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PERVIN NEARNESS SPACES

John W. Carlson

Introduction

The collection of all finite open covers of a topologi-
cal space generates the Pervin quasi-uniform structure for
that space. All covers refined by some finite open cover
forms a nearness structure for a symmetric topological
space. This nearness structure will be called the Pervin

nearness structure.

The Pervin nearness structure plays an interesting
role in the family of all compatible nearness structures on
a space. It is the smallest totally bounded structure, the
smallest contigual structure, and the largest ultrafilter
generated structure.

Herrlich, in [10], has shown that the completion of the
contigual reflection of a Tl topological nearness space is
the Wallman compactification. But the contiqual reflection
of a topological nearness structure is the Pervin nearness
structure. Hence, for Tl spaces, the Pervin nearness struc-
ture 1is induced by the Wallman compactification.

A prime extension is one for which each trace filter
is a prime open filter. Since the Pervin nearness structure
is ultrafilter generated it follows that the Wallman com—
pactification or the Stone-Cech compactification, if the
space is normal, are prime extensions.

For a T, space it is shown that the trace filters of

1

the Wallman compactification are the minimal prime open
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filters. Moreover, we can construct the Wallman compactifi-
cation for a T1 space, or the Stone-Cech compactification
for a normal space, using the strict extension topology on
the family of all minimal prime open filters.

For T, spaces, concrete nearness structures £ on X are

1
induced by a strict extension Y. There is a one-to-one
correspondence between the points of Y and the £-clusters.
Balanced near collections are introduced and it is shown
that there is a one-to-one correspondence between the
nonempty closed subsets of Y and the balanced near collec-
tions on X. This correspondence applied to the Pervin
nearness structure yields a correspondence between the
nonempty closed subsets of the Wallman compactification and
the balanced closed filters on X. Using this result,

certain closed sets in BN are characterized in terms of

certain filters on N.

1. Preliminaries
We will assume that the reader is basically familiar

with the concept of a nearness space as defined by Herrlich

in [9] and [10].

Definition 1.1. Let X be a set and u a collection
of covers of X, called uniform covers. Then (X,u) is a
nearness space provided:
(N1) A€ p and A refines B implies B € .
(N2) {X} € y and ¢ £ u.
(N3) If A€ pand B € p then 4 A 8= {A Nn B: A€ 4 and

B € 8} € y.
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(N4) A€ p implies {int(A): A € A} € p. (int(a) =

{x: {X-{x},A} € ul).

For a given nearness space {X,u) the collection of
sets that are "near" is given by £ = {4 c P(X): {X-A:
A€ A} € u}. The micromeric collections are given by
A€ v if and only if {B < X: A n B # ¢ for each A € 4} € &.
The closure operator generated by a nearness space is given
by clgA = {x: {{x},A} € £}. If we are primarily using
these "near" collections we will denote the nearness space

by (X,£). The underlying topology of a nearness space is

always symmetric; that is, x € {y} implies y € TxJ.

Definition 1l.2. Let (X,£) be a nearness space. The
nearness space is called:

(1) topological provided A € £ implies N4 # ¢.

(2) complete provided each §-cluster is fixed; that
is, n2_¢ ¢ for each maximal element A in £.

(3) concrete provided each near collection is contained
in some g¢-cluster.

(4) contigual provided A ¢ & implies there exists a
finite B < A such that B ¢ &.

(5) totally bounded provided A ¢ £ implies there exists

a finite B8 ¢ A such that n8 = ¢.

2. Closed Filters

The following notation will be used in this paper.

Definition 2.1. Let 7 be a closed filter in a topo-
logical space (X,t).

(1) () = {an c X: & € #}.
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(2) 0(3 = {0 € t: there exists F € F with F c 0}.

(3) sec(¥) = {A c X: A is closed and An F # ¢ for
each F € F}.

(4) sec?(}) = sec(sec(N).

(5) If 4 has the finite intersection property then
F(A) will denote the closed filter generated by 4.

(6) 7 is called balanced provided 7 = n{/f: M is a
closed ultrafilter containing 7}.

(7) 7 is called rigid provided 7 = n{M: N is a fixed
closed ultrafilter containing #}.

(8) 7 is called nontrivial provided 7 # {X}.

(9) 7 is called a sparce closed filter if for each
nontrivial closed filter / there exists a closed ultrafilter
Gwith /¢ Gand F & G.

(10) A collection of closed filters {}a: a € I} is called
uniformly sparce if for each nontrivial closed filter #
there exists a closed ultrafilter ¢ such that # ¢ ¢ and

}a ¢ § for each a € I.

Lemma 2.1. Let ]1 and }2 be closed filters on a topo-

logical space. Then ]1 c }2 i1f and only if 9(}1) c 9(}2).

Lemma 2.2. Let 3 be a closed filter on a topological
space.

(1) 3 =n{M Mis a closed ultrafilter containing 3}
if and only if G(F = n{g(M: Mis a closed ultrafilter
containing F}. ‘

(2) sec(H = ulM: /M is a closed ultrafilter containing

F3.
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(3) secz(}) =n{M: Mis a closed ultrafilter contain-
ing 7.

(4) sec® () is a closed filter containing 3.

(5) F ie balanced if and only if F = sec’(3).

(6) F 18 rigid if and only if there exists a nonempty

elosed set A such that # = F({A}).

Lemma 2.3. Let (X,t) be a topological space.

(1) If X s Tl and x € X then Ox’ the open neighborhood
filter of x, 1s a minimal prime open filter.

(2) If 7 is a closed ultrafilter then (F) = {0 € t:
X-0 ¢ F}.

(3) 0 is a minimal prime open filter if and only <if
there exists a closed ultrafilter F such that 0 =0 ).

Proof. To show (3), let 0 be a minimal prime open
filter and set 7 = {F: F is closed in X and X-F ¢ (}. Then
7 is a closed ultrafilter and 0 = 0(J}). The remainder of

the proof follows in a natural way.

Lemma 2.4. Let (X,t) be a T, topological space and

1
F a closed filter on X. The following statements are
equivalent.

(1) # 18 a sparce closed filter.

(2) For each nonempty open set 0 there exists F € F

such that 0 & F.

3. Pervin Nearness Structure
For a topological space (X,t) the collection {S(0):

0 € t} where S(0) = (0 x 0) U ((X-0) x X), is a subbase



12 Carlson

for a compatible quasi-uniform structure on X called the
Pervin quasi-uniform structure.

The Pervin quasi-uniform structure can also be gener-
ated as a covering quasi-uniform structure using the family
of all finite open covers [7]. It is shown in [5] that the
collection of all covers refined by a finite open cover is
a compatible nearness structure. It is natural to call

this the Pervin nearness structure.

Definition 3.1. Let (X,t) be a symmetric topological
space. Let up be the family of all covers of X that are
refined by a finite open cover. up is called the Pervin

nearness structure on X.

For the purposes of this paper it is more convenient
to work with Ep’ the corresponding family of near collec-

tions.

Theorem 3.1. Let (X,t) be a symmetric topological
space. Then: Ep = {A cPX): 4 has the finite intersec-
tion propertyl.

From [3], we have the following result.

Theorem 3.2. Let (X,t) be a symmetric topological
space. Then:

(1) X ©s compact 1f and only if Epis ultrafilter
complete.

(2) X is H-closed if and only i1f X is Hausdorff and

g 18 open ultrafilter complete.
p
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(3) X is countably compact if and only if F has the
countable intersection property for each filter F in gp.
(4) X 18 Lindeldf if and only if every filter in Ep

with the countable intersection property clusters.

Every contigual nearness structure is totally bounded;
and it is easy to see that gp is contigual. 1In fact, the
smallest compatible totally bounded nearness structure on
a symmetric topological space is gp and thus equals the
smallest compatible contigual nearness structure on the

space.

Theorem 3.3. Let (X,t) be a symmetric topological
space. Then:

(1) Ep 18 contigual.

(2) gp is8 the smallest compatible contigual nearness
structure on X.

(3) Ep = N{E: £ 18 a compatible contigual nearness
structure on X}.

(4) Ep =Nn{E: £ 28 a compatible totally bounded near-
ness structure on X}.

(5) Ep 18 the smallest compatible totally bounded
nearness structure on X.

(6) The Pervin nearness structure is contained in each

compatible totally bounded nearness structure on X.

Definition 3.2. Let (X,t) be a symmetric topological
space and § a collection of free ultrafilters on X. Set
£(S) = {A< P(X): nf # ¢ or there exists 7 € J such that

A < . A nearness structure £ is called ultrafilter
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generated provided there exists § such that & = £(5).

It is shown, in [8], that £(J5) is a compatible nearness

structure on (X,t).

Theorem 3.4. Let (X,t) be a symmetric topological
space. Then the Pervin nearness structure is the largest
compatible ultrafilter generated nearness structure on

(X,t).

Thus, for a given symmetric topological space, the
Pervin nearness structure is the largest ultrafilter gener-
ated nearness structure and the smallest totally bounded
nearness structure compatible with (X,t). Symbolically:

5p = Totally Bounded N Ultrafilter Generated

Corollary 3.5. Let (X,t) be a symmetric topological
space. Let 51 be any compatible totally bounded nearness
structure and £, any compatible ultrafilter generated near-
ness structure. Then 52 c 51. That is, each compatible
totally bounded nearness structure contains every compatible

ultrafilter generated nearness structure.

Since every contigual nearness structure is concrete

we have the following corollary.

Corollary 3.6. Every Pervin nearness structure is

concrete.

Theorem 3.7. Let (X,t) be a symmetric topological

space. Then:
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(1) €p = {Ac PX): Ac ¢(3) for some closed ultra-
filter F}.

(2) Ais a gp—cluster if and only i1f there exists a
elosed ultrafilter ¥ such that A = G(F.

(3) Yp = {Ac P(X): there exists a minimal prime open
filter O that corefines A}. (Note: 0 is said to corefine

A if for each 0 € 0 there exists an A € A such that A c 0.)

4. Extensions

An extension Y of a space X is a space in which X is
densely embedded. Unless otherwise noted, we will assume
for notational convenience that X <« Y. It is well known
that for any extension Y of X there exists an equivalent
extension Y' with X c Y'.

If Y is an extension of X then § = {4 c P(X):
nc1YA#¢} is called the nearness structure on X induced
by Y.

Let (Y,t) be a topological space and X = Y. For each
y€Y,set0y={0nX:y€0€t}. Then{Oy:er}is
called the filter trace of Y on X.

Y is called a prime extension of X if OY is a prime
open filter for each y € Y. Note: OX is always a prime open
filter for x € X.

Let t(strict) be the topolcgy on Y generated by the
base {0*: 0 € t(X)}, where 0* = {y € Y: 0 € 0y}. Let
t(simple) be the topology on Y generated by the base
{0u {y}: 0c€ 0y,y € Y}. Then t(strict) and t(simple) are
such that Y with either of these topologies is an extension

of (X,t(x)), called a strict extension, or simple extension
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of X, respectively. ©Note that
t(strict) < t < t(simple).
Moreover, a topology s on Y with the same filter trace as
t forms an extension of (X,t(X)) if and only if it satisfies
the above inequality. (See Banaschewski[l].)

Herrlich's completion of a nearness space was presented
in [9]. A brief description of it appears in [2] which we
provide here for the convenience of the reader. Let (X,§)
be a nearness space and let Y be the set of all £-clusters
A with empty adherence. Set X* = X U Y. For each A < X,
define cl(A) = {y € Y: A € y} U clEA. A nearness structure
£€* is defined on X* as follows: B € £* provided 4 = {A < X:
there exists B € B with B <« cl{A)} € £. (X*,£*) is a com-

plete nearness space with cl, X = X*, Also, for A c X,

E*
clE*A = cl{(a).

The following important theorem is due to Herrlich and

Bently [2].

Theorem A. For any Tl nearness space (X,£) the follow-
ing conditions are equivalent.

(1) £ is a nearness structure induced on X by a strict
extension.

(2) The completion (X*,£*) of (X,£) is topological.

(3) (X,&) is concrete.

It is shown in [4] that a concrete nearness structure
is ultrafilter generated if and only if it is induced by a
prime strict extension. The following theorem also appears

in [4].
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Theorem B. For any T, nearness space the following
conditions are equivalent.

(1) & 2s induced on X by a prime strict extension.

(2) The completion (X*,£*) of (X,£) is topological and
X* is a prime extension of X.

(3) & is concrete and ultrafilter generated.

Since the Pervin nearness structure is ultrafilter
generated and concrete it follows that gp is induced by a
prime strict extension, provided the underlying topology is
Tl’ We now show that for T, spaces the Pervin nearness
structure is induced by the Wallman compactification.

Let (X,£) be a nearness space and set gc = {Ac PX):
each finite B « A belongs to £}. The following theorem is

due to Herrlich [10].

Theorem C. If (X,&) is T and topological then

(X*,£%) is the Wallman compactification.

If £ is topological then Ec = {Ac P(X): A has f.i.p.}
= gp. Thus the following theorm is an immediate consequence

of Herrlich's result.

Theorem D. Let (X,t) be a T topological space. Let
&p be the Pervin nearness structure. Then (X*,&;) is the

Wallman compactification of X.

Since the Wallman compactification of a normal space
is the Stone-Cech compactification we have the following

corollary.
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Corollary 4.1. Let (X,t) be a normal topological
space and Ep the Pervin nearness structure. Then (x*,g;)

18 BX, the Stone-Cech compactification of X.

Corollary 4.2. Let (X,t) be a T, topological space.

1
Then the Wallman compactification is a prime extension of

X. If X is normal then BX is a prime extension of X.

Corollary 4.3. Let (X,t) be a T, topological space.
Then the Pervin nearness structure is the nearness structure
on X induced by the Wallman compactification of X. Simi-
larly, 1f X is normal then the Pervin nearness structure is
the nearness structure induced by the Stone-Cech compactifi-

cation of X.

By corollary 4.3 and the results obtained for separated
and regular nearness spaces obtained in [2], we have the

following theorem.

Theorem 4.4. Let (X,t) be a T, topological space.

1
The following statements are equivalent.
(1) X 28 normal.

(2) Ep 18 separgted.

3 18 regular.
(3) Ep 8 gula

Theorem 4.5. Let (X,E) be a Tl nearness space and

(X*,E*) its completion. Then the trace filters on X are

gtven by:

L 0,
(2) 0,

{0 € t(£): x € 0} for x € X, and

i

{0 € t(g): X-0 € A} for A € X*-X.
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Proof. (1) follows immediately since X is a dense
subspace of X*. (2). Let A be a g-cluster and set
S =1{0€ t(g): X-0 € 4}. Let 0 € 5. Then X-0 ¢ A. Now
cl(X-0) is closed in X* and A g cl(X-0). Thus Q* = X* -
cl(X-0) is open in X* and 0 = Q* n X and A € Q*. Thus
0 € OA and thus § c OA'

Let 0 € Oﬂ’ Then there exists Q*, open in X*, with
A € Q* such that 0 = X n Q*. Now cl(X-0) is closed in X*
but A € Q* and Q* n (X-0) = ¢. Hence A € cl(X-0) and thus

X-0 € A. Therefore, 0 € § and OA cS.

Theorem 4.6. Let (X,t) be a T, topological space and

1
§ the Pervin nearness structure. Then the trace filters
generated by the completion (X*”ES) are precisely the mini-
mal prime open filters on X.

Proof. By theorem 4.5, the trace filters for the

completion are of the form:

(1) 0x = {0 € t: x € 0}, for x € X; or

(2) Oﬂ {0 € t: X-0 € A} for 4 a gp—cluster.

By lemma 2.3, each 0x is a minimal prime open filter.
If 4 is a Ep—cluster then by theorem 3.7 there exists a
closed ultrafilter 7 such that A= ¢(#). Thus Oﬂ = {0 € t:
X-0 € §(F)} = {0 € t: X-0 ¢ #}. Thus, by lemma 2.3, OA is
a minimal prime open filter.

Thus each 0x and OA is a minimal prime open filter;
all that remains to be shown is that if 0 is a minimal

prime open filter then either 0 = 0x for some x € X or

0 = OA for some Ep-cluster A.
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Let 0 be a minimal prime open filter. Then, by lemma
2.3, there exists a closed ultrafilter 7 such that 0 = O0(F).

If {x} € 7 then Ox < 0 and, since 0 is a minimal prime
open filter, it follows that 0 = Ox’

If nF = ¢ then §(F) € X*-X. Then 09(3) = {0 € t:
X-0 ¢ (A} ={0€ t: Xx-0¢ F} = (P = 0.

Corollary 4.7. The family of minimal prime open filters
ie the filter trace of the Wallman compactification for a
T, space; and correspondingly, the filter trace of the

Stone-Cech compactification for a normal space.

Let (X,t) be a topological space and Y' a collection of
open filters on X containing the open neighborhood filters.
For 0 € t, let 0* = {0 € Y': 0 € 0}. Let t' be the topology
on Y' generated by the base {0*: 0 € t}. Then, by Banaschew-
ski [1], (¥',t') is a strict extension of X where the
embedding map e: X » Y' is given by e(x) = Ox’ the open
neighborhood filter of x.

Many well known extensions can be constructed in this
manner. The following examples, among others, are given in
[1].

(1) If (X,t) is completely regular and Y' is the family
of all maximal completely regular open filters then (Y',t')
is the Stone—éech compactification.

(2) If (X,t) is Hausdorff and Y' is the family of all
open ultrafilters then (Y',t') is the Fomin H-closed
extension of X.

(3) If (X,t) is a locally compact, non-compact Hausdorff

space and Y' is the collection of all open neighborhood
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filters together with the filter of open sets with compact
complements then (Y',t') is the l-point Alexandroff com-
pactification of X.

By theorems D and 4.6, we have that the Wallman com-
pactification and the Stone-Cech compactification for
normal spaces can be constructed in this manner, using the

family of all minimal prime open filters.

Theorem 4.8. Let (X,t) be a Ty topological space and
let Y' be the family of all minimal prime open filters on
X. Then:

(1) (Y',t') is the Wallman compactification of X.

(2) If (X,t) is normal then (Y',t') is the Stone-tech

compactification of X.

In [6], nearness spaces whose completions were second
category or Baire topological spaces were characterized.
In order to relate these results to the Pervin nearness

structure we state a definition and two theorems from [6].

Definition 4.1. Let (X,£) be a nearness space. Let
S e P(X). Then § is called a sparce near collection if
S € ¢ and for each 8 € &£, such that B is not contained in
each g-cluster, then there exists a g-cluster 4 such that
B¢ Aand 5 ¢ A

Let {5a: a € I} € £. Then {Sa: a € I} is called a
uniformly sparce family if for each 8 € g, such that g is
not contained in each f£-cluster, then there exists a

g~cluster A such that 8 ¢ 4 and Sa ¢ A for each a € I.
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Easily each member of a uniformly sparce family is

itself a sparce near collection.

Theorem 4.9 (Carlson [6]). Let (X,E) be a Tl nearness
space. The following statements are equivalent.

(1) £ ©s a nearness structure induced on X by a second
category T, strict extension.

(2) The completion (X*,£*) of (X,£) is topological and
second category.

(3) (X,E) is concrete and for each countable collec-

tion {ji: i € N} of sparce near collections there exists a

g-cluster A such that Si UAE E for each i € N.

Theorem 4.10 (Carlson [6]). Let (X,£) be a T, nearness

1
space. The following statements are equivalent.
(1) £ s a nearness structure induced on X by a strict

T, Baire extension.

1
(2) The completion (X*,E*) of (X,E) is topological and
a Baire space.

(3) (X,£) Z8 concrete and each countable family of

sparce near collections is uniformly sparce.

Theorem 4.11. Let (X,t) be a T, topological space and

1

gp the Pervin nearness structure on X. Let A€ gp'
(1) A is not contained in each gp-cluster if‘and only
if F = F(A) is not the trivial closed filter.
(2) A is a sparce near collection if and only if
F = F(4) is a sparce closed filter.
Proof. (1) follows from the fact that A is contained

in each Ep—cluster if and only if each A € A4 is dense in X.
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(2) Suppose A is a sparce near collection. Then
F = () is a closed filter. Let # be a nontrivial closed
filter. Then # ¢ gp and # is not contained in each
Ep—cluster. Since A is a sparce near collection there
exists a Ep—cluster B such that A ¢ 8 and # ¢ B. Now
there exists a closed ultrafilter § such that 8 = {B c X:
Be §}. Easily 7 ¢ § and # ¢ §. Therefore, 7 is a sparce
closed filter.

Now suppose 7 = 7(A) is a sparce closed filter. Let
Ae £p and # not contained in each gp-cluster. Then
M = F) is a nontrivial closed filter. Since F is a sparce
closed filter there exists a closed ultrafilter ¢ such that
J¢ Gand ¢ §. Let B={B cX: BE ¢}. Then B is a
gp-cluster and N ¢ B and A ¢ B. Hence A is a sparce near

collection.

Theorem 4.12. Let (X,t) be a T, topological space.

1
The following statements are equivalent.

(1) The Wallman compactification of X 1s second
category.

(2) For each countable collection {]i: i € N} of sparce
closed filters there exists a closed ultrafilter ( such that
]i e for each i € N.

Proof. Let Ep denote the Pervin nearness structure

on X. Then (x*,gg) is the Wallman compactification of X

and the result holds by theorems 4.9 and 4.11.

Theorem 4.13. Let (X,t) be a T, topological space.

The following statements are equivalent.
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(1) The Wallman compactification of X is a Baire
space.

(2) Each countable family of sparce closed filters is
uniformly sparce.

Proof. Let Ep denote the Pervin nearness structure on
X. Then (x*,g;) is the Wallman compactification of X and

the result holds by theorems 4.10 and 4.11.

Corollary 4.14. Let (X,t) be a normal topological
space. Then each countable family of sparce closed filters
18 uniformly sparce.

Proof. This follows immediately from the fact that

each compact Hausdorff space is a Baire space.

5. Balanced Near Collections

Definition 5.1. Let (X,f) be a nearness space. Let
Ac P(X) and let c(4) denote the set of all f-clusters
that contain A. Let p(A) denote the set of all the fixed
g-clusters that contain A. Set b(A) = nc(4). A is said to
be a balanced near collection provided A € £ and A = nc(A)
and A is called a rigid near collection provided A € £ and

A= np(A.

Theorem 5.1. Let (X,E) be a conecrete nearness space
and A € k.

(1) A< nc(A).

(2) b(4) is the smallest balanced near collection con-
taining A.

(3) Each g-cluster is a balanced near collection.
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(4) If n is a nonempty collection of g-clusters then
Nn is a balanced near collection.
(5) If A is a rigid near collection then A is a balanced

near collection.

Let Y be a strict T, extension of X and £ the nearness

1
structure on X induced by Y. For y € Y, let Ay = {A c X:
Y € clYA}. Then {y} = nclYAy and each g-cluster is of the
form AY for some y € Y.

For ¢ # Fc ¥, let S(F) = {Ac X: F c clyA}. We shall
see that the balanced near collections are precisely of this

form. Since the extension is strict it follows that

cl F = nclYS(F).

Theorem 5.2. Let Y be a Tl strict extension of X.

Set &£ = {Ac P(X): ncl A # ¢}.

(1) If ¢ # F <« Y then c(S(F)) = {Ay: y € clYF} and
S(F)is a balanced near collection.

(2) If A is a balanced near collection then there
exists a closed set F in Y such that A = S{(F).

(3) If ¢ # F c Y then S(F) = S(cl,F).

(4) If F and E are nonempty subsets of Y then
S(F U E) = S(F) n S(E).

(5) There exists a one-to-one correspondence between
the nonempty closed subsets of Y and the balanced near

collections.

Theorem 5.3. Let Y be a strict T, extension of X and

1

t the nearness structure on X induced by Y. Let A < P(X).
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(1) If T = {x: A € p(A)} then T = ncly A.

(2) Ais a rigid near collection if and only if there
exists a nonempty closed set T in X such that A= {A c X:
T < Cle}.

(3) Ais a rigid near collection if and only if

(A) A is a balanced near collection, and
(B) clY(nclxﬂ) = nclyA.
(4) Let F be a nonempty closed subset of Y. The
following statements are equivalent.
(A) F = cly (F n X)
(B) There exists a unique closed subset of X, say
G, such that F = clYG.

(C) S(F) is a rigid near collection.

We now characterize the balanced near collections in

a Pervin nearness space.

Theorem 5.4. Let (X,t) be a T, topological space and

1
Ep the Pervin nearness structure on X. Let A < P(X).

(1) A is a balanced near collection in gp Zf and only
if there exists a balanced closed filter # such that
A= 6¢F.

(2) There exists a one-to-one correspondence between
the nonempty closed sets in (x*,g;) and the balanced closed
filters in X. Moreover; each nonempty closed set F* < X*
igs of the form F* = ncly,F = {g(ﬁ): M is a closed ultra-
filter containing 7}, where ¥ is a balanced closed filter
on X.

(3) A 28 a rigid near collection in Ep if and only if

there exists a rigid closed filter F such that A = (e
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Corollary 5.5. Let (X,t) be a T, (Normal) topological

1
space and wX tts Wallman compactification (BX its Stone-
Cech compactification). Then there exists a one-to-one
correspondence between the nonempty closed sets in wX (BX)
and the balanced closed filters in X. Specifically, if F
18 a nonempty closed set in wX (RX) then there exists a

unique balanced closed filter F such that F = nclwx}

(F = nclBX}).

6. BN

Let N denote the natural numbers with the discrete

topology and let Ep denote the Pervin nearness structure on

(113

N. Since N is normal, (N*,EE) BN. Now the points of
BN are the gp-clusters; that is, they are of the form g(M),
where /1 is an ultrafilter. Since the topology is discrete
it follows that ¢(#) = M. (Throughout this section, /i
will denote an ultrafilter on N.)

Thus, the points of BN are simply the ultrafilters on
N. Since N* is a strict extension of N it follows that the
sets of the form clN*E, for E ¢« N, form a base for the closed
sets of BN.

Now, clN*E = {M: E € M}, which we will call V(E).
This agrees with a standard construction of BN; see for
example, M. E. Rudin [11]. It is also known that the open-
closed subsets of BN are of the form V(E) for some E < N.

Moreover; {V(E): E <« N} is a base for the open sets and a

base for the closed sets in BN.

Lemma 6.1. Every filter on N i8 a balanced closed

filter.
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By corollary 5.6, there exists a one-to-one corre-
spondence between the nonempty closed subsets of (N*,E;)
and the balanced closed filters on (N,Ep). In light of
lemma 6.1, we have that there exists a one-to-one corre-
spondence between the nonempty closed subsets of BN and the
filters on N. The following theorem provides a characteri-

zation of the nonempty closed subsets of BN.

Theorem 6.2. Let ¢ # F « BN. F 18 closed if and
only if there exists a filter J on N such that F = {/) € BN:
Fe M.

Proof. If F is closed and nonempty in SN = N* then
F = nclN*S(F). By theorem 5.2, S(F) is a balanced near col-

lection and by theorem 5.4 and lemma 6.1 there exists a

filter J on N such that S(F) ¢(#) = 3. Now, for F c N,

clN*F = {M: F € N}. Hence F

{h: < m.

On the other hand, if 7 is a filter on N, then

nclN*S(F) = nclN*} =

F = nclyg,J is a closed set in N* = gN.

Claim. F = {fl1 3 <« M. Suppose Ml € F = nclN*}.
Then A € /) for each A € #. That is, 7 < fl. Conversely,

if 3« M then M€ cl A for each A € J. Thus M € nclg,J = F.

Corollary 6.3. If O is an open subset of BN and
O # BN, then there exists a filter F on N such that
o=1{N: F&MN}.

Corollary 6.4. If A is a nontrivial open-closed sub-
set of BN then there exists filters 3 and H on BN such that

A={M FJcNl =AM A &M}
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Thus, if A is a nontrivial open-closed subset of RN,
there must exist a pair of filters 7 and # on N such that
each ultrafilter on N contains one and only one of these
filters. It is easy to show that the only possibility is
for ¥ = {E c N: S c E} and # = {E ¢ N: N-S c E} for some
¢ # S # N. Thus, the nontrivial open-closed subsets of AN

are simply the V{(S) = {//: S € M} as stated in [1l1].

Theorem 6.5. There exists a natural one-to-one
ceorrespondence between the following classes of filters on

N and the respective spectial nonempty closed subsets of BN.

N AN
(1) ultrafilters points
(2) filters elosed sets
(3) F(A) filters open-closed sets
(4) filters with countable base closed G6 sets
(5) filters with countable baee zero sets

Proof. The correspondence is as discussed; namely,
F = {M: 7c M where F is a closed set in BN and 7 is a
filter on N. The correspondences for (1), (2) and (3)
have already been noted.

Proof of (4) and (5). In a normal space, a subset F
is a closed G6 set if and only if it is a zero set.

Let F be a nonempty zero set in BN. From (6E) in [8],
we have that every zero set in BX is a countable inter-
section of sets of the form cleZ where Z is a zero set in

X. Since every subset of N is a zero set in N it follows

that F = n{cl F., cNand i€ N}. Since F is nonempty,

BNFi: ‘
it follows that there exists an ultrafilter containing
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{Fi: i € N}. Hence the F. have the f.i.p. and we let 7
denote the filter generated by these sets. Then 7 has a
countable base and moreover F = {/l: 7 < fi}.

Now let 7 be a filter with a countable base, say

: i € N}

{Gi: i € N}, and F = {fl: # « #}. Then F = n{ClBNGi'

and hence F is a zero set in BN.
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