TOPOLOGY PROCEEDINGS

Volume 9, 1984

Pages 1-6

http://topology.auburn.edu/tp/

WEAKLY EQUIVALENT EXTENSIONS OF TOPOLOGIES

by

ROBERT BUSKIRK AND SAM B. NADLER, JR.

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

WEAKLY EQUIVALENT EXTENSIONS OF TOPOLOGIES

Robert Buskirk and Sam B. Nadler, Jr.

1. Introduction

Let (X,T) be a topological space. An extension of T is a topology T' for X such that T' \supset T. If α is a collection of subsets of X, then the extension of T by α , denoted by $T(\alpha)$, is the topology for X having T U α as a subbase. It has been of interest to find conditions on the members of α in order that a given topological property be preserved under the extension of T by α (see [1], [3]-[9]). In this paper we give a necessary and sufficient condition on the members of α in order that $(X,T(\alpha))$ be weakly equivalent to (X,T). As a consequence, we have a sufficient condition on the members of α so that dense sets, residual sets, separability, the property of being a Baire space, etc. are preserved under the extension of T by α . We also obtain conditions which imply that a $T(\alpha)$ -continuous function into a metric space is T-continuous at each point of a T-dense set.

2. Weakly Equivalent Extensions

Two topologies T and T* for a set X are said to be weakly equivalent provided that each nonempty member of either of the topologies contains a nonempty member of the other. We say that a collection α of subsets of a set X has property (W) with respect to a topology T for X provided that for each finite subcollection α' of α ,

Buskirk and Nadler

 $cl_{\mathbf{T}}[int_{\mathbf{T}}(\mathbf{n}\alpha')] \supset \mathbf{n}\alpha'$

where $\operatorname{cl}_{\operatorname{T}}$ and $\operatorname{int}_{\operatorname{T}}$ denote the closure and interior operators with respect to T.

Theorem 2.1. Let (X,T) be a topological space and let α be a collection of subsets of X. Then, the topologies T and $T(\alpha)$ are weakly equivalent if and only if α has property (W) with respect to T.

Proof. First, suppose that α does not have property (W) with respect to T. Then, there is a finite subcollection α ' of α such that

 $cl_{T}[int_{T}(\alpha')] \Rightarrow n\alpha'.$

Let $G = (X - cl_{\pi}[int_{\pi}(n\alpha')]) \cap (n\alpha')$. Note that $G \neq \phi$ and $G \in T(\alpha)$. Suppose that there is a $V \in T$ such that $V \neq \phi$ and $V \subset G$. Since $V \subset G$, $V \subset \Omega\alpha'$. Thus, since $V \in T$, $V \subset int_{\mathfrak{m}}(\Omega\alpha')$. However, since $V \subset G$, $V \subset X - int_{\mathfrak{m}}(\Omega\alpha')$ which, since $V \neq \phi$, is a contradiction. Hence, G does not contain any nonempty member of T. Therefore, T and $T(\alpha)$ are not weakly equivalent. Conversely, assume that α has property (W) with respect to T. Let $H \in T(\alpha)$ such that $H \neq \phi$. Then, since T U α is a subbase for $T(\alpha)$, there is a finite subcollection α of α and a U \in T such that U \cap ($\cap \alpha$ ') is a nonempty subset of H. Let V = int_m($\cap \alpha$ '). Since α has property (W) with respect to T, $\operatorname{cl}_{\pi}(V) \supset \cap \alpha'$. Thus, since $U \in T$ and $U \cap (\cap \alpha') \neq \phi$, $U \cap V \neq \phi$. Clearly, U \cap V \in T and U \cap V \subset H. Hence, we have proved that each nonempty member of $T(\alpha)$ contains a nonempty member of T. Therefore, since $T \subset T(\alpha)$, T and $T(\alpha)$ are weakly equivalent.

Let us note that there are collections α such that for any two members A and B of α

 $\text{cl}_{\underline{T}}[\text{int}_{\underline{T}}(A \cap B)] \supset A \cap B$ and yet α fails to have property (W) with respect to \underline{T} . For example: Let $\underline{X} = \{(x,o) \in \mathbb{R}^2 \colon -1 \leq x \leq 1\} \cup \{(o,y) \in \mathbb{R}^2 \colon o \leq y \leq 1\}$ with the topology \underline{T} inherited from the usual topology on the plane \underline{R}^2 , and let $\alpha = \{A_1, A_2, A_3\}$ where $A_1 = \{(x,o) \in X \colon -1 \leq x \leq o\} \cup \{(o,y) \in X \colon o \leq y \leq 1\}$, $A_2 = \{(x,o) \in X \colon o \leq x \leq 1\} \cup \{(o,y) \in X \colon o \leq y \leq 1\}$, and $A_3 = \{(x,o) \in X \colon -1 \leq x \leq 1\}$.

3. Applications

First, recall the following definitions. Let (X,T) be a topological space and let $A \subset X$. Then: A is T-dense in X provided that $\operatorname{cl}_T(A) = X$; A is T-nowhere dense in X provided that $\operatorname{int}_T[\operatorname{cl}_T(A)] = \emptyset$; A is T-first category in X provided that $A = \{A_i \colon i = 1, 2, \cdots\}$ where each A_i is T-nowhere dense in X; A is T-second category in X provided that A is not T-first category in X; A is T-residual in X provided that X-A is T-first category in X. Fort [2] has observed that if two topologies on X are weakly equivalent, then a subset A of X has any of the properties above with respect to one of the topologies if and only if A has the same property with respect to the other topology. Thus, as a consequence of (2.1), we have the following result.

Theorem 3.1. Let (X,T) be a topological space, let α be a collection of subsets of X having property (W) with respect to T, and let $A \subset X$. Then, A is T-dense, T-nowhere

dense, T-first category, T-second category, or T-residual if and only if A is $T(\alpha)$ -dense, $T(\alpha)$ -nowhere dense, $T(\alpha)$ -first category, $T(\alpha)$ -second category, or $T(\alpha)$ -residual, respectively.

Corollary 3.2. Let (X,T) be a topological space and let α be a collection of subsets of X having property (W) with respect to T. If (X,T) is separable $(\beta$ -separable = contains a T-dense set of cardinality β), then $(X,T(\alpha))$ is separable $(\beta$ -separable, respectively).

Other results about the preservation of separability under extensions of topologies are in Theorem 8 of [4] and Theorem 5.8 of [1].

Recall that a topological space (X,T) is a Baire Space provided that the countable intersection of dense open sets is dense. It is easy to see that (X,T) is a Baire space if and only if every T-residual set is T-dense. Therefore, the following result is an immediate consequence of 3.1.

Corollary 3.3. Let (X,T) be a topological space and let α be a collection of subsets of X having property (W) with respect to T. Then, (X,T) is a Baire space if and only if $(X,T(\alpha))$ is a Baire space.

Fort [2] has shown that if (X,T) and (X,T*) are weakly equivalent Biare spaces and if a function f from X into a metric space is T*-continuous at each point of a T*-dense set, then f is a T-continuous at each point of a T-dense set. Using this theorem, 2.1, and 3.3, we have the following result:

Theorem 3.4. Let (X,T) be a Baire space and let α be a collection of subsets of X having property (W) with respect to T. If a function f from X into a metric space is $T(\alpha)$ -continuous at each point of a $T(\alpha)$ -dense set, then f is T-continuous at each point of a T-dense set.

Let T denote the usual topology on the real line and let $\alpha = \{[a,b): a,b \in R^1\}$. We see that a function $f\colon R^1 \to R^1$ is right continuous if and only if f is $T(\alpha)$ -continuous (with the usual topology on the range). Hence, by 3.4, we have the classical result in real analysis that if f is right continuous, f is continuous at each point of a dense set.

References

- C. J. R. Borges, On extensions of topologies, Can. J. Math. 19 (1967), 474-487.
- 2. M. K. Fort, Jr., Weak equivalence of topologies, unpublished, University of Georgia (Athens, GA).
- 3. J. A. Guthrie, D. F. Reynolds, and H. E. Stone, Connected expansions of topologies, Bull. Austral. Math. Soc. 9 (1973), 259-265.
- 4. N. Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964), 22-25.
- 5. D. F. Reynolds, A note on local discrete extensions of topologies, Kyungpook Math. J. 18 (1978), 91.
- 6. _____, Expansions of topologies by collections of closed sets, Proc. West Virginia Acad. Sci. 47 (1975), 215-218.
- 7. _____, Expansions of topologies by locally finite collections, Studies in Topology, Acad. Press, Inc., New York, 1975, N. M. Stavrakas and K. R. Allen, editors, 489-493.

- 8. _____, Preservation of connectedness under extensions of topologies, Kyungpook Math. J. 13 (1973), 217-219.
- 9. ____and J. H. Williams, Simple expansions of topologies, Proc. West Virginia Acad. Sci. 46 (1974), 177-179.

West Virginia University
Morgantown, West Virginia 26506