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AN ADMISSIBLE CONDITION FOR 

CONTRACTIBLE HYPERSPACES 

Choon Jai Rhee and Togo Nishiura 

Let X be a nonvoid metric continuum. Denote by 2X 

and C(X) the hyperspaces of nonempty closed subsets and sub-

continua of X respectively and endow each with the Hausdorff 

metric H. 

In 1938 Wojkyslawski proved that 2X is contractible if 

X is locally connected [11]. In 1942 Kelley [1] proved 

that the contractibility of 2X is equivalent to the con

tractibility of C(X). Furthermore, he introduced a suffi

cient condition, namely property (3.2), for the contracti

bility of the hyperspaces of metric continua. In [5], a 

necessary condition, namely admissibility,is given for a 

space whose hyperspace is contractible. It was also proven 

that the contractibility of the hyperspace C(X) is equiva

lent to the existence of a continuous fiber map on X into 
. 2 

the hyperspace C (X) of subcontinua of C(X) for the class 

of metric continua with property c (abbreviated as c-space). 

In the present paper we show that if f: X ~ Y and g: Y ~ X 

are continuous such that fog is homotopic to the identity 

map idy on Y, and if X is a c-space then Y is also a c-space. 

Hence if X and Yare homotopically equivalent, then X is a 

c-space if and only if Y is. We also show that the product 

space X x Y is a c-space if and only if both X and Yare 

c-spaces. Many corollaries to the above results are also 

given which are generalizations of results in [4]. 
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Throughout the paper, the symbols I and ~ will be 

reserved for the closed interval and a Whitney map [10] 

with	 ~(X) = 1 respectively. Note that ~(X) = 1 necessarily 

requires X to be nondegenerate, a condition which we	 will 

assume whenever required without explicitly stating so. 

1.	 Preliminaries 

We collect in this section some definitions and known 

facts and prove a new lemma. Let X be a nonvoid metric 

continuum. 

A map H: X x I + C(X) is increasing if h(x,t) c h(x,t )' 

for t < t l and x € X. A contraction of X in C(X) is a con

tinuous homotopy h: X x I + C(X) such that, for each	 x € X, 

Xh(x,O) = {x} and h(x,l) A. A contraction of X in 2 is 

analogously defined. 

Theorem 1.1 [1]. 'The following statements are equiva-

Lent. 

1. A contraction of X in C(X) exists. 

2. 2X is contractibLe. 

3. C(X) is contractibLe. 

Theorem 1.2 [1]. If C(X) is contractible then an 

increasing contraction of X in C(X) exists. 

The contractibility of C(X) implies the contractibility 

2 2of C (X),by Theorem 1.1. Also, since the union may from C (X) 

2onto C(X) is a retraction, the contractibility of C (X) 

implies the contractibility of C(X). Thus we have the 

following. 
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Theorem 1.3 [1]. C(X) is contractib~e if and only if 

2the hyperspace C (X) of subcontinua of C(X) is contractible. 

We recall the definition of the Hausdorff metric H on 

H(A,B) = max{max d(a,B), max d(b,A)}, 
aEA bEB 

where d(x,A) is the distance from x to A. 

Lemma 1.4. If A,B,C,D E 2X then 

H(A U B,C U D) 2 max{H(A,C) ,H(B,D)}. 

Proof. Let n > max{H(A,C) ,H(B,D)}. Then CUD c 

{xld(x,A) < n} u {xld(x,B) < n} = {xld(x,A U B < n}. Also 

A U B c {xld(x,C U D) < n}. 

Let X be a nonvoid continuum. We now define an 

admissibility condition [5] and prove some propositions. 

For x E X, let F(x) = {A E C(X) Ix E A}, and for (x,t) E X x I, 

Ft(x) F(x) n ~-l(t). An element A E F(x) is said to be 

admissible at x if, for each E > 0, there is a > 0 such that 

each y in the a-neighborhood of x has an element B E F(y) 

such that H(A,B) < E. For each x E X, the collection 

A(x) = {A E F(x) IA is admissible at x} is called the 

admissible fiber at x. We say that X is admissible if 

At (x) = A(x) n ll-l(t) is nonempty for each (x,t) E X x I. 

Proposit~on 1.5. If A E A(~) and B E A(x) and ~ E A n B 

then A U B E A(x). Hence, if Ai E A(x), i = 1,2,··· ,n, 

then U~=lAi E A(x). 

Proof. Let E > o. Since A E A(~), there is T < E where 

each point y of the T-neighborhood V of ~ has an element 

C E ~(y) such that H(A,C) < E. Since B E A(x) there is 
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a > 0 such that each point z of the a-neighborhood W of x 

has an element D E F(z) such that H(B,D)< T. One sees that 

~ E Band H(B,D) < T imply V n D f~. Hence, for each z E W 

there are D E F(z), y E V n D and C E F(y) such that 

H(A,C) < E, H(B,D) < E and CUD E F(z). By Lemma 1.4, we 

have H(A U B,C U D) ~ max{H(A,C) ,H(B,D)} < E, and the 

proposition is proved. 

Proposition 1.6. For each x E X its admissibZe fiber 

A(x) is cZosed in C (X) ~ {x} E A(x) and X E A(x). 

Proof. Suppose An' n = 1,2,···, is a sequence in A(x) 

which converges to A in C(X). Obviously, A E F(x). Let 

E > O. There is a positive integer N such that H(A,~) < E/2. 

Since ~ E A(x), there is a a-neighborhood V of x such that 

each point y of V has an element B E F(y) such that 

H(~,B) < E/2. From H(A,B) ~ H(A,~) + H(~,B) < E, we have 

A E A(x) and hence A(x) is closed. The remaining parts of 

the proposition are obvious. 

We note that since C(X) is compact [1], A(x) is compact. 

Proposition 1.7. Let B E F(x) dnd C U{A E A(x) IA c B} 

then C E A(x). 

Proof. First we prove C is a subcontinuum of X. Clearly 

C is connected and x E C. Let x ' n = 1,2,··· , be a sequencen 

in C converging to For each n > 1 choose A E A(x) suchx O• n 

that x E A c B. Since A(x) is compact in C(X) , we may
n n 

assume that the sequence An' n = 1,2,···, also converges to 

an element AO E A(x). Obviously, X E AO c B. Henceo 
X E A C. We conclude that C is closed in X.O co 
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Now suppose £ > o. Since C is compact in X, there are 

points c
l

,c2 ,···,c in C such that C is contained in the n 

£-neighborhood of the finite set {c
l 

,c2 ,···,c }. For each 
n 

i, let A. 
1 

E A(x) such that c. 
1 

E A. 
1 

c B and let B
O 

u~ lA .. 
1= 1 

Since C ~ BO ~ {c l ,c2 ,···,cn 
}, we have H(C,B

O
) < £. By 

Proposition 1.5, B E A(x). Since A(x) is compact in C(X)
O 

we have C E A(x). 

Proposition 1.8 [7]. If h: X x I + C(X) is a continuous 

increasing map such that x E h(x,O) for x E X then 

h (x,t) E A(x) for (x,t) E X x I. 

Theorem 1.9 [7]. If X is a nondegenerate metric con

tinuum and C(X) is contractible, then X is an admissible 

space. 

2. Fiber Maps 

In [5] it was shown that the contractibility of C(X) 

is equivalent to an existence of a set-valued map a: X +.C(X) 

possessing a certain property. In this section we prove 

that this property is preserved by the homotopy equivalence 

relation. Hence, we obtain generalizations of many of the 

results in [4] and [8]. 

Definition 2.1 [5]. A set-valued map a: X + C(X) is 

said to be a c-map if, for each x E X, a(x) is a closed sub

set of the admissible f~ber A(x) such that 

(1) {x}, X E a (x) • 

(2) For each pair AO,A in a(x) with AO c AI' there isl 

an ordered segment [2, p. 57] in a(x) from AO to AI. 
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(3) For each A E a(x), and E > 0, there is a neighbor

hood W of x such that each point y of W has an element 

B E a(y) such that H(A,B) < E. 

We say that the space X is a c-space if there is a 

set-valued c-map a: X + C(X). Clearly every c-space is an 

admissible space. 

Proposition 2.2 [5]. Every set-valued c-map a: X + C(X) 

is lower semicontinuous. Furthermore~ if a(x,t) 

a(x) n ~-l(t)~ then a is lower semicontinuous on X x I. 

Theorem 2.3 [5]. Let X be a metric continuum. Then 

C(X) is contractible if and only if there is continuous 

set-valued c-map on X into C(X). 

In [1] Kelley defined a property (subsequently named 

property K in Nadler [2]) and proved that the hyperspaces 

of a space having property K are always contractible. The 

class of metric continua having property K includes locally 

connected continua and the hereditarily indecomposable con

tinua. We now restate the result of Kelley. 

Proposition 2.4 [1]. If X has property K~ then there 

is a continuous c-map a: X +C(X). 

Proof. Since X has property K, F(x) = A(x) by [5, 

Proposition 2.4] and F: X + C(X) is continuous by [9, 

Theorem 2.2]. The existence of ordered segments in F(x) for 

every pair AO C Al is given in [1, p. 24]. Hence the admis

sible fiber map A is a continuous set-valued c-map. 
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2Let X be a metric continuum. A function a: X + C (X) 

is called admissible if, for each x E X, 

(1) I {x} E a (x) , 

(2) I a (x) c A(x) and a (x) is closed in A(x), 

(3) I a(x) contains a maximal element Ax' i.e., A c Ax 

for all A E a(x), 

(4) I a(x) is segmentwise connected, i.e., for each pair 

AO,A in a(x) with A AI' there is an ordered segmentO c 

[2, p. 57] in a(x) from AO to AI· 

l 

Let tV {A IA is a maximal element in a (x), x E X}a x x 
Ifand {{A }IA E tV } c C2 (X).a x x a 

Proposition 2.5. The following statements are equiva

lent. 

(1) C(X) is contractible. 

(2) There is a continuous admissible function 

a: X + C
2 

(X) such that ntV ~~. 
a 

(3) There is a continuous admissible function 

2a: X + C2 (X) such that the set tV2 is contractible in C (X).
a 

Proof· (1) ~ (2). Suppose h: X x I +C(X) is an 

increasing contraction. Let a(x) = {h(x,t) It E I}. Then 

the continuity of h provides the continuity of a and it is 

obvious that a satisfies the admissible conditions (1') - (4 I), 

with Ax = h(x,l) = ntV . a 

(2) ~ (3). Suppose a: X + C
2 (X) is a continuous admis

sible function such that ntV ~~. Let X E ntV and let 
a o a 

y: I + C(X) be an ordered segment from {xC} to X. Define 

S: tV 2 x I + C2 (X) bya
 

S ({Ax}' t) = {A U Y(t)}.
x 
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Then S is continuous and S({Ax},l) {X} for each 

{Ax} E N~. 

(3) • (1). Suppose a: X + C2 (X) is a continuous admis

2sible function and S: N2 
x I + C (X) is a contraction. We 

a 

may assume S is increasing. Let 0: C2 (X) + C(X) be the 

function defined by o(T) = UTe Then 0 is continuous. 

We now observe that for each x E X the maximal element 

Ax of a(x) is unique and Ax = 0 a (x). Therefore the func0 

tion x + {Ax} is continuous from X to C2 (X) . Hence we 

2define a function T: X + C (X) by T(X) = a(x) U 

{OS({AX},t) It E I}. Then T is continuous. Since 

OS({Ax},l) = A, for some A, and for all x E X, we may define 

an ordered segment y: I + C(X) from A to X and join it to T, 

that is ~(x) = T(X) U {y(t) It E I}. Then it is not difficult 

to '_check that ep satisfies the definition of a set-valuedc~map and 

ep is continu6us. Hence by Theorem 2.3, C(X) is contractible. 

Suppose X and Yare metric continua. 

Theorem 2.6. Suppose f: X + Y and g: Y + X are con

tinuous functions such that fog: Y + Y is homotopic to the 

identity idy . If X is a c-space then Y is a c-space. 

Proof. Let h: Y x I + Y be a homotopy such that 

h(y,O) y and h(y,l) f 0 g(y) for each y E Y. Let 

h(y,t) U{h(y,s) 10 < s < t}. Then h: Y x I + C(Y) is a 

continuous homotopy such that h(y,t) c h(y,t l ) whenever 

t < tl. Let Sl(y) = {h(y,t) It E I}. Then the continuity 

of h implies the continuity of Sl: Y + C2 (y) and each element 

h(y,t) of the set Sl(y) is an admissible element at y such 
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that for each pair BO,B in Sl (y) with B B there is anO c 
l

,l 

ordered segment in 8 (y) from BO to Bl .l 

Let a: X -+ C (X) be a set-valued c-map. For y E Y, let x = g (y) 

and S2(y) = {h(y,l) U f(A)IA E a(x)}. Since f(x) = f g(y)0 

E h(y,l) n f(A), we have h(y,l) U f(A) E C(Y). Now we will 

show that 8 2 : Y -+ C2 (y) is lower semicontinuous. 

Let E > o. Since f is continuous, there is E' > 0 

such that if A,A' E C(X) such that A and A' are less than 

E' apart, then H(f(A) ,f(A')) < E. Since a is lower semi

continuous and a(x) is compact, there exists ° > 0 such 

that if d(x,x') < ° and A E a(x), there is an element 

A' E a(x') such that A and A' are less than E' apart. Now 

the continuity of g implies that there is 00 > 0 such that 

if d(y,y') < 00 then d(g(y) ,g(y')) < 0. Also, by the con

tinuity of h, we choose 01 > 0 such that if d(y,y') < 01' 

then H(h(y,l) ,h(y',l)) < E'. Let ~ = min{oO,ol}' x g(y), 

x' = g(y'). Then if d(y,y') < ~ and ~(y,l) U f(A) E 8 2 (y) 

then there is h(y',l) U f(A') E 8 (y') such that
2 

H(h(y,l) U f(A), h(y' ,1) U f(A')) 2 max{H(h(y,l) ,h(y' ,1)), 

H(f(A),f(A'))} < E by Lemma 1.4. Hence the elements of 8 (y)
2 

are admissible at y and S2 is lower semicontinuous. Since 

f preserves ordered segments, we see that 8 satisfies the2 

condition of ordered segment. Now let y: I -+ C(Y) be an 

ordered segment from f(X) to Y and let 8 3 (y) = {y(t) U h(y,l) ItE I} 

and 8(y) = 8 (y) U 8 (y) U 8 (y). The maximal element ofl 2 3 

8 (y) is hl(y,l) which is also the minimal element of 8 2 (y),l 

and the maximal element of 8 (y) is h(y,l) U f(X), and the2 

minimal element of 83 (y) is f (X) U h (y, 1). So the continuity of 81 
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and together with the lower semicontinuity of 8 pro83 2 

vide the lower semicontinuity of 8, and hence (3) is veri

fied for 8. It is easy to verify that 8 also satisfies 

the condition (1) and (2) of Definition 2.1. 

Corollary 2.7. Suppose X and Yare homotopically equiva

lent metric continua. Then X is a c-space if and only if Y 

is. 

Let idy denote the identity map of Y onto itself and 

[f] the homotopy class of continuous maps ofY into itself 

which contains f. 

Theorem 2.8. A metric continuum Y is a c-space if 

and only if for some g in [id ] it is true that g(Y) is ay 

c-space. 

Proof. If Y is a c-space then let g = idy • Conversely, 

suppose for some g E [id ] , g(Y) is a c-space. Let X = g(Y)y 

and f: X ~ Y be the inclusion map. Then fog = g E [idy ]. 

So Theorem 2.6 gives the conclusion. 

Corollary 2.9. Suppose X is a deformation retract of 

Y. If X is a c-space, so is Y. 

Proof. Let y: Y ~ X be a retraction which is homotopic 

to the identity map idy . Then Theorem 2.8 provides the 

conclusion. 

Coro~lary 2.10. If Y is a retract of X and X is a 

c-space, then so is Y. 
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Proof. Let f: X ~ Y be a retraction and g: Y ~ X the 

inclusion map. Then fog = idy . So by Theorem 2.6, Y is 

a c-space. 

Theorem 2.11. Let X = Xl U X where X and Xl are sub2 

continua and X is a closed subset such that Xl n X is a
2	 2 

strong deformation retract of X If Xl is a c-space so is2 . 

X. 

Proof. ~l is a deformation retract of X. 

Theorem 2.12. The product space X x y is a c-space 

if and only if both X and Yare c-spaces. 

Proof. Each factor space is a retract of X x Y. 

Therefore by Corollary 2.10, X x Y is a c-space. 

Conversely, if ax: X ~ C(X) and a : Y ~ C(Y) are sety 

valued c-maps, then aX x a y : X x Y ~ C(X x Y) defined by 

ax	 x ay(x,y) = ax(x) x ay(y) {A x BIA E ax(x),B E ay(y)} 

is a set-valued c-map. 
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