TOPOLOGY PROCEEDINGS

Volume 8, 1983

Pages 329-332

http://topology.auburn.edu/tp/

A RATIONAL VECTOR SPACE NOT HOMEOMORPHIC TO A NORMED RATIONAL VECTOR SPACE

by Jan van Mill

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A RATIONAL VECTOR SPACE NOT HOMEOMORPHIC TO A NORMED RATIONAL VECTOR SPACE

Jan van Mill

1. Introduction

All spaces under discussion are separable metric.

The Anderson-Kadec Theorem (see [BP] for background information) that every infinite-dimensional Fréchet space is homeomorphic to the Hilbert space ℓ_2 , suggests the question whether "nice" subsets of Fréchet spaces are always homeomorphic to "nice" subsets of ℓ_2 . As far as I know it is open whether every locally convex real vector space is homeomorphic to a linear subspace of ℓ_2 . Let us consider R^∞ to be a vector space over the rationals Q. In this note we will show that there is a linear subspace L of R^∞ that is not homeomorphic to a normed vector space over Q.

2. Preliminaries

A (topological) vector space over ${\tt Q}$ is a topological space ${\tt X}$ that is a vector space over ${\tt Q}$ such that the algebraic operations

$$\langle x,y \rangle + x + y$$
, and $x + qx$ (q $\in Q$ fixed)

are continuous. A vector space over Q will be called a rational vector space from now on. As usual, a rational vector space L is called normed if there is a function $||\cdot||:L+\mathbb{R}^+$ such that

330 van Mill

$$|| x + y || \le || x || + || y ||,$$

 $|| qx || = |q| \cdot || x ||,$
 $|| x || = 0 \leftrightarrow x = 0$

for all $x,y \in L$, $q \in Q$, while moreover the metric

$$d(x,y) = ||x - y||$$

generates the topology on L. Observe that $|| \times || \in \mathbb{R}^+$ for every $x \in L$ and not, as some might expect, that $|| \times ||$ is always rational.

3. The Construction

In this section we will construct the example that was announced in the introduction.

- 3.1 Theorem. Let X be a topologically complete vector space over \overline{R} of dimension at least 2. Then X contains a connected subspace L such that
 - (1) if $x,y \in L$ and $s,t \in Q$ then $sx + ty \in L$,
- (2) if h: L \rightarrow L is any autohomeomorphism then there are q \in Q\{0} and y \in L such that h(x) = qx + y, for every x \in L,
 - (3) L intersects every Cantor set in X.

The proof of this result, except for trivial modifications, is the same as the proof of [vM, Theorem 3.1] and will therefore be omitted.

Now let $X = \mathbb{R}^{\infty}$ and let $L \subseteq X$ be as in Theorem 3.1. By (1), L is a rational vector space and we claim that L is as required. Striving for a contradiction, let M be a normed rational vector space and let h: L \rightarrow M be a homeomorphism. By 0 we will denote the point $(0,0,\cdots) \in \mathbb{R}^{\infty}$.

Since M is homogeneous, without loss of generality we may assume that $h(\underline{0})=0$. To avoid confusion, the algebraic operations on M will be denoted by \oplus and \cdot , respectively. Define $\gamma\colon M \to M$ by $\gamma(x)=x\oplus x$. Then γ is a homeomorphism of M which implies that $\xi=h^{-1}\gamma h$ is a homeomorphism of L. Observe that

$$\xi(0) = h^{-1}\gamma h(0) = h^{-1}\gamma(0) = h^{-1}(0) = 0.$$

By (2) there exist $q \in Q$ and $y \in L$ such that

$$\xi(x) = qx + y$$

for every $x \in L$. Since $\xi(\underline{0}) = \underline{0}$ it follows that $y = \underline{0}$, whence $\xi(x) = qx$ for every $x \in L$. Let $U = \{x \in M: ||x|| < 1\}$. Then U is an open neighborhood of 0 in M, whence $h^{-1}(U)$ is an open neighborhood of $\underline{0}$ in L. Choose an open neighborhood V of 0 in R and an $n \in N$ such that

$$\mathbf{W} = (\mathbf{V} \times \mathbf{V} \times \mathbf{V} \times \cdots \times \mathbf{V} \times \mathbf{R} \times \mathbf{R} \times \cdots) \cap \mathbf{L} \subseteq \mathbf{h}^{-1}(\mathbf{U}).$$

By (3), there is a point $x \in W \setminus \{\underline{0}\}$ such that $x_i = 0$ for every $i \leq n$. Then $Qx \subseteq W$ and from this we conclude that $\{\xi^n(x): n \in \mathbb{N}\} \subset W$. Put y = h(x). Then

$$\xi^{n}(h^{-1}(y)) = (h^{-1}\gamma h)^{n}(h^{-1}(y)) = h^{-1}\gamma^{n}hh^{-1}(y)$$

= $h^{-1}\gamma^{n}(y) \in W \subseteq h^{-1}(U)$

for every $n \in \mathbb{N}$. Consequently, $\gamma^n(y) \in U$, $n \in \mathbb{N}$. Let $\varepsilon = ||y||$. Observe that $\varepsilon > 0$. Take $n \in \mathbb{N}$ so large that $2^n \varepsilon > 1$. Then $||\gamma^n(y)|| = ||2^n \cdot y|| = 2^n ||y|| = 2^n \varepsilon > 1$, which is a contradiction.

332 van Mill

References

[BP] C. Bessaga and A. Pelczyński, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.

[VM] J. van Mill, A topological group having no homeomorphisms other than translations, Trans. Amer. Math. Soc. 280 (1983), 491-498.

Subfaculteit Wiskunde
Vrije Universiteit
De Boelelaan 1081
Amsterdam, The Netherlands
and
Mathematisch Instituut
Universiteit van Amsterdam
Roetersstraat 15
Amsterdam, The Netherlands