A U Y(®)).
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Then B is continuous and B({Ax},l) = {X} for each
a ) e #2.

(3) » (1). Suppose a: X - Cz(x) is a continuous admis-
sible function and R: N; x I -+ Cz(x) is a contraction. We
may assume B is increasing. Let o: Cz(x) + C(X) be the
function defined by o(T) = UT. Then ¢ is continuous.

We now observe that for each x € X the maximal element
A of a(x) is unique and Ax =g ©° a(x). Therefore the func-
tion x - {Ax} is continuous from X to Cz(x). Hence we
define a function 1: X » Cz(x) by t(x) = a(x) U
{og({a },t)[t € I}. Then T is continuous. Since
oB({Ax},l) = A, for some A, and for all x € X, we may define
an ordered segment y: I + C(X) from A to X and join it to T,
that is ¢(x) = 1(x) U {y(t)|t € I}. Then it is not difficult
to.check that ¢ satisfies thedefinition of a set-valued c-map and

¢ is continuous. Hence by Theorem 2.3, C(X) is contractible.
Suppose X and Y are metric continua.

Theorem 2.6. Suppose f: X - Y and g: Y » X are con-
tinuous functions such that f o g: Y » Y ig homotopie to the
identity idY. If X is a c-space then Y is a c-space.

Proof. Let h: Y x I » Y be a homotopy such that

It

h(y,0) = y and h(y,1) f o g(y) for each y € Y. Let

h(y,t)

Ufh(y,s)|0 < s < t}. Then h: Y x I » C(Y) is a
continuous homotopy such that h(y,t) < h(y,t') whenever

t < t'. Let By(y) = {h(y,t)|t € I}. Then the continuity

of h implies the continuity of By Y > c?(y) and each element

h(y,t) of the set Bl(y) is an admissible element at y such
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that for each pair BO,Bl in Bl(y) with BO < Bl’ there is an
ordered segment in Bl(y) from BO to Bl’

Let a: X > C(X) be a set-valuedc-map. Fory €Y, letx =g(y)
and B, (y) = {h(y,1) U £(A)|A € a(x)}. Since f(x) = f o g(y)
€ h(y,1) n £(a), we have h(y,1) U f£(a) € C(Y). Now we will
show that 82: Y - C2(Y) is lower semicontinuous.

Let ¢ > 0. Since f is continuous, there is ' > 0
such that if A,A' € C(X) such that A and A' are less than
¢' apart, then H(f(A),f(A')) < €. Since o is lower semi-
continuous and a(x) is compact, there exists § > 0 such
that if d(x,x') < 6§ and A € a(x), there is an element
A' € a(x'") such that A and A' are less than &' apart. Now
the continuity of g implies that there is 60 > 0 such that
if d(y,y") < 60 then d(g(y),9(y')) < 8. Also, by the con-
tinuity of h, we choose §; > 0 such that if d(y,y') < &,
then H(h(y,1),h(y',1)) < e€'. Let § = min{60,6l}, X = g(y),
x'" = g(y'). Then if d(y,y') < § and H(y,l) U f(a) € Bz(y)
then there is E(y',l) u £(a') € Bz(y') such that
Hh(y,1) u £(a), h(y',1) v £(a")) < max{H(h(y,1),h(y',1)),
H(E£(A),£(a"))} < e by Lemma 1.4. Hence the elements of g, (y)
are admissible at y and 82 is lower semicontinuous. Since
f preserves ordered segments, we see that 82 satisfies the
condition of ordered segment. Now let y: I = C(Y) be an
ordered segment from f(X) to Y andlet B,(y) = {vy(t)Uhty,1)|te€ 1}
and B(y) = Bl(Y) U Bz(y) U Ba(y). The maximal element of
Bl(y) is El(y,l) which is also the minimal element of Bz(y),
and the maximal element of Bz(y) is h(y,1) U £(X), and the

minimal element of 83(y)is £f(X) U H(y,l). So the continuityof Bl
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and 83 together with the lower semicontinuity of 82 pro-
vide the lower semicontinuity of B, and hence (3) is veri-
fied for BR. It is easy to verify that B also satisfies

the condition (1) and (2) of Definition 2.1.

Corollary 2.7. Suppose X and Y are homotopically equiva-
lent metric continua. Then X is a c-space if and only i1f Y

is.

Let idY denote the identity map of Y onto itself and
[f] the homotopy class of continuous maps of Y into itself

which contains f.

Theorem 2.8. A metric continuum Y 18 a c-space i1f
and only if for some g in [idY] it 1s true that g(Y) is a
c-space.

Proof. 1If Y is a c-space then let g = id Conversely,

v
suppose for some g € [idY]’ g(Y) is a c-space. Let X = g(Y¥)
and f: X » Y be the inclusion map. Then f ¢ g = g € [idY]'

So Theorem 2.6 gives the conclusion.

Corollary 2.9. Suppose X is a deformation retract of
Y. If X is a c-space, so is Y.

Proof. Let y: Y » X be a retraction which is homotopic
to the identity map idy. Then Theorem 2.8 provides the

conclusion.

Corollary 2.10. If Y is a retract of X and X ©s a

c-space, then so is Y.
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Proof. Let f: X = Y be a retraction and g: ¥ + X the

inclusion map. Then f o g = id So by Theorem 2.6, Y is

v*

a c-space.

Theorem 2.11. Let X = X, U X, where X and Xl are sub-

1 2
continua and X, 18 aclosed subset such that Xl n X2 i8 a
strong deformation retract of X2. If Xl i8 a c-space so 18
X.

Proof. 'Xl is a deformation retract of X.

Theorem 2.12. The product space X X Y is a c-space
i1f and only if both X and Y are c-spaces.

Proof. Each factor space is a retract of X x Y.
Therefore by Corollary 2.10, X x Y is a c-space.

Conversely, if oyt X =+ C(X) and oy Y + C(Y) are set-

valued c-maps, then ay X Gy X X ¥ > C(X x Y) defined by

ay X ay(x,y) = ag(x) X a,ly) = {a x B|lAa € ay (x),B € aY(y)}

is a set-valued c-map.
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