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FEEBLY COMPACT SPACES, MARTIN'S 

AXIOM, AND "DIAMOND" 

Jack R. Porter and R. Grant Woods1 

1.	 Introduction 

Must a countably compact, perfect, regular topological 

space be compact? It has been known for some time that the 

answer is independent of the usual axioms of set theory. 

Weiss [We] showed that if one assumes Martin's axiom 

together with the negation of the continuum hypothesis 

(henceforth abbreviated MA + -, CH) , the answer is "yes , II 

while Ostaszewski [0], assuming ~ (a set-theoretic principle 

following from the axiom of constructibility), constructed 

a locally compact, zero-dimensional, perfectly normal, 

countably compact, non-compact, Hausdorff space. (Recall 

that a space X is perfect if each open set of X is a union 

of countably many closed subsets of Xi it is perfectly 

normal if it is perfect and normal.) 

A topological property similar to countable compactness 

but weaker than it is feeble compactness. A (Hausdorff) 

space X is called feebly compact if every locally finite 

family of open subsets of X is finite. Other characteriza

tions of feeble compactness appear in 2.1. Roughly speaking, 

feeble compactness is to open sets as countable compactness 

is to points. 

Is it consistent with the usual axioms of set theory 

that a feebly compact, perfect, regular topological space 

IThe research of the second-named author was partially 
supported by N.S.E.R.C. Grant No. A7592. 
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must be compact? The answer is "no"; Isbell's space ~ is 

a counterexample. To construct I, choose a maximal almost 

disjoint family mof infinite subsets of N (the set of 

natural numbers). Let ~ = N u m, topologized as follows: 

points of N are isolated in ~, and if M E m, then 

{{M} U A: A c Nand M\A is finite} is a neighborhood base 

at M. It is easily verified that ~ is a locally compact, 

feebly compact, perfect, but not countably compact, Haus

dorff space (see 5I of [GJ] for details) . 

Suppose we replace "perfect" by a stronger condition 

in the first sentence of the previous paragraph. Can we 

obtain an independence result similar to that of Weiss and 

Ostaszewski? It turns out that we can. Call a space X 

RC-perfeat if each open subset of X can be written as a 

union of countably many regular closed subsets of X. (Recall 

a subset of X is regutar atosed if it is the closure of an 

open set.) The purpose of this paper is to show that if we 

assume MA +ICH, then every feebly compact, RC-perfect 

separable regular space is compact; however, if we assume 0 

there exists a feebly compact, locally compact, RC-perfect 

zero-dimensional separable Hausdorff space that is not 

countably compact. 

Throughout this paper all hypothesized topological 

spaces will be assumed to be T3 (regular Hausdorff). 

2. "Real" Properties of Feebly Compact Perfect Spaces 

We begin by listing some known results and proving some 

elementary results. 



TOPOLOGY PROCEEDINGS Volume 9 1984 107 

2.1 Prdposition. (a) The following are equivalent for 

a space x: 

(i) X is feebly compact 

(ii) Each infinite fami'~y of pairwise disjoint 

non-emply open sets has a limit point. 

(iii) If Cis a countable collection of open sets 

with the finite intersection property, then n{cl C:x
C E C} ~ <p. 

(iv) If Cis a countable open cover of X, there 

exists a finite subfamily J of C such that X = U{Cl C:x
C E J}. 

(b) A Tychonoff space is fe,ebly compact iff it is 

pseudocompact. 

(c) A regular closed subset of a feebly compact space 

is feebly compact. 

The proofs of (a) and (b) can be found in 3.10, 22 

and 3.10, 23 of [E]i the proof of (c) is an easy exercise. 

2.2 Proposition. Let p be a point of the feebly compact 

space X and let {p} be a Go-set of x. Then X is first 

countable at p. 

Proof. By the regularity of X and induction on 00, one 

finds a countable sequence {V : nEw} of open sets for n 

which cl V c V for each n, and {p} = n{V : nEw} = x n +1 n n 

n{cl V : nEw}. If W is open and pEW, find an open setx n 

T for which pET ~ clXT c W. 'I'hen X = T U [U{X\Cl V :x n 

nEw}]. As X is feebly compact, by 2.1(a) there exists 

k E 00 for which T U (X\Cl V ) is dense in X. Thus x k 
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x = (C~XT) U (X\Vk ), so Vk ~ C~XT ~ W. Thus {V : nEw}n
 

is a countable neighborhood base at p.
 

Recall that a space X satisfies the countabZe chain 

condition (written "X is c.c.c.") if X has no uncountable 

family of pairwise disjoint non-empty open subsets. 

2.3 Proposition. A feebZy compact perfect space is 

c.c.c. 

Proof. Our proof follows that used by Juhasz [J] to 

prove the corresponding result for countably compact 

spaces (also see [R]). Let {Ua: a < wI} be a collection 

of Nl pairwise disjoint non-empty open subsets of X, and let 

H = c~X[U{Ua: a < wl}]\U{U : a < wI}. Note that H ~ ~ as a 

X is feebly compact. As X is perfect, there exists a 

decreasing countable collection {W : nEw} of open subsets n 

of X such that H = n{W : n E w}. For each n E w, let n 

S {a < wI: U \C~XW ~ ~}. Then S is finite, for if it n a n n 

were not then {U \C~XW : a E Sn} would be an infinite,a n 

locally finite collection of non-empty open subsets of X, 

contradicting 2.l(a). Hence there exists 0 E wl\U{Sn: 

nEw}, and U ~ n{c~xWn: nEw}. Choose a non-empty openo 

subset VI of X such that c~XVl c Uo. Evidently VI n WI ~ ~ 

and VI n WI n W2 is dense in VI n WI' so using regularity 

we can choose an open set V2 such that ~ ~ c~X(V2 n W2 ) ~ 

VI n WI. Proceeding inductively in a similar manner, one 

constructs a decreasing chain {Vk : k E w} of open sets of 

X for which ~ ~ c~X(Vk+l n Wk+l ) ~ n W for each k E w.Vk k 

Now by 2.l(a) n{c~x(Vnn Wn ): nEw} ~~. But n{c~x(Vnn Wn ): 

nEw} ~ H n U = ~, which is a. contradiction. The proposio 

tion follows. 
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2.4 Corollary. A feebly compact, perfect space is 

c.c.c. and first countable. 

3. Feebly Compact RC-Perfect Spaces and Martin's Axion 

The following set-theoretic principle, denoted P(c), 

is known to be a consequence of Martin's axiom (see [K]). 

P(c) is the statement: 

2NoIf K < and if {A(a): a < K} is a collection of K 

subsets of w for which n{A(a): a E F} is infinite whenever 

F is a fini te subset of K, then t~here exists an infinite 

subset B of w such that B\A(a) is: finite for each a E K. 

The proof of the following lemma is essentially the 

same as that of Hechler's corresponding result f<:>r countably 

compact, separable spaces (see [H]). Recall that a space X 

has countable TI-weight if there is a countable collection 

C of non-empty open subsets of X such that if V is a non

empty open subset of X, then there exists C E C such that 

2NoC c V. We denote by c. 

3.1 Lemma. Assume P(c). If' X is a feebly compact 

space of countable TI-weight, and if lj is an open cover of 

X for whiah lUI < c, then there exists a finite subaoZZea

tion J of lj such that X u{c£'xF .: F E J}. 

Proof· Let {v : n E w} be a. faithfully indexed countan 

hIe n-base, and let U {U : a < K}, where K < c. For each 
a 

a < K let A(a) = {n E w: V n U ~ $}. Suppose that F is n a 

a finite subset of K for which U{A(a): a E F} = w. If W 

is a non-empty open subset of X, find mEw such that 

V c W. There exists a(m) E F for which m E A(a(m)), and rn 
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so Vm n Ua(m) ~~. Thus W n U{Ua : a E F} ~ ~' so 

{U : a E F} is our J. 
a 

Suppose F were a finite subset of K and w\U{A(a) : 

a E F} = G were finite. If mEG there exi~ts a(m) < K 

such that V n U ( ) ~~. Let H = {a(m): mEG}; then m a m 

U{A(a): a E F U H} = w, and argue as above. 

So, suppose that w\U{A(a): a E F} =n{w\A(a): a E F} is 

infinite for every finite subset F of K. By P(c) there 

exists an infinite subset S of w such that S n A(a) is 

finite for each a < K. As X is feebly compact, {V : n E S} n 

has a cluster point p. As lj covers X, choose 0 < K such 

that p E U . Then S n A(o) must be infinite, which is a 
o 

contradiction. 

It is not possible in 3.1 to replace the condition that 

X have countable n-weight by the condition that X be separa

b1e. This is illustrated by example 3.3 below. First we 

introduce a useful concept. Recall (see 17K of [Wi]) that 

a Hausdorff space is H-alosed if it is closed in any Haus

dorff space in which it is embedded. We will use the fol

lowing two' well-known properties of H-closed spaces; see 

17K and 17L of [Wi]. 

3.2 Lemma. (a) Eaah H-alosed regular spaae is aompaat. 

(b) A Hausdorff spaae X is H-alosed iff given an open 

aoverC of X" there exists a finite Bubfamily J of Csuah 

that X = U{cixF: F E J}. 

3.3 Example. AssumelCH. Let ~ denote the two-point 

discrete space, let pbe'a fixed point of ~WI, and let 
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WI 
X = ~ \{p}. Then X is separable (see 16.4 of [Wi])' 

Tychonoff, non-compact, and has weight ~l' which is less 

than c. It follows from 3.2 that X has an open cover U 

with lUI < c such that U{Cl F: F € J} ~ X for each finitex
subfamily J of U. There obviously exists a point q € ~Wl 

such that the E-product E(q) based at q does not	 contain p 

wI 
(see 2.7.13, page 158 of [E]). Thus E(q) c X c 2 . By
 

wI wI
 
3.12.23 on page 305 of [E] B(E(q)) = ~ , so BX = ~ (see 

6.7 of [GJ]). It follows from 6J of [GJ] that X	 is 

pseudocompact and thus feebly compact. Hence X witnesses 

the failure of 3.1 if "countablle rr-weight" is replaced by 

"separable" in a model of set theory in which CH	 fails. 

Recall our blanket assumption (implicitly lifted while 

we defined H-closed spaces) that all hypothesized spaces 

are regular. 

3.4 Theorem. Assume P(c) and the negation of the con

tinuum hypothesis. If X is a separable, RC-perfect, feebly 

compact space, then X is compact. 

Proof. By 2.l(a) and 3.2(b) a Lindelof feebly compact 

space is H-closed and by 3.2(a) an H-closed regular space is 

compact. Hence it suffices to show that X is Lindelof. 

So, suppose X is not Lindelof and that U is an open 

cover of X with no countable subcover. We inductively 

choose points {xa: a < w }, open sets {G : a < w1 }, and a1 a 

subfamily {Ua: a < wI} c U as follows. Let a < wI and 

assume we have chosen points {xo: 0 < a}, open sets 

{Go: 0 < a}, and a subfamily {Uo: 0 < a} of U satisfying 

these conditions: 
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(i) X E Go ~ ctXG c U for each 0 < a o o o 

(ii) X E Uo\U{U : y < o} for each 0 < a. o y 

As lj has no countable subcover, we can choose x E X\U{U~: . a u 

o < a}. As lj covers X find U E lj such that x E U. Choose 
a a a 

G using the regularity of X. Now (i) and (ii) are satisa 

fied for each a < wI. 

Let G = U{G : a < WI}. As X is RC-perfect, there exist 
a 

countably many regular closed subsets of X--say {An: n E w}-

such that G = U{A : nEw}. By 2.l(c) each An is feebly comn 

pact. As X is separable, so is each intxA and hence each n 

An. By 2.4 X is first countable, so each An is too. A 

separable first countable space has countable n-weight, 

so each An has countable n-weight. Thus by 3.1 there is a 

finite subset F of wI such that A c U{ctx(G n A ):n nan 

a E F}. Let F = U{F : nEw}. Then G = U{ctx(G n A ):n nan 

a E F and nEw} c U{ctxG : a E F} c U{U : a E F}. As F n - a a 

is countable, choose S < wI so that S > a for each a E F. 

Then X E G\U{U : a E F}, which is a contradiction. Thus Xs a 

is Lindelof and hence compact. 

It is. consistent with the usual axioms of set theory 

that there exist a feebly compact RC-perfect space that is 

not separable--a compact Souslin line is such a space (see 

[K]). From 2.4 we know that a feebly compact RC-perfect 

space must always be c.c.c. and first countable. It has 

been proved by Juhasz [J] that MA +ICH implies that a 

compact first countable c.c.c. space must be hereditarily 

separable (a proof of this is given in [R]). This suggests 

the following question, which we have been unable to resolve. 
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3.5 Question. Assume ~~ + "lCH. Must a feebly compact 

RC-perfect space necessarily be separable? 

There are a number of supplementary conditions on a 

feebly compact RC-perfect space that will guarantee that it 

be separable. We mention two. Recall that if A is a cardi

nal, then a Tychonoff space X is an absolute GA if it can 

be written as the intersection of no more than A open sub

sets of some compactification of X (equivalently, all com

pactifications of X). We let L(X) denote the locally com

pact part of the Tychonoff space X--i.e. L(X) = {p E X: p 

has a compact neighborhood}. 

3.6 Theorem. Assume MA + "lCH. Let X be a feebly com

pact RC-perfect space. If either: 

(a) X is an absolute G for some A < C 3 or
A 

(b) L(X) is dense in X, 

then X is compact. 

Proof· (a) In 4.5 of [T], Tall proves that if X is an 

absolute GA (for A < c), and X is first countable and c.c.c., 

then MA +"lCH implies that X is separable. Our result then 

follows from 2.4 and 3.4. 

(b) Let mbe a maximal family of pairwise disjoint 

compact regular closed subsets of X. By 2.4 X is c.c.c. and 

first countable, so each member of mis also. As noted 

above, it follows from a theorem of Juhasz that MA + "lCH 

implies that a compact, first countable,.c.c.c. space is 

separable. Hence each member of mis separable. As X is 

c.c.c., Im\ ~ NO so U{M: M E ~} is separable. As L{X) is 
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dense in X, so is U{M: M € m}. Hence X is separable (and 

therefore compact). 

4.	 An Example Using 0 

Suppose that it followed from the usual axioms of set 

theory that a separable feebly compact RC-perfect space 

were countably compact. Then 3.4 would follow immediately 

from Weiss's result [We] that assuming P(c) i each countably 

compact regular perfect space is compact. We show that this 

line of argument cannot be used by producing (assuming~) a 

feebly compact, RC-perfect, locally compact Hausdorff space 

that has a countable dense set of isolated points but which 

is	 not countably compact. 

Throughout this section {A : a < wI} will denote an a 

order-preserving indexing of the countable limit ordinals. 

Our procedure is a modification of Ostaszewdki's well-known 

construction (see [0]). Roughly speaking, we topologize wI 

inductively so that w forms a countable dense set of iso

lated points. We assign limit points to subsets of wI so 

that every infinite subset of w gets a limit point (thus 

making our space pseudocompact), but so that {A : a < w}a 

receives no limit point (thus preventing our space from 

being countably compact) . 

Recall (see [R]) that the set-theoretic principle 0 is 

equivalent to the continuum hypothesis together with the 

set-theoretic principle 4. Recall that ~ says: 

There is a collection {T : a < wI} of wI countable a 

subsets of wI such that for each a < wI' T is a cofinala 

subset of A , and such that if H is an uncountable subset 
a 
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of wI' then there exists a < wI for which T c H. a 

A collection of subsets of wI with the above properties 

will be said to witness t. As usual, an ordinal 8 is viewed 

as being the set of ordinals less than 8. To emphasize 

this, sometimes we write [0,8) in place of 8, and [0,8] in 

place of [0,8+1], and so on. 

4.1 Lemma. Assume 4. Then there exists a collection 

{Sa: a < wI} of countable subsets of wI that witnesses 4 

and for which [U{Sa: a < wI}] n {A 8 : 8 ~ w} = ~. 

Proof· Let {T : a < wI} witness 4. Define {Sa: a < wI}a 

as follows: 

(i) So 

(ii) If 0 < n < W let S 
n 

(iii) S {Sn: n < W}.
W 

(iv) If a > W let S = T \(O,A +1)
a" a W 

Obviously [U{Sa: a < wI}] n {A 8 : 8 ~ w} ~ and one easily 

verifies that {Sa: a < wI} witnesses t. 

4.2 Theorem. Assume O. There exists a space X with 

the following properties: 

(1) Ixl = ~l 

(2) X is a locally countable, locatly compact zero-

dimensional Hausdorff space. 

(3) X has a countable dense set of isolated points. 

(4) Each open subset of X is either countable or has a 

countable complement. 

(5) X is pseudocompact but not countably compact. 

(6) X is RC-perfect. 
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Proof· Let {X : a < WI} be an indexing of the infinite a 

subsets of w (w, not wI). Such an indexing exists as the 

continuum hypothesis holds. Let {Sa: a < WI} be as con

structed in 4.1. Let {No: i E w} be a partition of w into 
1 

countably many infinite sUbsets. Our construction closely 

mimics that used in [0] and described in [R]. 

For each S < wI and each n < w'we will define a subset 

If S < w set U = {S} for each nEw. OuralJ,n 

construction now proceeds inductively as follows. Let 

° < Y < wI and assume for each a < y and each S < A we have a 

defined US,n so that the following are satisfied: 

(i) {Us,n: n < wand S < A } is an open base for a a 

locally compact zero-dimensional Hausdorff topology T on 
a
 

[O~Aa)' and if 8 < A then [0,8) is, open in [O,A ).
a a 

(ii) {U : n < w} is a decreasing sequence of compactalJ,n 

open subsets of ([O,A ) ,T ) and forms a neighborhood base 
a a 

at S in this space. 

(iii) If S < A and n < w then Us,n ~ [0, S] · a 

(iv) If S < A and S ¢ {Ai: i < w} then Us,n n {A 0 

a 1. 
: 

i < w} = <P for each n E w. 

(v) If ° < 8 < a then there exists an increasing, 

cofinal subsequence J 8 = {j8,n: nEw} of S8 such that 

J n [O,w] = <p and U +0 contains an infinite subset of8 A8 l,n 

J for each i E wand each nEw.8 

(vi) If S < a then X has a limit point in [0, A }.s a 

Now we will define {US ,n : S < A 
y 

and n E w} so that 

(i)- (v) above are satisfied when y is replaced by y + 1. 

First note that if y is a limit ordinal, then we have already 
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done this. So, assume y = a + 1 for some a. Then 

A A + w, and we have defined Us,n for each S < A and 
y a a 

each n < w. It remains to define Us,n for each S of the 

form A + i (where i < w) , and ,each n E w. a
 

If X has no limit point in ([O,Aa),T ), let
 
a a 

X {a : n E w}. Choose J c= Sa\[O,w] such that 
a a,n a 

J {ja,n: n E w}, ja,n < ja,n+l for each n E w, and J a a 

is cofinal in [O,A ). Note that J U X is a closed,a a a 

countably infinite discrete subset of [O,A ) and J n X ~. 
a a a 

Thus for each nEw there exists k(n) E w such that 

Uj ,k (n) n (J U X ) ="{ja,n}· Let W U. k(n).a a n a,n Ja,n' 

For each i E w and n E w set U {A + i} U {aa, k:A(l,+i,n a 

k E N and k > n} U [U{Wk\U{Wi : i < k}: k > nand k E N ].i i 

If X has a limit point in ([O,Aa),T ), choose W as 
a a k 

above, except that we no longer require that IW n xal < 1.k 

Let UA +i,n {A + i} U [U{Wk\U{Wi : i < k}: k E Ni and a 
a 

k > n}. 

It is now tedious but straightforward to check that 

(i)-(v) are satisfied when y is replaced by y + 1. 

We topologize wI be letting {Ua,n: a < wI and n < w} 

serve as an open base for a topology T on wI. From (i) 

it follows that the resulting space X is a locally compact, 

locally countable zero-dimensional Hausdorff space, so (1) 

and (2) are satisfied. 

We now assert the following for each a < wl : 

(*) 

We verify this by inducting on [Aa,wl ). It follows from 

(ii) and (v) that A + i E cixJ for each i < w. Suppose
a Ct 



118 Porter and Woods 

(*) is false, and let 6 be the smallest member of [Aa,w )
l 

that is not in cixJ. Thus 6 > A 1. Thus there exists a - a+ 

some C > a + 1 such that UQ contains a cofinal subset of 
~,n 

J~.	 Thus UQ n [A ,6) ~ ~ for each nEw. By the mini-
u ~,n a 

mality of 6 it follows that UQ n J ~ ~ for each nEw. 
~,n a 

Thus 6 E cixJ , which is a contradiction. Thus (*) is a 

true. 

It now follows that w forms a countable dense set of 

isolated points of x. Each 6 E w is isolated as UQ = {6}. 
~,n 

Set	 a = 0 in (*) and note that J o c wand Ao = w. Thus 

(3)	 holds. 

If {V : nEw} is a countably infinite family of pair-
n 

wise	 disjoint non-empty open sets of X, choose jn E w n V n 

for each n. Then {jn: nEw} = x for some a < wI' and hence a 

has a limit point in X by virtue of our inductive construc

tion. This is a cluster point of {V : nEw}, so by 2.1 X n 

is pseudocompact. 

It follows from (iv) that {A C: C 2 w} is a countably 

infinite subset of X with no limit point, so X is not counta

bly compact. Thus (5) is verified. 

It follows by the same reasoning as used in Ostaszewski's 

original construction that each open subset of X is either 

countable or co-countable. For if V is open and X\V is not 

countable, then as {Sa: a < wI} witnesses ~ there exists 

a < wI for which Sa ~ wl\V. By (*) above it follows that 

[Aa,wl ) ~ cixJ ~ cixS ~ Wl\V, so V is countable. Thusa a 

(4)	 holds. 

To show that X is RC-perfect, suppose that V is open in 

X.	 If V is countable, then by the regularity of X there 
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exists, for each p E V, a regular closed subset A(p) of X 

for which p E intxA(p) ~ A(p) c V. Thus V = U{A(p): p E V} 

and V is a union of countably many regular closed sets. 

If V is not countable, by (4) there exists a such< wI 

that X\V ~ [0, A ) · As {S : a < WI} wi tnesses .), find a a 

0 < wI such that So c [A a ,wI) · Thus So ~ V n [O'A ) · Now 
o


[O'A ) is a countable subspace of X and is thus paracompact.
o

Evidently J is a closed discrete subspace of [O'A ) and o o

J ~ V n [O,A ). There exist a pairwise disjoint countablyo o

infinite family {B : nEw} of compact open subsets of [O'A )n o

such that J ~ U{B : n E ~} c V n [O,A ). The countable openo n o

cover {[O,Ao)\J } U {B : nEw} of [O'A ) has a preciseo n o

locally finite open refinement W. For each nEw find a 

regular closed subset An of [O'A ) and W E Wsuch thate n 

An c W C B and J ~ U{int[O,Ao)A : nEw}. As {An: nEw}n n o n 

is a locally finite family in [O,A )' we see that U{A : nEw}o n 

is a regular closed subset of [OJ,A ) and contained in V. 
o

Now J ~ U{A : nEw} and [Ao'w l ) ~ Cl J by (*). As [O'A )o n x o o

is open in X, so is int[O,Ao)A . Thus Cl [U{int[O,A )A :n x no 
nEw}] U{A : nEw} U [Ao'wl ) C V. Thus we have producedn 

a regular closed subset of X contained in V and containing 

all but countably many points of V. Arguing as in the case 

where V was countable, we now conclude that V is the union 

of countably many regular closed subsets of X and (6) follows. 

4.3 Remark. The example in 4.2 is pseudocompact and 

not countably compact, and hence neither normal nor countably 

paracompact. In theorems 3 and 4: of [A], Aull proves that 

if X is regular, and if each closed subset F of X is the 
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intersection of countably many regular closed sets each of 

which contains F in its interior, then X is normal and 

countably paracompact. The example in 4.2 shows that we 

cannot weaken the hypothesis to require only that each F 

be the intersection of countably many regular open subsets 

of X (but not necessarily the intersection of their closures) . 
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