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COMPACTIFICATIONS OF THE RAY WITH 

THE CLOSED ARC AS REMAINDER 

Marwan M. Awartani* 

o.	 Introduction and Summary 

Let Jdenote the ray (0,1] and let I denote the closed 

interval [0,1]. If f: J + I is a continuous function, 

let Jf denote the graph of f. Let afJ denote the closure, 

Jf, of Jf in I x I. Then afJ is a compactification of J, 

since the function h: J+ afJ given by h(t) = (t,f(t)) is 

a dense embedding of J into afJ. Let Jf denote the remain

der afJ\Jf. In (1) a procedure similar to the above is 

used to obtain compactifications for a large class of non-

compact, locally compact spaces. Techniques using the 

closure of the ~raph of a function f are used in (2) to 

obtain various topological extensions of f. 

It is readily seen that if f: J + I is continuous and 

is continuously extendible to I, then afJ is homeomorphic 

(~) to I (the one point compactification of J). Let F 

denote the class of all functions f: J + I, which are con

tinuous but are not continuously extendible to I. If 

f E F, then d"f is a closed subint.erval of I and afJ is non

locally connected because Jf is forced to oscillate as it 

'" approaches Jf. In (3) and (4), the author and S. Khabbaz 

develop invariants to study the homeomorphism and the 

*This paper was accomplished while the author was a 
visiting professor at the Department of Mathematics, 
Cornell University. The author wishes to extend to David 
Henderson deep appreciation and gratitude for his support. 
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homotopy types of the spaces Jf U {(O,O)}, where 

f E F. 

Our purpose here is to study the compactifications 

afJ, where f E F. For related work see (5) and (6) • 

In Section 1 we associate with each CLfJ, f E F, a 
A 

closed ordered subsetEf of Jf, where the order is that 

induced by the natural order on Jf. Ef is called the type 

of the compactification CLfJ and consists of those points 

of Jf arbitrarily close to which Jf makes significant 

turns. In theorem 1.4, Ef is proved to be a topological 

invariant of afJ. In Section 2 we prove a reduction theorem 

that associates with each CLfJ, another compactification 

CLgJ, homeomorphic to CLfJ, where 9 is piecewise linear over 

a sequence V in J converging to 0, and where each v E V, 

is a local extremum of g. Moreover CLgJ has the nice 

property that Eg = Vg\Vg, Where Vg = {(v, 9 (v) ): v E V}. 

Hence Vg enjoys some sort of minimality in the sense that 

it contains no subsequences converging to any point of 

Jg\Eg. 

Finally, in Section 3, we prove that for each closed 

subset T of I, there exists continuum many nonhomeomorphic 

compactifications of the ray, all of which have type T. 

1.	 The Invariant Ef 

Definition 1.1. Let p,q be two points in Jf. Then 

[p,q] f denotes the closed arc in Jf joining p and q · [p,q] f 

is called a wedge (respectively a spike) if the lowest 

(highest) points of [P,q]f are ~ll interior points. Such
 

a wedge or spike is called symmetric if TI (p) = TI (q),
2 2 
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where TI 2 is the projection onto the y-coordinate. Finally 

if p, q E I x I, then [p#q] denotes the straight line seg

ment in I x I joining p and q. 

Definition 1.2. [See (7) or (8)]. Let {A.} be a 
1. 

sequence of nonempty closed subsets of UfJ. Then define: 

(a) Lim inf{A } = {x E ufJ: if U is an open neighi 

borhood of x in ufJ, then U n Ai ~ ~ for all but finitely 

many i}. 

(b) Lim sup{A } C {x € afJ: if U is an open neighbor
i 

hood of x in ufJ, then U n Ai ~ ~ for infinitely many i}. 

If lim inf{A.} = A = lim sup{A.}, then we say that the 
1. l. 

sequence {Ai} converges to A, or lim {Ai} = A. 

The above definition of convergence is equivalent to 

convergence with respect to the Hausdorf metric an the set 

of all nonempty closed subsets of afJ. See for example (8). 

Definition 1.3. Let s E Jf. Then s is called 

essential in QfJ# if it satisfies one of the following 

two conditions: 

(i) There exists a sequence {[Pi,qi]f} of wedges 

(spikes) in Jf and a positive nUmber €, such that 

lim{[p.,q']f} = [S,s+e:] ([s,s-e:]), and lim{p.} = lim{q.}
1. 1. .1.1. 

S + £ (s ... e:). 

(ii) s is the limit of a sequence of points in Jf 

satisfying condition (1). Otherwise s is called inessential 

in ufJ. Let Ef denote the set of essential points of 

ufJ, o:rde:red by the natu:ral o:rder on Jf. (In figure 1 

1Ef :z: {O,J,l}.) 
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J...
 
.3
 

Figure 1 

Theorem 1.4. Let f,g E F and let h: ufJ ~ UgJ be a 

homeomorphism. Then hlEf is a monotone homeomorphism onto 

Eg. 

The proof of this theorem follows from Lenuna 1.6. 

First we need the following: 

Convention 1.5. 

(i) If a statement P is made about the elements of a 

sequence S, such that all but finitely many elements of 

S satisfy P, then we say S almost satisfies P, or almost 

each element of S satisfies P. 

(ii) Let X ~ Jf, then C(X) denotes the set of path 

components of X ordered from right to left. And Jf is 

always assumed to have the natural order of the reals. 

A point of ufJ contained in Jf will be referred to by its 

Y-coordinate. 

Then 

A 

(i) hlJf is a monotone homeomorphism onto Jg. 

(ii) If {[P.,q']f} is a sequence of wedges converging
1 1 

A 

to [S,S+E] c Jf with lim{p.} = lim{q.} = S + E, and if 
- 1 1 
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'" 
hlJf	 is order preserving (revers1:ng)~ then {[h(p.) ,h(q.)] }

1	 1 9 

is almost a sequence of wedges (spikes). 

(iii)	 If {[p. ,q']f} is a sequence of spikes converging
1 1 

'"	 '" 
[S,S-E] ~ Jf~ with lim{Pi} = lim{qi} = s - E~ and if hlJf 

is order preserving (reversing)~ then {[h(p.) ,h(q.)] } is 
1	 1 9 

almost a sequence of spikes (wedges). 

Proof· 

(i) is immediate. 

(ii) Since h is a homeomorphism, h[Pi,qi]f = 

[h(p.) ,h(q.)] and the sequence {[h(p.) ,h(q.)] } converges
1 1 9	 1 1 9 

to [h(s) ,h(S+E)]. For each i, let mi be a lowest point in 

[h(p.),h(q.)] , then 
1 1 9 

lim{h(Pi)} = lim{h(qi)} =h(S+E) > h(s) = lim{m }.
i 

Hence almost each m . is an interior point of [h(p.),h(q.)] . 
1	 1 1 9 

Since	 m . was an arbitrary lowest point of [h(p.),h(q.)] ,
1	 1 1 9 

this	 implies that in almost each [h(p.) ,h(q.)] the lowest 
1	 1 9 

points are interior points. Hence the desired result fol

'" 
lows. The case when hlJf is order reversing is handled 

similarly. The proof of (iii) is similar to that of (ii). 

2.	 A Reduction Theorem 

Definition 2.1. Let V be a decreasing sequence' of 

points in J converging to 0, and let f E F. Then f is 

called piecewise linear over Vf = {(v,f(v)): v E V} if 

fl [v,v'] is linear for each pair, v,v', of consecutive 

elements of V. If no ambiguity arises, f is called simply 

P.L. The set Vf is called the set of vertices of f. More

over if f is P.L. and every P E Vf is a local extremum, 

then f is called sawtooth. Finally let mf and Mf denote, 
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respectively, the local minima and local maxima 

of f. 

Remark 2.2. Let f E F be P.L. over Vf, then 

v = TIx(Vf) is a copy of the integers (TI is the projecx 

tion on the x-coordinate). Hence flv: V ~ I also yields 

a compactification of the integers, ufV = vf. Vf denotes 

the remainder ufV\Vf . 

In this section we prove the following: 

Reduction Theorem 2.3. For each f E F, there exists 

9 E F having the following properties: 

(i) 9 is sawtooth 

(ii) UfJ ~ UgJ and Jf Jg 

(iii) Ef = Eg = Vg 

A particularly nice property of the above sawtooth 

function 9 is that Eg = Vg. Although it can be predLcted 

from 1.3 and the proof of 1.6 that Eg =Vg, equality is not 

in general true. In fact, Eg may consist of just two 

points, whereas Vg may be all of I. So the above theorem 

implies some sort of minimality about the vertices Vg, in 

the sense that if a subsequence of Vg converges to a point 

s, the s E Eg. 

Lemma 2.4. Let f,g E F such that lim\f(x) - g(x) \ o. 
x~o 

Then the function h: ufJ ~ U J given by
9 

" 
(i) h\Jf = id 

(ii) h(x,f(x)) (x,g(x) ) 

is a homeomorphism. 



TOPOLOGY PROCEEDINGS Volume 9 1984 207 

Lemma 2.5. Let f E F be P.L. Then there exists a 

sawtooth function g E F, such that 0, J ;; 0,
g
J.

f 

Proof· Let Vi be the set of vertices of f, and let 

'IT X (Vf) = V. Choose a = (1, f (1» , and let a > a > a
l l 2 3 

> ••• be a sequence of points in V, such that for each i, 

f is monotone over [ai,a + ] and is not monotone over anyi l 

subinterval of J properly containing [ai,a + ]. Clearlyi l 

u~=l[ai,ai+l] = J. Let g be the P.L. function over 

{(ai,f(a )}. Then g is sawtooth, since each a is a locali i 

extremum of g. In order to prove that o,fJ ;; o,gJ, we 

construct another function gl E F as follows: 

(i) gl(a ) = f(a ) = g(a i ) for each i.i i 

(ii) gll (ai,a i + l ) is a strictly monotone function such 

that \f(x) - gl(x) I < E where the sequence {E } is a
i

, i 

decreasing sequence of positive numbers converging to O. 

This is possible because fl (ai,ai + ) is monotone for eachl 

i. Since lim{E,} 0, it follows that limlf(x) - gl(x) I O. 
~ x+O 

Finally define a function 

h: 0, J + 0, J as follows: 
gl g 

(i) hlJg = id, since Jg Jg.
1 1 

(ii) Let Pi = (ai,gl(ai » = (ai,g(a i » for each i. 

Then h maps [P"P'+l] onto [Po ,P'+l] by the horizontal 
1 1 gl 1 1 g 

projection: h(x,gl(x» = (x',gi(x'» where gl(x) g(x') . 

h is 1-1 on each [P"P'+l] because both gl and g are 
1 ~ gl 

strictly monotone over [ai,ai + l ]. One readily verifies 

that h is a homeomorphism. 
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Proof of Theorem 2.3. We break the proof into steps: 

Step 1. Let gl E F be a P.L. function such that 

OlfJ is homeomorphic to Olgl J and where lTX(vg ) 1)
1

converges to O. By Lemma 2.5, we may assume that gl is 

sawtooth. It follows from Definition 1.3 that Eg is
l 

closed in Jgl . Hence Jgl\Eg is the countable (possiblyl 

finite) union of disjoint open intervals (ti,si)' t i < si. 

For each i, choose positive numbers k r so thatR,i' i
, 

i
, 

s. > R,. > k. > r. > t
i

, and let U. = ((t i ,si) x I) n Jgl · 1 1 1 1 1 

Step 2. A new function g2 E F is obtained from gl 

by altering Jg over each U separately. Any portion ofl i 

Jg which is not altered is assumed to stay as part of Jg2 .l 

We alter a typical U by considering each K E C(U )i i 

separately. If K E C(U ) lies totally in one of thei 

strips k i ~ Y ~ si; t i ~ Y < k i , then K is left intact. 

Otherwise, removing the line y = k splits K into at leasti 

two components. The closure of a typical such component 

[po,qo]g is one of the following types:
 
1
 

(i) a wedge (spike) contained in the strip k i ~ y > 

r i (ki ~ Y ~ 1 i )· In this case, replace [po,qO]gl by 

[po,qO] · 

(ii) [po,qO]gl is neither a wedge nor a spike, and is 

either totally contained in the strip k ~ Y ~ si or thei 

strip t i ~ Y ~ k i . We treat the two cases simultaneously, 

the alternative choices for the second case being included 

in parenthesis. We may assume that TI 2 (PO) > TI 2 (qO). 

Before we alter [po,qO]g , we obtain a sequence 
1 

{Pl,···,Pj}({ql,···,qj}) of vertices in [po,qolgl such 
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that for each k, 1 ~ k ~ j, Pk (qk) is a highest (lowest) 

vertex in the interior of [Pk-l,qolgl ([qk-l,POlgl) and 

such that [pJ·,qO]g ([q.,PO] ) contains no vertices of gl·
1 J gl 

Also, for each k, 1 ~ k ~ j, [Pk,Qk1gl ( lqk,Qk 1g ) is chosen 
l 

to be the largest symmetric wedge (spike) in [Pk,POlgl 

([qk,qolgl) having Pk (qk) as one endpoint. ~ow [po,qolgl 

is altered by replacing each [Pk,Qk]g ([qk,Qk]g) by 
1 1 

[Pk ' Ok ] ([ q k ' Ok] ) · 

(iii) Finally if [Po,qolgl is a wedge (respectively, 

spike) that extends below the line y = r (above the line
i 

y = ii)' then choose a lowest (highest) vertex M in 

The arcs [PO,M]g , [M,qO]g are both the types 
1 1 

discussed in (ii) and are altered accordingly. 

Step 3. limlg11x) - g2(x) = O. To establish this,
x-+O 

let {[p.,q.] } be an enumeration from right to left of 
1 1 gl 

all the wedges in Jg that have been altered in a particular
l 

U .. And let {lp!,q!] } be the similar sequence of all 
J 1 1 gl 

the spikes. Our claim is equivalent to showing that each 

of {[p.,q.] } and {[p~,q~] } converges to a point. 
1 1 gl 1 1 gl 

Suppose {[p.,q.] } does not converge to a point, then one 
1 1 gl 

deduces that a point of [k.,s.) is essential. Similarly
J J 

if {[p!,q!] } does not converge to a point, then a point 
1 1 gl 

of (t.,k.] is essential. Both of these conclusions con
J J 

tradict the assumption that (t.,s.) consists of inessential 
J J 

points. 
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Step 4. Applying Lemma 2.5 to g2 we obtain the desired 

sawtooth function g. To see this let h : afJ ~ a J,l gl 

h3 :' a J ~ a J be the homeomorphisms guaranteed by
g2 9 

Lemma 2.5, and let h2 : a g J ~ a g J be the homeomorphism 
1 2 

guaranteed by Lemma 2.4. Then the composition 
A 

h3 -h2 -hl : afJ ~ agJ is a homeomorphism. Also hlJf ide 

This and Theorem 1.3 establish (i), (ii) and half of (iii) 

of Theorem 2.3. 

Finally to prove that Vg = Eg, we notice that the 

sequence Vg n ([k.,s.) x I) converges to s. and the sequence
J J' . J 

Vg n ((t.,k.] x I) converges to t., otherwise a point of 
J J J 

[k.,s.) or (t.,k.] would be essential. 
J J J J 

3. Homeomorphism Classes of Compactifications of a Given Type 

The type Ef of a compactification afJ is not a complete 

invariant. In this section, we prove the following: 

Theorem 3.1. Let T be a closed subset of I containing 

more than two points. Then there exists continuum many 

nonhomeomorphic compactifications of the ray aZl of which 

are of type T. 

In the case where the type Ef consists of two points, 

using a procedure similar to that of Theorem 2.3, one 

obtains a reduction that "straightens" Jf enough so that 

the resulting graph looks like that in figure 2. Hence 

all compactifications of J whose type consists of two 

points are homeomorphic to a . IJ. 
s1ni 
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Figure 2 

The strategy for proving the above theorem involves 

associating (in 3.3) with each nonempty set A of positive 

integers, a function f E F where afJ is of type T, and 

then proving that functions associated with different sets 

of positive integers yield nonhomeomorphic compactifications, 

all .of which are of type T. 

Before we proceed with the proof of Theorem 3.1, we 

need the following: 

Definition 3.2. Let S be a totally ordered sequence. 

A bZoak in S is a finite set of consecutive elements of S. 

If the cardinality of b, Ibl·= n, then bois an n-bZoak in 

S. The boundary of b in S, bds(b) , is a subset of S\b 

consisting of two elements: the element preceding the 

first element of b i and that succeed~ng the~last element 

of b. A subsequence Sl of S is called an n-subsequenae of 

S, for a positive integer n, if = 
00 

such thatSl Ui=lbi , 

almost each b. is an n-block in S, with bd (b ) c S\Sl·
1 S i 

The boundary of Sl in 8, bd (8 ) = U~=lbd8(bi)·8 l 

Observe that if 8 is an n-subsequence of 8 and m ~ n,1 

then 8 is not an m-subsequence of 8.1 
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Construction 3.3. Let T be the set specified in 

Theorenl 3. 1 and let t, t' be respectively the smallest 

and largest elements of T, and let Dbe a countable dense 

subset of T\{t'}, containing t. Given a nonempty set A of 

positive integers we associate with Aa sawtooth function 

fE F whose vertices Vf satisfy the following conditions: 

(i) All elements of Mf are at height t'. 

(ii) For each dE 0, and each a € A, the minima of f 

at height d, denoted by mQ, contain an a-subsequence S of 

mf with bdmf(S) .~ mt. 

(iii) Moreover, if b is a block in mf contained in md, 

with bdmf(b) =mt, then )bl E A. 

To illustrate the above construction, let
 

1 2
T = {O,),),l}: A = {1,2}. The function in figure 3 satis

fies the conditions of Construction 3.3 

1 

2· 
:3 

1 
3" 

o 
Figure 3 

Lemma 3.4. Let f be the function construated in 3.3~ 

and Zet S be an n-subsequence of mf which converges to 

Proof· Since S is an n-subsequence of mf, S = U~.lb.,
1= 1 

where almost each b i is an n-block in mf and bdmf(bi ) =mf\S. 
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Since lim S rj t, almost each b ~ mf\mt. It follows theni 

from part (ii) of construction 3.3, that an element of 

bdmf(b ) is either at the same height as elements of b i ,i 

or is contained in mt. Since bdmf(S) converges to t ~ d, 

it follows that almost each bdmf(b ) is contained in mt.i 

Hence part (iii) of Construction 3.3 implies that n E A. 

Proof of Theorem 3.1. Let A and B be two sets of 

positive integers, and let f,g be the function associated 

with A,B respectively. Observe that Jf = Jg = [t,t']. 

Suppose that A ~ B, and suppose that h: ufJ + ugJ is a 

homeomorphism. We may assume that there exists an a E A\B. 

Choose d E D\{t}, and let U = ([t,t') x I) n Jf. Then by 

part (ii) of Construction 3.3, there exists a sequence 5 

in C(U) having the following properties: 

(i) S	 is an a-subsequence of C(U) converging to [d,t']. 

(ii)	 bd (5) converges to [t,t'].
 
C(U)
 

(iii) each K E C(U) contains exactly one element of mf. 

Since h is a homeomorphism, it is an order isomorphism 

taking C(U) onto C(h(U». Now we verify the following: 

'" 
a) hlJf is order preservingo Suppose the contrary 

1\ 
and consider the above sequence S ~ C(U). Since hlJf 

is order reversing, part (iii) of Lemma 1.6 implies that 

almost each L E h(S) is a spike. Consequently almost each 

L contains at least one element of Mg. Since h is a homeo

morphism and since h(t*) := t,h(S) must converge to [t,h(d)]. 

But this contradicts the fact that t' E lim h(S) since 

almost each L E h(S) contains at least one vertex of Mg, 

andMg converges to t'. 
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b)	 It follows from (a) that h(S) is an a-subsequence 

c) Almost each element L of h(S) or bdC(h(U)) (h(S)) 

contains exactly one element of mg. First, it follows 

from part (ii) of Lemma 1.6 and (a) above that almost 

each L is a wedge, and hence contains at least one element 

of mg. Suppose that Sl is a subsequence of h(S) such that 

each element of S1 contains at least two elements of mg. 

Then each such element L must contain at least one element 

M of Mg, which when deleted from L splits L into two arcs 

-1whose closures are both wedges. Whereas if h (M) is 

-1 -1deleted from h (L) € S, then clearly h (L) breaks up 

into two arcs such that the closure of at most one of them 

is a wedge. This contradicts part (ii) of Lemma 1.6. 

Similarly, we prove that almost each L € bdC(h(U)) (h(S)) 

.contains exactly one element of mg. 

d) It follows from (b) and (c) above that the sequence 

h(S) n mg is an a-subsequence of mg which converges to 

h(d) and whose boundary in mg converges to t. Hence by 

Lemma 3.4, a € B, contradicting the fact that a was chosen 

in A\B, and hence proving that UfJ and UgJ are nonhomeo

morphic. 
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