
Volume 9, 1984

Pages 7–30

http://topology.auburn.edu/tp/

PERVIN NEARNESS SPACES

by

John W. Carlson

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



7 TOPOLOGY PROCEEDINGS Volume 9 1984 

PERVIN NEARNESS SPACES 

John W. Carlson 

Introduction 

The collection of all finite open covers of a topologi­

cal space generates the Pervin quasi-uniform structure for 

that space. All covers refined by some finite open cover 

forms a nearness structure for a symmetric topological 

space. This nearness structure will be called the Pervin 

nearness structure. 

The Pervin nearness structure plays an interesting 

role in the family of all compatible nearness structures on 

a space. It is the smallest tot:ally bounded structure, the 

smallest contigual structure, and the largest ultrafilter 

generated structure. 

Herrlich, in [10], has shown that the completion of the 

contigual reflection of a T topological nearness space isl 

the Wallman compactification. But the contigual reflection 

of a topological nearness structure is the Pervin nearness 

structure. Hence, for T1 spaces, the Pervin nearness struc­

ture is induced by the Wallman compactification. 

A prime extension is one for which each trace filter 

is a prime open filter. Since t~he Pervin nearness structure 

is ultrafilter generated it follows that the Wallman com­

pactification or the Stone-Cech compactification, if the 

space is normal, are prime extensions. 

For a T space it is shown that the trace filters ofl 

the Wallman compactification are the minimal prime open 
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filters. Moreover, we can construct the Wallman compactifi ­

cation for a T space, or the Stone-Cech compactificationl 

for a normal space, using the strict extension topology on 

the family of all minimal prime open filters. 

For T spaces, concrete nearness structures ~ on X are
l 

induced by a strict extension Y. There is a one-to-one 

correspondence between the points of Y and the ~-clusters. 

Balanced near collections are introduced and it is shown 

that there is a one-to-one correspondence between the 

nonempty closed subsets of Y and the balanced near collec­

tions on X. This correspondence applied to the Pervin 

nearness structure yields a correspondence between the 

nonempty closed subsets of the Wallman compactification and 

the balanced closed filters on X. Using this result, 

certain closed sets in SN are characterized in terms of 

certain filters on N. 

1.	 Preliminaries 

We will assume that the reader is basically familiar 

with the concept of a nearness space as defined by Herrlich 

in [9] and [10]. 

Definition 1.1. Let X be a set and ~ a collection 

of covers of X, called uniform covers. Then (X,~) is a 

nearness space provided: 

(Nl)	 A E: ~ and A refines B implies B E: ~. 

(N2)	 {X} E: ~ and ~ ~ ~. 

(N3)	 If A E: ~ and B E: ~ then A A B {A n B: A E: A and 

B E: B} E: ~. 
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(N4)	 A E ~ implies {int (A): A E A} E 11. (int (A) 

{x: {X-{x},A} E ~}). 

For a given nearness space (X,~) the collection of 

sets that are "near" is given by ~ = {A c 'P(X): {X-A: 

A E A} ¢ 11}. The micromeric collections are given by 

A E Y if and only if {B c X: A n B ~ $ for each A E A} E ~. 

The closure operator generated by a nearness space is given 

by cl~A = {x: {{x},A} E ~}. If we are primarily using 

these "near" collections we will denote the nearness space 

by (X,~). The underlying topology of a nearness space is 

always symmetric; that is, x E TYT implies y E TXT. 

Definition 1.2. Let (X,~) be a nearness space. The 

nearness space is called: 

(1) topological provided A E ~ implies nA ~ $. 

(2) complete provided each ~;-cluster is fixed; that 

is, nA ~ ~ for each maximal element A in ~. 

(3) concrete provided each near collection is contained 

in some ~-cluster. 

(4) contigual provided A ¢ ~; implies there exists a 

finite B c A such that B ¢ ~. 

(S) totally bounded provided A ~ ~ implies there exists 

a finite B c A such that nB = ~. 

2.	 Closed Filters 

The following notation will be used in this paper. 

Definition 2.1. Let] be a closed filter in a topo­

logical space (X,t). 

(1 ) ~ (]) = {A eX: A E ]}. 
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(2) O(J) = {O E t: there exists F E J with F cO}. 

(3) sec(J) = {A c X: A is closed and A n F ~ ~ for 

each	 F E J}. 

2(4) sec (J)	 = sec(sec(J». 

(5) If A has the finite intersection property then 

J(A) will denote the closed filter generated by A. 
(6) J is called balanced provided J = n{m: mis a 

closed ultrafilter containing J}. 

(7) J is called rigid provided J n{m: mis a fixed 

closed ultrafilter containing J}. 

(8) J is called nontrivial provided J ~ {X}. 

(9) J is called a sparce closed filter if for each 

nontrivial closed filter H there exists a closed ultrafilter 

Ywith H¢ Y and J ¢ y. 

(10) A collection of closed filters {J : a E I} is called 
a 

uniformly sparce if for each nontrivial closed filter H 

there exists a closed ultrafilter y such that H ¢ Yand 

J ¢. Y for each a € I. 
a 

Lemma 2.1. Let J and J be closed filters on a topo­
l 2 

logical space. Then J c J if and only if y(J ) c y(J ).
l 2	 l 2

Lemma 2.2. Let J be a closed filter on a topological 

space. 

(1) J = n{m: mis a closed ultrafilter containing J} 

if and only if y(J) = n{y(m): mis a closed ultrafilter 

containing J}. 

(2) sec (J)	 u{m: mis a closed ultrafilter containing 

J} . 
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(3) sec 2 (]) n{m: mis a closed ultrafilter contain­

ing ]}. 

(4) sec 2 (]) is a closed filter containing ]. 

(5) ] is balanced if and only if ] = sec 2 (]). 

(6) ] is rigid if and only if there exists a nonempty 

closed set A such that] = ]({A}). 

Lemma 2.3. Let (X,t) be a topological space. 

(1) If X is T l and x E X then Ox' the open neighborhood 

filter of x, is a minimal prime open filter. 

(2) If] is a closed ultraf1:lter then 0 U) {o E t: 

x-o ~	 ]}. 

(3) 0	 is a minimal prime open filter if and only if 

there	 exists a closed ultrafilter] such that 0 = 0 U). 

Proof. To show (3), let 0 be a minimal prime open 

filter and set] = {F: F is closed in X and X-F ~ OJ. Then 

] is a closed ultrafilter and 0 = O(]). The remainder of 

the proof follows in a natural way. 

Lemma 2.4. Let (X,t) be a T topological space andl 

] a closed filter on X. The folZowing statements are 

equivaZent. 

(1) ]	 is a sparce closed fiZter. 

(2) For each nonempty open set 0 there exists FE] 

such that 0 ¢ F. 

3.	 Pervin Nearne88 Structure 

For a topological space (X,t) the collection {S(O): 

o E t} where S(O) = (0 x 0) U «X-O) x X), is a subbase 
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for a compatible quasi-uniform structure on X called the 

Pervin quasi-uniform structure. 

The Pervin quasi-uniform structure can also be gener­

ated as a covering quasi-uniform structure using the family 

of all finite open covers [7]. It is shown in [5] that the 

collection of all covers refined by a finite open cover is 

a compatible nearness structure. It is natural to call 

this the Pervin nearness structure. 

Definition 3.1. Let (X,t) be a symmetric topological 

space. Let ~ be the family of all covers of X that are 
p 

refined by a finite open cover. ~p is called the Pervin 

nearness structure on X. 

For the purposes of this paper it is more convenient 

to work with ~ , the corresponding family of near collec­
p 

tions. 

Theorem 3.1. Let (X,t) be a symmetric topoZogicaZ 

space. Then: ~p = {A c ~(X): A has the finite intersec­

tion property}. 

From [3], we have the following result. 

Theorem 3.2. Let (X,t) be a symmetric topoZogicaZ 

space. Then: 

(1) X is compact if and onZy if t; is uZtrafiZter 
p 

compZete. 

(2) X is H-cZosed if and onZy if X is Hausdorff and 

t;p is open uZtrafiZter compZete. 
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(3) X is countably compact if and only if J has the 

countable intersection property for each filter J in ~ 
p 

. 

(4) X	 is Lindelof if and onZ.y if every filter in ~ 
p 

with	 the countable intersection property clusters. 

Every contigual nearness structure is totally bounded; 

and it is easy to see that ~ is contigual. In fact, the 
p 

smallest compatible totally bounded nearness structure on 

a symmetric topological space is ~ and thus equals the 
p 

smallest compatible contigual nearness structure on the 

space. 

Theorem 3.3. Let (X,t) be a symmetric topological 

space. Then: 

(1) ~ is contigual.
p 

(2) ~ is the smallest compatible contigual nearness 
p 

structure on X. 

(3) ~ = n{~: ~ is a compatible contigual nearness 
p 

structure on X}. 

(4) ~ = n{~: ~ is a compatible totally bounded near­
p 

ness	 structure on X}. 

,(5) ~ is the smallest compatib~e totally bounded 
p 

nearness structure on X. 

(6) The Pervin nearness structure is contained in each 

compatible totally bounded nearness structure on X. 

Definition 3.2. Let (X,t) be a symmetric topological 

space and 5 a collection of free ultrafilters on X. Set 

~ (5) = {A c if (X): nif :I <p or there: exists J E 5 such that 

~ c ]}. A nearness structure ~ is called ultrafilter 
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generated provided there exists S such that ~ ~ (S). 

It is shown, in [8], that ~(S) is a compatible nearness 

structure on (X,t). 

Theorem 3.4. Let (X,t) be a symmetric topological 

space. Then the Pervin nearness structure is the largest 

compatible ultrafilter generated nearness structure on 

(X,t) . 

Thus, for a given symmetric topological space, the 

Pervin nearness structure is the largest ultrafilter gener­

ated nearness structure and the smallest totally "bounded 

nearness structure compatible with (X,t). Symbolically: 

~ = Totally Bounded n Ultrafilter Generated 
p 

Corollary 3.5. Let (X,t) be a symmetric topological 

space. Let ~l be any compatible totally bounded nearness 

structure and ~2 any compatible ultrafilter generated near­

ness structure. Then ~2 c ~l. That is~ each compatible 

totally bounded nearness struature aontains every aompatible 

ultrafilter generated nearness structure. 

Since every contigual nearness structure is concrete 

we have the following corollary. 

Corollary 3.6. Every Pervin nearness structure is 

concrete. 

Theorem 3.7. Let (X,t) be a symmetric topological 

space. Then: 
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(1) ~ p {A c P(X): A c §(J) for some closed ultra­

filter ]}. 

(2) A is a ~ 
p 
-cluster if and only if there exists a 

closed ultrafilter J such that A' = ~(]). 

(3) y
p

= {A c P(X): there exists a minimal prime open 

filter 0 that corefines A}. (Note: 0 is said to corefine 

A if for each 0 E 0 there exists an A E A such that A cO.) 

4.	 Extensions 

An extension Y of a space X is a space in which X is 

densely embedded. Unless otherwise noted, we will assume 

for notational convenience that X c Y. It is well known 

that for any extension Y of X there exists an equivalent 

extension Y' with X c Y'. 

If Y is an extension of X then ~ = {A c P(X): 

nCIyA., <t>} is called the nearness structure on X induced 

by Y. 

Let (Y,t) be a topological space and X = Y. For each 

Y E Y, set 0 y = {O n X: yEO E t}. Then {Oy : y E Y} is 

called the filter trace of Y on X. 

Y is called a prime extension of X if 0 
y 

is a prime 

open filter for each y E Y. Note: Ox is always a prime open 

"filter for x E X. 

Let t(strict) be the topology on Y generated by the 

base {O*: 0 E t(X)}, where 0* = {y E Y: 0 EO}. Let y 

t(simple) be the topology on Y generated by the base 

{O U {y}: 0 E 0 y ,y E Y}. Then t(strict) and t(simple) are 

such that Y with either of these~ topologies is an extension 

of (X,t(x), called a strict extension, or simple extension 
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of X, respectively. Note that 

t(strict) < t < t(simple). 

Moreover, a topology s on Y with the same filter trace as 

t forms an extension of (X,t(X)) if and only if it satisfies 

the above inequality. (See Banaschewski[l].) 

Herrlich's completion of a nearness space was presented 

in [9]. A brief description of it appears in [2] which we 

provide here for the convenience of the reader. Let (X,~) 

be a nearness space and let Y be the set of all ~-clusters 

Awith empty adherence. Set X* = X U Y. For each A c X, 

define cl(A) {y E Y: A E y} U cl~A. A nearness structure 

~* is defined on X* as follows: B E ~* provided A {A c X: 

there exists B E B with B c cl(A)} E ~. (X*,~*) is a com­

plete nearness space with cl~*X = X*. Also, for A c X, 

cl~*A = cl (A) . 

The following important theorem is due to Herrlich and 

Bently [2]. 

Theorem A. For any T nearness space (X,~) the follow­
l 

ing aonditions are equivalent. 

(1) ~ is a nearness structure induced on X by a strict 

extension. 

(2) The completion (x*,~*) of (X,~) is topological. 

(3) (X,~) is concrete. 

It is shown in [4] that a concrete nearness structure 

is ultrafilter generated if and only if it is induced by a 

prime strict extension. The following theorem also appears 

in [4]. 
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Theorem B. For any T nearness space the following
l 

conditions are equivalent. 

(1) ~ is induced on X by a prime strict extension. 

(2) The completion (x*,~*) of (X,~) is topological and 

X* is a prime extension of x. 

(3) ~ is concrete and ultrafilter generated. 

Since the Pervin nearness structure is ultrafilter 

generated and concrete it follows that ~ is induced by a p 

prime strict extension, provided the underlying topology is 

T . We now show that for T spaces the Pervin nearness
l l 

structure is induced by the Wallman compactification. 

Let (X,~) be a nearness space and set ~c = {A c P(X) : 

each finite B c A belongs to ~}. The following theorem is 

due to Herrlich [10]. 

Theorem C. If (X,~) is Tl and topological then 

(x*,~~) is the Wallman compactificaiion. 

If ~ is topological then ~c = {A c P(X): A has f.i.p.} 

= ~. Thus the following theorm is an immediate consequencep 

of Herrlich's result. 

Theorem D. Let (X,t) be a T topological space. Let1 

~p be the Pervin nearness structure. Then (X*,~*) is the p 

Wallman compactification of x. 

Since the Wallman compactification of a normal space 
v 

is the Stone-Cech compactification we have the following 

corollary. 
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Corollary 4.1. Let (X,t) be a normal topological 

space and ~ the Pervin nearness structure. Then (X*,~*) 
p P 

is SX, the Stone-Cech compactification of x. 

Corollary 4.2. Let (X,t) be a T topological space.l 

Then the Wallman compactification is a prime extension of 

X. If X is normal then SX is a prime extension of x. 

Corollary 4.3. Let (X,t) be a T topological space.l 

Then the Pervin nearness structure is the nearness structure 

on X induced by the Wallman compactification of x. Simi­

larly, if X is normal then the Pervin nearness structure is 

the nearness structure induced by the Stone-Cech compactifi­

cation of x. 

By corollary 4.3 and the results obtained for separated 

and regular nearness spaces obtained in [2], we have the 

following theorem. 

Theorem 4.4. Let (X,t) be a T topological space.
l 

The foLLowing statements are equivaLent. 

(1) X is normal. 

(2) ~p is separ~ted. 

(3) ~p is regular. 

Theorem 4.5. Let (X,~) be a T nearness space and
l 

(x*,~*) its completion. Then the trace filters on X are 

given by: 

{o E t(~): x E o} for x E X, and 

{o E t(~): x-o ~ A} for A E X*-X. 
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Proof· (1) follows immediately since X is a dense 

subspace of X*. (2). Let A be a ;-cluster and set 

5 = {O E t(;): X-O ~ A}. Let 0 E 5. Then X-O f A. Now 

cl(X-O) is closed in X* and A f cl(X-O). Thus Q* X* 

cl(X-O) is open in X* and 0 = Q* n X and A E Q*. Thus 

o E 0A and thus 5 c 0A. 

Let 0 E 0A. Then there exists Q*, open in X*, with 

A E Q* such that 0 = X n Q*. Now cl(X-O) is closed in X* 

but A E Q* and Q* n (X-O) =~. Hence A E cl(X-O) and thus 

X-O E A. Therefore, 0 E 5 and 0A c 5. 

Theorem 4.6. Let (X,t) be a T topological space andl 

; the Pervin nearness structure. Then the trace filters 
p 

generated by the completion (X*,;*) are precisely the mini­
p 

mal prime open filters on X. 

Proof. By theorem 4.5, the trace filters for the 

completion are of the form: 

(1) 0 {O E t: x EO}, for x E X; or x 

(2) 0A {O E t: x-o f A} for A a ; p -cluster. 

By lemma 2.3, each 0 is a minimal prime open filter. x 

If A is a ~p-cluster then by theorem 3.7 there exists a 

closed ultrafilter] such that 14 = ~ (J). Thus 0A = {O E t: 

X-O ~ ~(])} = {O E t: X-O f ]}. Thus, by lemma 2.3, 0A is 

a minimal prime open filter. 

Thus each Ox and 0A is a minimal prime open filter; 

all that remains to be shown is that if ° is a minimal 

prime open filter then either 0 o for some x E X or x°= 0A for some ;p-cluster A. 
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Let 0 be a minimal prime open filter. Then, by lemma 

2.3, there exists a closed ultrafilter J such that 0 = O{J). 

If {x} E J then 0 c 0 and, since 0 is a minimal primex 

open filter, it follows that 0 = Ox. 

If nJ = 4> then ~(J) E X*-X. Then O~{J) {O E t: 

x-o f ~(J)} = {O E t: x-o f J} = O{J) = O. 

Corollary 4.7. The family of minimal prime open filters 

is the filter trace of the Wallman compactification for a 

T space; and correspondingly, the filter trace of the
l 

Stone-Cech compactification for a normal space. 

Let (X,t) be a topological space and Y' a collection of 

open filters on X containing the open neighborhood filters. 

For 0 E t, let 0* = {O E Y': 0 EO}. Let t' be the topology 

on Y' generated by the base {O*: 0 E t}. Then, by Banaschew­

ski [1], (Y',t') is a strict extension of X where the 

embedding map e: X ~ Y' is given by e{x) = Ox' the open 

neighborhood filter of x. 

Many well known extensions can be constructed in this 

manner. The following examples, among others, are given in 

[1] • 

(I) If (X,t) is completely regular and Y' is the family 

of all maximal completely regular open filters then (Y',t') 

v 
is the Stone-Cech compactification. 

(2) If (X,t) is Hausdorff and Y' is the family of all 

open ultrafilters then (Y',t') is the Fomin H-closed 

extension of X. 

(3) If (X,t) is a locally compact, non-compact Hausdorff 

space and Y' is the collection of all open neighborhood 
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filters together with the filter of open sets with compact 

complements then (Y' ,t') is the I-point Alexandroff com­

pactification of X. 

By theorems D and 4.6, we have that the Wallman com­

pactification and the Stone-Cech compactification for 

normal spaces can be constructed in this manner, using the 

family of all minimal prime open filters. 

Theorem 4.8. Let (X,t) be a T topological space andl 

let Y' be the family of all minimal prime open filters on 

X. Then: 

(1) (Y' ,t') is the Wallman oompactification of x. 

(2) If (X,t) is normal then (Y',t') is the stone-Cech 

compactification of x. 

In [6], nearness spaces whose completions were second 

category or Baire topological spaces were characterized. 

In order to relate these results to the Pervin nearness 

structure we state a definition and two theorems from .[6]. 

Definition 4.1. Let (X,~) be a nearness space. Let 

5 c p(X). Then 5 is called a sparce near collection if 

5 E ~ and for each B E ~, such that B is not contained in 

each ~-cluster, then there exists a ~-cluster A such that 

B ¢. A and 5 ¢. A. 

Let {S : a E I} c~. Then {S : a E I} is called a a a 

uniformly sparce family if for each B E ~, such that B is 

not contained in each ~-cluster, then there exists a 

~-cluster A such that B ¢. A and 5 ¢. A for each a E I. 
a 
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Easily each member of a uniformly sparce family is 

itself a sparce near collection. 

Theorem 4.9 (Carlson [6]). Let (X,~) be a T nearness
l 

space. The following statements are equivalent. 

(1) ~ is a nearness structure induced on X by a second 

category T strict extension.l 

(2) The completion (x*,~*) of (X,~) is topological and 

second category. 

(3) (X,~) is concrete and for each countable collec­

tion {5.: i E N} of sparce near collections there exists a 
1 

~-cluster A such that 5. U A ¢ ~ for each i E N. 
1 

Theorem 4.10 (Carlson [6]). Let (X,~) be a T nearness
1 

space. The following statements are equivalent. 

(1) ~ is a nearness structure induced on X by a strict 

T Baire extension.l 

(2) The completion (x*,~*) of (X,~) is topological and 

a Baire space. 

(3) (X,E:) is concrete and each countable family of 

sparce near collections is uniformly sparce. 

Theorem 4.11. Let (X,t) be a T topological space and
l 

~p the Pervin nearness structure on X. Let A E ~p. 

(1) A is not contained in each -cluster if and only~p 

if J = J (A) is not the trivial closed filter. 

(2) A is a sparce near collection if and only if 

J J(A) is a sparce closed filter. 

Proof· (1) follows from the fact that A is contained 

in each ~p-cluster if and only if each A E A is dense in X. 
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(2) Suppose A is a sparce near collection. Then 

J = J(A) is a closed filter. Let H be a nontrivial closed 

filter. Then H E ~ and H is not contained in each p 

~ p -cluster. Since A is a sparce near collection there 

exists a ~ -cluster B such that A ¢ Band H ¢ B. Now 
p 

there exists a closed ultrafilter § such that B = {B c X: 

B E §}. Easily J ¢ § and H ¢ §. Therefore, J is a sparce 

closed filter. 

Now suppose J = J(A) is a sparce closed filter. Let 

H E ~ and H not contained in each ~ -cluster. Then p p 

m= J(H) is a nontrivial closed filter. Since J is a sparce 

closed filter there exists a closed ultrafilter § such that 

J ¢ § and m¢ §. Let B = {B c X: B E §}. Then B is a 

~ p -cluster and m¢ B and A ¢ B. Hence A is a sparce near 

collection. 

Theorem 4.12. Let (X,t) be a T topological space.l 

The following statements are equivalent. 

(1) The Wallman compactification of X is second 

category. 

(2) For each countable collection {Ji : i E N} of sparce 

closed filters there exists a closed ultrafilter ~ such that 

J. ¢ ~ for each i E N. 
1 

Proof. Let ~ denote the Pervin nearness structure 
p 

on X. Then (X*,s*) is the Wallman compactification of X 
p 

and the result holds by theorems 4.9 and 4.11. 

Theorem 4.13. Let (X,t) be a Tl topological space. 

The following statements are equj~valent. 
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(1) The Wallman compactification of X is a Baire 

space. 

(2) Each countable family of sparce closed filters is 

uniformly	 sparce. 

Proof. Let ~p denote the Pervin nearness structure on 

X. Then (x*,~*) is the Wallman compactification of X and p 

the result holds by theorems 4.10 and 4.11. 

Corollary 4.14. Let (X,t) be a normal topological 

space. Then each countable family of sparce closed filters 

is uniformly sparce. 

Proof. This follows immediately from the fact that 

each compact Hausdorff space is a Baire space. 

5.	 Balanced Near Collections 

Definition 5.1. Let (X,~) be a nearness space. Let 

A c ~(X) and let c(A) denote the set of all ~-clusters 

that contain A. Let p(A) denote the set of all the fixed 

~-clusters that contain A. Set b(A) nc(A). A is said to 

be a balanced near collection provided A E s and A nc(A) 

and A is called a rigid near collection provided A E ~ and 

A = np (A) • 

Theorem 5.1. Let (X,~) be a concrete nearness space 

and A E ~. 

(1) A c nc(A). 

(2) b(A) is the smallest balanced near collection con­

taining A. 

(3) Each ~-cluster is a balanced near collection. 
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(4) If n is a nonempty collection of ~-clusteps then 

nn is a balanced neap collection. 

(5) If A is a pigid neap collection then A is a balanced 

neap collection. 

Let Y be a strict T extension of X and ~ the nearnessl 

structure on X induced by Y. For y E Y, let A 
y 

= {A c X: 

Y E clyA}. Then {y} nClyA and each ~-cluster is of the y 

form ~ for some y E Y. 

For <P ~ F c y, let S(F) = {A c X: F c clyA} . We shall 

see that the balanced near collections are precisely of this 

form. Since the extension is strict it follows that 

Theopem 5.2. Let Y be a T stpict extension of x.
l 

Set ~ = {A c 7' (X): nc lyA ~ <p}. 

(1) If ~ # FeY then c(S(F»
 

5(F)is a balanced neap collection.
 

(2) If A is a balanced neap collection then thepe 

exists a closed set F in y such that A = 5(F). 

(3) If <P ~ FeY then 5(F) = 5(clyF). 

(4) If F and E ape nonempty subsets of y then 

5(F U E) = 5(F) n 5(E). 

(5) Thepe exists a one-to-one coppespondence between 

the nonempty closed subsets of Y and the balanced neap 

collections. 

Theopem 5.3. Let Y be a stpict T extension of X andl 

~ the neapness stpuctupe on X induc~d by Y. Let A c 7'(X). 
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(1)	 If T {x: Ax E p(A)} then T = nclxA. 

(2) A is a rigid near collection if and only if there 

exists a nonempty closed set T in X such that A = {A c X: 

T c clxA}. 

(3)	 A is a rigid near collection if and only if 

(A)	 A is a balanced near collection, and 

(B)	 cly(nclxA) = nClyA. 

(4) Let F be a nonempty closed subset of Y. The
 

following statements are equivalent.
 

(A)	 F = cly(F n X) 

(B)	 There exists a unique closed subset of X, say 

G, such that F = clyG. 

(C)	 5(F) is a rigid near collection. 

We now characterize the balanced near collections in 

a Pervin nearness space. 

Theorem 5.4. Let (X,t) be a T topological space and
l 

~ the Pervin nearness structure on x. iet A c p(X).
P 

(1) A is a balanced near collection in ~ if and only
p 

if there exists a balanced closed filter J such that 

A = §(J). 

(2) There exists a one-to-one correspondence between 

the nonempty closed sets in (x*,~*) and the balanced closed p 

filters in x. Moreover; each nonempty closed set F* c x* 

is of the form F* = nclx*J = {§(m): m is a closed ultra­

filter containing J}, where J is a balanced closed filter 

on x. 

(3) A is a rigid near collection in ~ if and only if 
p 

there exists a rigid closed filter J such that A = §G). 
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Corollary 5.5. Let (X,t) be a T (Normal) topological
l 

space and wX its Wallman compactification (aX its Stone­

Cech compactification). Then there exists a one-to-one 

correspondence between the nonempty closed sets in wX (aX) 

and the balanced closed filters in X. Specifically, if F 

is a nonempty closed set in wX (aX) then there exists a 

unique balanced closed filter J such that F = nclwxJ 

(F = nclaxJ). 

6. ,f3 N 

Let N denote the natural numbers with the discrete 

topology and let ~ denote the Pervin nearness structure on 
p 

N. Since N is normal, (N*,~~) ~ aN. Now the points of 

aN are the ~p-clusters; that is, they are of the form §<m), 
where mis an ultrafilter. Since the topology is discrete 

it follows that §(m) = m. (Throughout this section, m 
will denote an ultrafilter on N.) 

Thus, the points of aN are simply the ultrafilters on 

N. Since N* is a strict extension of N it follows that the 

sets of the form clN*E, for E c N, form a base for the closed 

sets of aN. 

Now, clN*E = {m: E Em}, which we will call V(E). 

This agrees with a standard construction of aNi see for 

example, M. E. Rudin [11]. It is also known that the open-

closed subsets of aN are of the form VeE) for some E c N. 

Moreover; {V(E): E c N} is a base for the open sets and a 

base for the closed sets in aN. 

Lemma 6.1. Every filter on N is a balanced closed 

filter. 
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By corollary 5.6, there exists a one-to-one corre­

spondence between the nonempty closed subsets of (N*,~;) 

and the balanced closed filters on(N,~p). In light of 

lemma 6.1, we have that there exists a one-to-one corre­

spondence between the nonempty closed subsets of aN and the 

filters on N. The following theorem provides a characteri­

zation of the nonempty closed subsets of aN. 

Theorem 6.2. Let ~ #F caN. F is aZosed if und 

onZy if there exists a fiZter J on N suah that F = {m E aN: 

J em}. 

Proof. If F is closed and nonempty in aN = N* then 

F = ncl *5(F). By theorem 5.2, 5(F) is a balanced near col­N

lection and by theorem 5.4 and lemma 6.1 there exists a 

filter J on N such that 5(F) §(J) = J. Now, for F c N, 
/ 

clN*F = {m: F E m}. Hence F ncl *5(F) = ncl J = 
N N* 

{m: Jc m}. 

On the other hand, if J is a filter on N, then 

F nclN*J is a closed set in N* = SN. 

Claim. F = {m: J em}. Suppose mE F = nclN*J. 

Then A E mfor each A E J. That is, J c m. Conversely, 

if J c mthen mE clN*A for each A E J. Thus mE nclN*J F. 

Corollary 6.3. If 0 is an open subset of aN and 

o ~ aN, then there -exists a filter J on N suah that 

o {m: J¢m}. 

Corollary 6.4. If A is a nontrivial open-alosed sub­

set of aN then there exists fiZters J and H on aN suah that 

A = {m: J em} = {m:· H ¢ A}. 
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Thus, if A is a nontrivial open-closed subset of SN, 

there must exist a pair of filters J and Hon N such that 

each ultrafilter on N contains one and only one of these 

filters. It is easy to show that the only possibility is 

for J {E c N: SeE} and H= {E c N: N-S c E} for some 

~ ~ S ~ N. Thus, the nontrivial open-closed subsets of SN 

are simply the V(S) = {m: S E m} as stated in [11]. 

Theorem 6.5. There exists a natural one-to-one 

correspondence between the following classes of filters on 

N and the respective special nonempty closed subsets of aN. 

N SN 

(1) ultrafilters points 

(2) filters closed sets 

(3) J(A) filters open-closed sets 

(4) filters with countable. base closed Go sets 

(5) filters with countable base zero sets 

Proof. The correspondence is as discussed; namely, 

F = {m: J c m} where F is a closed set in SN and J is a 

filter on N. The correspondences for (1), (2) and (3) 

have already been noted. 

Proof of (4) and (5). In a normal space, a subset F 

is a closed Go set if and only if it is a zero set. 

Let F be a nonempty zero set in SN. From (6E) in [8], 

we have that every ~ero set in aX is a countable inter­

section of sets of the form clsxZ where Z is a zero set in 

X. Since every subset of N is a zero set in N it follows 

that F = n{clSNF : F c Nand i EN}. Since F is nonempty,i i 

it follows that there exists an ultrafilter containing 
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{Fi :	 i EN}. Hence the F have the f.i.p. and we let Ji
 

denote the filter generated by these sets. Then J has a
 

countable base and moreover F = {PJ: J c PJ}. 

Now let J be a filter with a countable base, say 

{Gi :	 i EN}, and F = {PJ: J c PJ}. Then F = n{c1 G
i

: i E N}
SN


and hence F is a zero set in SN.
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