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CARDINALITIES OF CERTAIN CLOSED FILTERS 

J. E. Vaughan 

Abstract. We prove that if J is a maximal closed 

filter on a space X then IJI = o(X) (= the number of closed 

subsets of X), and there exists a space X and a prime closed 

filter J on X with IJI < o(X). Further, cardinals of the 

form IJI, where J is a prime closed filter on a T2-space, 

are never singular, strong limit cardinals. We also con

sider the related notion of an astral closed filter. These 

results about closed filters are used in the study of some 

weak covering properties. A. V. Arhangel'skii has intro

duced the three covering properties ultrapure, astral and 

pure which are all weaker than weak o0-refinable. He proved 

that if ~ is anyone of these three properties then every 

countably compact space having property ~ is compact. 

J. M. Worrell, Jr., and H. H. Wicke proved that if qr is che 

property defined by restricting the definition of weak 

o8-refinable to apply only to open covers of regular 

cardinality, then every countably compact space having 

property Qr is compact. In this paper we answer the ques

tion: If ~ is one of the three properties of Arhangel'skii, 

then is every countably compact space having property ~r 

compact? The answer is "yes" for ~ = ultrapure, and is 

independent of and consistent with ZFC for ~ = astral or 

pure. 
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1.	 Introduction and Basic Results 

We recall several standard definitions (see [W]). 

Definition. A family of closed subsets J of a space 

X is called a (free) closed filtep provided the following 

hold: 

1.0.	 J ~ ~, 

1.1.	 ~ ~ J, 

1.2.	 nJ ~, 

1.3.	 If F E J and H E J then F n H E J, 

1.4.	 If F E J and F cHand H is closed, then H E J. 

Because of our interest in open covers, we assume 1.2 

throughout this paper and drop the adjective "free." A 

closed filter J is called a maximal closed filtep provided 

J is not properly contained in any closed filter. This is 

equivalent to saying that J satisfies, 

1.5. For every closed set H, either H E J or there 

is an F E J such that F n H = ~. 

A closed filter is called ppime provided it 

satisfies, 

1.6. If F, G are closed and F U G E J, then F E J or 

G E J. 
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We also consider the following concept which was 

introduced by Arhangel'skii in order to define astral 

spaces. A closed filter is called astral provided it 

satisfies the following 1.7, 1.8 : 

1.7. If F. are closed sets for i < w, and U{F.:
1 1 

i < w} E J, then there exists i < w such that F E J.i 

1.8. If F. E J for all i < w, then n{F.: i < w} E J. 
1 1 

In the remainder of this section, and in §2 and §3 

we are concerned with the cardinalities of maximal, astral 

and prime closed filters. We apply some of these results 

in §4 to prove the topological results mentioned in the 

abstract. Since we are only interested in closed filters 

in this paper we may drop the adjective "closed." When we 

speak of an ultrafilter, we mean an ultrafilter of sets. 

1.9. Proposition. If J is a family of closed subsets 

of a Tl-space X satisfying 1.2 and 1.4, then Ixi < IJI. 

Proof. Assume false, i.e., assume that there is a 

space X and a family J of closed subsets of X satisfying 

1.2 and 1.4 such that Ixl > Ill. pick such a space X having 

smallest possible cardinality. Clearly for each F € J we 

have Ix - FI < lxi, or else by the T property and 1.4l 

{F U {x}: x € X - F} c J. By 1.2 X = U{X - F: F € J}; so 

Ixl < E{lx - FI: F € J}. Thus IJI ~ cf(lxl), hence 

Ixl ~ cf(lxl) by our assumption; so we see that Ixl is 

singular. Let Ixl A = E{At;: ~ < k} where k cf(A) and 

~ < t; < k imply A < A~ < A. Well-order X as X = {x : a < A} 
~ ~ a 
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and put X~ {x : a < A~} for all ~ < k. By our choice ofa 

X it is easy to see that for every ~ < k, we may choose a 

F E J such that F n X =~. Then {F U {x}: x E X 
~ ~ ~ ~ 

F } c J for all ~ < k. This implies that A ~ IJI, a contra
~ 

diction. This completes the proof. 

Recall that for a space X, o(X) denotes the number of 

open subsets of X. If J is one of the three filters we 

are considering on a Tl~space X, then 

2 1xl •1.10. Ixi ~ IJI ~ o(X) ~ 

1.11. Proposition. If J is a family of closed sets 

in X satisfying 1.4~ and 1.5~ then IJI o (X). 

Proof. For each F in J, let D(F) "{H: H is closed in 

X and F nH = ~}. Since the map H ~ F U H from D(F) into 

J is one-to-one, we see that ID(F) I ~ IJI. By 1.5, we have 

o(X) = I{H: H is closed in x}1 < IJI + 

L{IO(F)I: F E l} ~ Ill. 

1.12. CorolZary. If 1 is a maximal closed filter on 

a space X then IJI = o(X). 

2. Cardinalities of Prime Filters of Closed Sets 

In contrast to Corollary 1.12 for maximal filters, 

we have 

2.1. Example. There is a space X c Sew) and a prime 

filter of closed sets 1 on X with III < o(X). 

This example is based on the following two results. 
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2.2. Lemma. If k is the first aardinal suah that 

wthen k is regular and wl 2. k 2. 2 . 

The proof of this lemma is a simple exercise or one 

may use Theorem 18 in [J]. 

Recall that a space X is called a P-spaae provided 

that every countable intersection of open sets in X is 

open. Let w* denote S(w) - w (the Stone-Cech remainder of 

the natural numbers w). 

2.3. Theorem (see [vM], 4.4.4). If X is a P-spaae 

of weight < 2w then X aan be embedded into w*. 

Proof of 2.1. Let k be the cardinal mentioned in 

Lemma 2.2, and let Y = k + 1 with the smallest topology 

containing the order topology in which every a < k is 

isolated. Clearly Y is a P-space of weight k (having only 

the last point k not isolated); so by Theorem 2.3, there 

is an embedding h: Y ~ w*. The space we seek is 

X = w U {h (a): a < k} c S (w) • 

We define a prime filter J on X as follows. Let u h (k) , 

and regarding u as an ultrafilter on w, put 

J = {H c X: H is closed and H n w E u}. 

That J is prime follows from the facts that u ¢ X (so 

nJ = ~) and that {clSw(U) n X: U E u} is a base for J 

(so 1.6 holds). We now calculate IJI. For each U E u, let 

P(U) = {F E J: U c F}. Then J = U{P(U); U E u}. We show 

that for each U, we have Ip(u) I ~ 2w. This follows because 

clSw(U) is a neighborhood ofu in Sw and h is an embedding. 
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Thus	 Ix - clSw(u)1 < k, hence by the definition of k 

(*) 2 1 x - clSw (U) I < 2w• 

It follows that if U cHand H is closed, then (x - H) is 

open in the subspace (X - clSw(U)) of X. Since the map 

H ~ (X - H) from P(U) into the subspace topology on 

w
(X - clSw(U)) is one-to-one, we see by (*) that Ip(U) I < 2 • 

w•This shows that IJI ~ 2 Since the space X has a discrete 

subspace of cardinality k, we have o(X) > 2k~ This gives 

w kIxi = Jk < IJI = 2 < 2 = o(X). 

It is consistent that every cardinal number of the 

form lo(x) I, where X is a T2-space, is regular and also that 

ko(X)	 = 2 for some k; see [J Chapter 4]. Thus by Proposi
2

, 

tion 1.12, the same can be said for cardinals of the form 

IJI where J is a maximal closed filter on a T2-space. We 

now show that, despite Example 2.1, these same consistency 

results hold for cardinals of the form IPI where P is a 

prime closed filter on a T2-space. We use the following 

theorem of A. Hajnal and I. Juhasz ([HJ] or [J2 , 4.5]) 

which is the basic result used to prove the results about 

o(X) • 

2.4. Theorem (Hajnal and Juhasz). If X is a T 2-space, 

then o(X) is not a singular, strong limit cardinal. 

2.5. Theorem. If P is a prime closed filter on a 

T2-space X, then I~I is not a singular, strong limit 

cardinal. 

Proof. Assume false, i.e., assume that there is a 

T2-space X and a prime filter ~ on X with I~I = ~, where 
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A is a singular, strong limit cardinal. CLAIM: For every 

P in P we have Ix - pI < A. If the claim is not true, then 

there exists PEP such that Ix - pI = Ai so by Theorem 

2.4, the subspace (X - P) of X has at least A+ relatively 

closed sets. For each relatively closed set F c (X - P) we 

assign the closed set (clx(F) U P) E P. This assignment, 

however, is one-to-one, which implies that IPI > A+. This 

contradiction establishes the claim. We now use this claim 

to get a contradiction. Let k = cf(A) and let {A : a < k}
a 

be a set of cardinals less than A such that A = L{A : a < k}.
a 

By transfinite induction on k we construct a family {U : 
a 

a < k} of mutually disjoint open subsets of X such that 

A ~ IUal < A for all a < k. Suppose we have constructed a 

U for a < y where y < k. Construct U as follows. Let 
a y 

Y = U{U : a < y}. Then IY! < L{lu I: a < y} < A. Bya a 

[J
l , 2.4] , IYI ~exp exp IYI < Ai so (X - Y) is an open 

subset of X with Ix - YI = A. For S < k, let 

B = {x E X - Y: there is a neighborhood U of x
S 

with lui 2- AS} 

By the claim and (1.2), every point in X has s~ch a neigh

borhood, hence X - Y U{Be: S < k}. Thus, there exists 

e < k such that IBel ~ A • Let B be a subset of Be with y 

IBI A • For each b in B, let U C X - Y be an open
y b 

neighborhood of b with Iubl < AS. Put U y = U{Ub : b E B}. 

This completes the induction. Now let Sand L be two 

disjoint subsets of k such that S U L k, and lsi = ILl k. 

Put Us U{U : a E S}, and U = U{U : a E L}. Since a L a 

X = Us U U U (X - (Us U UL)), and P is prime, one of theseL 
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three closed sets must be in ~,but this contradicts the 

claim. 

Using Theorem 2.5, and following the proofs of the 

analogous results about o(X) in [J
2 

, Chapter 4] we get 

2.6. Corollary. Let ~ be a prime closed filter on a 

T 2-space X. Then (a) GCH implies that I~I is regular 3 and 

(b)	 GCH and there exist no inaccessible cardinals imply
 

k

that I~I = 2 for some k. 

3. Astral Filters and Measurable Cardinals 

Every countably compact, non-compact space has (by 

Zorn's Lemma) a maximal closed filter, and it is easy to 

see that on a countably compact space, every maximal filter 

is astral. Thus astral filters exist. On the other hand, 

we have the next example. 

3.1. Example. There exists a non-compact space 

x c S(w) such that X has no astral filters. 

Proof. We may" take for X the space of Example 2.1. 

Suppose that A is an astral filter on X. By 1.2 and 1.8, 

there exists A in A such that A misses the countable set 

w. Thus, (X w) E A. Since (X w) is a closed discrete 

subset of X, we have that u = {A n (X - w): A E A} is a 

non-principal, ultrafilter on (X - w) which is w+-complete 

(i.e., closed under countable intersections). But this is 

impossible since Ix - wi = k 2 2w is non-measurable [GJ, 

12.5] . 
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We ask the question: Does there exist a space X and 

an astral filter A on X with IAI < o(X)? It is natural to 

try to generalize the embedding construction of Example 2.1. 

As in 3.1, however, such a procedure might imply the 

existence of an uncountable measurable cardinal. In fact, 

we do not know if it is possible to construct such a pair 

X, A in ZFC, but we can construct such a pair by using a 

measurable cardinal k. It is not clear how to apply (the 

general version of) the embedding theorem 2.3 since we need 

h(k) to be k-complete, but it is easy enough to construct 

the subspace of a(k) directly using the following result. 

3.3. Lemma. If there exists a measurabLe cardinaL 

kk > wand 2 = k+ then there exists a k-compLete~ uniform 

uLtrafiLter p on k having a base {B : a < k+} such that for 
a 

aLL a < S < k+ we have IB - Bal < k and IB - Bal k.
S a 

Proof. We do not know a specific reference for this 

result, but it follows easily from [eN, 8.26, and 9.6(d)] 

which gives a k-complete uniform ultrafilter p on k such 

that for every partition {d~: ~ < k} on k.there exists P 

in p such that I{~ < k: Ip n d~l > I}! 2 1. This p can be 

seen to have the required base in a manner similar to 

Walter Rudin's construction of a P-point in w* (the point 

P will be a Pk+-point in U(k), the set of uniform ultra

filters on k). 

3.4. ExampLe. If there exists a measurabLe cardinaL 

k > wand 2k 
= k+~ then there exists a space X c S(k) and 

an astraL fiLter A on X such that IAI < o(X). 
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Proof. Let p be the ultrafilter in Lemma 3.3, and 

pick points 

X E clSk(B - B +l ) n U(k)a a a 

for all a < k+. Then {x : a < k+} is a discrete subset of 
a 

U(k). Take X = k U {xa: a < k} and A {H c x: H is closed 

in X and H n k E pl. 

4. Ultrapure, Astral and Pure Spaces 

4.1. Definition (Arhangel'skii [Aj). A space X is 

called ultrapure (resp. astral, or pure) provided every 

family of closed sets (resp. astral closed filter, or maxi

mal closed filter) has a a-suspension. 

In this paper we do not need to know exactly what a 

a-suspension is because we only have to be concerned with 

the cardinalities of closed filters. 

4.2. Theorem (Arhangel'skii [A]). 

(a) Every weakly a8-refinable space is an ultrapure 

space. 

(b) ultrapure ~ astral ~ pure. 

(c) Every countably compact~ pure space is compact. 

4.3. Definition. If rp is a property of the form "for 

every family J with property Q there is a family y with 

property 7?," we say that rpr is the property "for every 

family J of regular cardinality with property Q, there is 

a family § with property 7?" Property rpr is called "the 

property rp with the restriction to regular cardinality." 
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It should be noted that the property ~rmay depend on 

the exact statement of~. For example consider the follow

ing: 

~:	 Every open cover has a countable subcover, 

~r:	 Every open cover of regular cardinality has a 

countable subcover. 

Q.	 Every uncountable open cover has a subcover of 

strictly smaller cardinality. 

Qr: Every uncountable open cover of regular cardinality 

has a subcover of strictly smaller cardinality. 

Property ~ is the standard definition of the Lindelof 

property, and Q is clearly equivalent to~. But ~r and Qr 

are not equivalent. It is known that ~r is equivalent to 

the Lindelof property (see Theorem 2 in [V]i ~r is the pro

perty which is there called S[wl,oo]). Property Qr, however 

is equivalent to the property called "finally compact in 

the sense of complete accumulation points" (by a theorem 

of Alexandroff and Urysohn [AU]) which is strictly weaker 

than the Lindelof property (see [M]). 

In [WW], Worrell and Wicke continued a line of investi 

gation started in [AU]. They considered the property ~r, 

where ~ is the standard definition of weakly cG-refinable, 

and they proved that every countably compact space with 

property ~r is compact. Their proof easily adapts to prove 

that every countably compact ultrapurer space is compact. 

For astral and pure, however, we have 
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4.4. Theorem. The following statements are independent 

of and consistent with ZFC. 

1. Every countably compact purer T 2-space is compact. 

~	 ~r .2 . Every countab ~y comapct astra~ T 2-space ~s compact. 

Proof. Since in a countably compact space, every 

maximal filter is astral, we have that (1) implies (2).
 

wl

If 2 is singular then both statements are false: Consider 

the space X = wI with the order topology. Let Y denote the 

discrete subspace of successor ordinals. If A is astral on 

X, the closed set (X - Y) is in A because otherwise 

u = {A n Y: A E A} is a non-principal, w+-complete ultra

filter on the set Y. Now, for each HeY, we have that the 

closed set H U (X - Y) E ~; so I~I = 2
wl 

Thus X = w isl 

astral r in the vacuous sense; so (1) and (2) fail. On the 

other hand under GCH both (1) and (2) are true: if (1) is 

not true then by Theorem 4.2(c) there exists a purer 

T
2
-space X which is not pure; so there exists a maximal 

filter J on X with IJI a singular cardinal. By GCH, IJI is 

a singular, strong limit cardinal, but since X is T2 this 

contradicts Theorem 2.5. 
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