TOPOLOGY PROCEEDINGS Volume 9, 1984 Pages 217–225

http://topology.auburn.edu/tp/

A METRIC FOR METRIZABLE GO-SPACES

by

H. R. BENNETT

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A METRIC FOR METRIZABLE GO-SPACES

H. R. Bennett

Conditions which force the metrizability of GO-spaces are well known (see [Fa]). Since GO-spaces are T_3 -spaces and countable GO-spaces are first countable it follows that countable GO-spaces are metrizable. However it is not always apparent what a metric is for a given metrizable G)-space even if it is countable. For example the Sorgenfry line [S] restricted to the set of rational numbers or, if $\alpha < \omega_1$, the LOTS $[0,\alpha]$ are both countable and, thus, metrizable but it is difficult to construct a metric for either of these spaces ([A]). In this note a metric is derived for GO-spaces.

A LOTS (= linearly ordered topological space) is a triple $(X, \lambda(\leq), \leq)$ where (X, \leq) is a linearly ordered set and $\lambda(\leq)$ is the usual open-interval topology generated by the order \leq .

Recall that a subset A of X is order-convex if whenever a and b are in A, then each point lying between a and b is also in A.

A GO-space (= generalized ordered space) is a subspace of a LOTS (see [L]). There is an equivalent way to obtain a GO-space X by starting with a linearly-ordered set Y. Equip Y with a topology τ that contains $\lambda(\leq)$ and has a base of open sets each of which is order-convex. In this case X is said to be constructed on Y and X = GO_Y(R,E,I,L) where $I = \{x \in X | \{x\} \in \tau\},\$ $R = \{x \in X - I | [x, + [\in \tau],\$ $L = \{x \in X - I |] + , x] \in \tau\},\$ and $E = X - (R \cup I \cup L).$

See [L] for further notation.

In deriving a metric for a metrizable GO-space it is illuminating to first derive a metric for a countable GO-space case and then derive the metric for an arbitrary metrizable GO-space.

Let Q denote the LOTS of rational numbers and let N denote the set of natural numbers. An order \leq on a set X is a dense-order if whenever a,b \in X are such that a < b then there is a point c in X such that a < c < b.

The next theorem indicates how a GO-space may be embedded in a LOTS.

Theorem 1. If $X = GO_y(R, E, I, L)$, then X is homeomorphic to a subspace of a dense-ordered LOTS L(X). Furthermore the homeomorphism is order-preserving and L(X) does not have any endpoints.

Proof. Let

 $L(X) = \{ (x,q) | x \in I,q \in]-1,1[\cap Q \} \cup \\ \{ (x,q) | x \in R,q \in]-1,0] \cap Q \} \cup \\ \{ (x,q) | x \in L,q \in [0,1[\cap Q \} \cup \\ \{ (x,0) | x \in E \}. \end{cases}$

Equip L(X) with the lexicographic ordering induced from the order on X and the natural order on Q. It follows that L(X) is a dense-ordered LOTS without endpoints. Define a function ϕ from X into L(X) by $\phi(x) = (x,0)$. Then ϕ is an order-preserving homeomorphism from X into L(X).

Corollary. A countable GO-space X is homeomorphic to a subspace of Q by an order-preserving homeomorphism.

Proof. Since X is countable, L(X) is a countable, dense-ordered LOTS without endpoints. Hence L(X) is homeomorphic to Q by an order-preserving homeomorphism [Fr]. Thus X is homeomorphic to a subspace of Q by an orderpreserving homeomorphism.

Since each countable GO-space X can be considered a subspace of Q the usual metric on Q restricted to X is a metric on X. Unfortunately it is often difficult to use this metric since it is hard to visualize the embedding.

Let X be a countable GO-space and ϕ be an orderpreserving homeomorphism from X into L(X) and β be an order-preserving homeomorphism from L(X) onto Q. Notice that if $x \in \mathbb{R}$ ($x \in \mathbb{L}$) then there is an interval J in L(X) immediately preceding (succeeding) $\phi(x)$ such that no point of X maps into $\beta(J)$ and if $x \in \mathbb{I}$ then there are intervals J_1 and J_2 in L(X) such that J_1 immediately precedes $\phi(x)$ and J_2 immediately succeeds $\phi(x)$ and no point of X maps into $\beta(J_1 \cup J_2)$. By considering Q homeomorphic to $Q \cap]0,1[$ and embedding X in $Q \cap]0,1[$ it follows that the image of those intervals in $Q \cap]0,1[$ must be made arbitrarily small if $|\mathbb{R} \cup \mathbb{L} \cup \mathbb{I}|$ is large.

Let k' be the collection of all maximal, nondegenerate, convex subsets of X - (R U L U I). Then k' is at most countable. Let K_1, K_2, \cdots be an enumeration of k' (without repetitions). Since each K_i is homeomorphic to a convex subset of Q it is metrizable. Let d_i be a metric for K_i

219

that is bounded by 1. Let x_1, x_2, \cdots be a counting of R U L U I.

These observations motivate the derivation of a metric for a countable GO-space.

To define the function on $X \times X$ compensation functions must be defined for the points of X. The motivation for these compensation functions comes from observing how X is embedded in Q and how one would "travel" in Q from point to point. Let

and

φ _ℓ (x)	=	$\int^{2^{-n}}$	if	x	=	x _n e r u	I
		f ⁰	if	x	e	LUE	
φ _r (x)	=	$\int^{2^{-n}}$	if	x	=	x _n є l u	I
		lo	if	x	e	RUE.	

A metric function σ can be defined on X × X. Although it is not necessary it is convenient to consider cases. Let a < b.

Case 1. If $\{a,b\} \subseteq \bigcup k'$ and both lie in the same K_i let $\sigma(a,b) = d_i(a,b) \cdot 2^{-1}$ and if $a \in K_i$ and $b \in K_j$ for $i \neq j$, then let $\sigma(a,b) = \sup\{2^{-1} \cdot d_i(a,z) \mid a < z, z \in K_i\} + \sum\{2^{-n} \mid K_n \subset [a,b[\} + \sum\{\sigma_k(x) + \phi_r(x) \mid a < x < b\} + \sup\{2^{-j} \cdot d_j(z,b) \mid z < b, z \in K_j\}.$ Case 2. If $a \in K_j$ and $b \notin \bigcup k'$ then let $\sigma(a,b) = \sup\{2^{-j} \cdot d_j(a,z) \mid a < z, z \in K_j\} + \sum\{2^{-n} \mid K_n \subset [a,b[\} + \sum\{2^{-n} \mid K_n \subset [a,b[] + \sum\{\phi_k(x) + \phi_r(x) \mid a < x < b\} + \phi_q(b).$ If a $\not\in \bigcup k$ and b $\in K_i$, then let

$$\begin{aligned} \varphi(a,b) &= \phi_{r}(a) + \Sigma \{2^{-n} | K_{n} \subset]a,b[\} + \\ & \Sigma \{\phi_{\ell}(x) + \phi_{r}(x) | a < x < b\} + \\ & Sup\{2^{-1} \cdot d_{i}(z,b) | z < b, z \in K_{i}\}. \end{aligned}$$

1984

Case 3. If neither a nor b is in UK, then let

$$\sigma(a,b) = \phi_r(a) + \Sigma\{2^{-n} | K_n \subset]a,b[\} + \\ \Sigma\{\phi_{\ell}(x) + \phi_r(x) | a < x < b\} + \\ \phi_{\varrho}(b).$$

Furthermore let $\sigma(a,b) = 0$ if and only if a = b and let $\sigma(a,b) = \sigma(b,a)$ for a and b in X.

Theorem 1. If X is a countable GO-space, then σ is a metric on X.

Proof. Since each of the series used in defining σ is bounded by the convergent series $2 \cdot \Sigma 2^{-n}$, it follows that σ is well-defined. Since σ was constructed to be a metric function it is just a matter of cases to check that σ defines the topology. Let $S_{\sigma}(x, \varepsilon)$ denote the sphere centered at x whose σ -radius is ε .

Case 1. If $x_n \in I$, then $S_{\sigma}(x_n, 2^{-n}) = \{x_n\}$.

Case 2. Let $x_n \in \mathbb{R}$ and $S_{\sigma}(x_n, \varepsilon)$ be given. Since $x_n \in \mathbb{R}$ choose $x \in X$ such that $x_n < x$ and $x \in S_{\sigma}(x_n, \varepsilon)$. Then $[x_n, x] \subset S_{\sigma}(x_n, \varepsilon)$.

Let $[x_n, x[$ be given. If $\sigma(x_n, x) = \varepsilon_1$, let $\varepsilon = \min\{2^{-n}, \varepsilon_1\}$. Then $[x_n, x[\supset S_{\sigma}(x_n, \varepsilon)]$.

Case 3. If $x_n \in L$ argue analogously to Case 2.

Bennett

Case 4. If $x_n \in E$ then argue on each side of x_n using Case 2 and Case 3.

Hence σ is a metric for X.

If R U L U I is dense in X then the metric σ is much less simple as the next two examples illustrate.

Example 1. Let X be the Sorgenfrey Line restricted to Q, that is, $GO_Q(Q, \Phi, \Phi, \Phi)$. Let q_1, q_2, \cdots be a counting of Q. Then, for each $k \in N$, $\phi_\ell(q_k) = 2^{-k}$ and $\phi_r(q_k) = 0$. Thus if $q_n < q_m$, it follows that

$$\sigma(q_n, q_m) = \Sigma\{2^{-k} | q_n < q_k \leq q_m\}.$$

Example 2. Let X be the LOTS $[1,\alpha)$ where $\alpha < \omega_1$. Then $R = E = \Phi$. Let x_1, x_2, \cdots be a counting of $[1,\alpha)$. Then if x_k is a non-limit ordinal $\phi_r(x_k) = \phi_l(x_k) = 2^{-k}$ and if x_k is a limit ordinal $\phi_l(x_k) = 0$ and $\phi_r(x_n) = 2^{-n}$. Hence, if $x_n < x_m$, then

$$\sigma(\mathbf{x}_{n}, \mathbf{x}_{m}) = \phi_{\mathbf{r}}(\mathbf{x}_{n}) + \Sigma\{\phi_{\mathbf{r}}(\mathbf{x}) + \phi_{\ell}(\mathbf{x}) | \mathbf{x}_{n} < \mathbf{x} < \mathbf{x}_{m}\} + \phi_{\ell}(\mathbf{x}_{m}).$$

The following corollary easily follows.

Corollary. If $R \cup L \cup I$ is dense in the countable GO-space X then

$$\sigma(\mathbf{a},\mathbf{b}) = \phi_{\mathbf{r}}(\mathbf{a}) + \Sigma\{\phi_{\mathbf{r}}(\mathbf{x}) + \phi_{\ell}(\mathbf{x}) | \mathbf{a} < \mathbf{x} < \mathbf{b}\} + \phi_{\ell}(\mathbf{b})$$

is a metric for X.

The countable GO-space case motivates the metrizable GO-space case by realizing the countable GO-spaces are σ -discrete.

222

TOPOLOGY PROCEEDINGS Volume 9 1984

The following theorem gives structural conditions for the metrizability of a given GO-space.

Theorem 2 [Fa]. Let X be a GO-space. The following properties are equivalent.

(i) X is metrizable, and

(ii) There is a dense, σ -discrete set D in X containing R U L.

It follows from this result that if X is a metrizable GO-space then each of R and L are σ -discrete in X. Since I is open in X it is an F_{σ} -set and, hence, a σ -discrete set.

Let $R = \bigcup \{R_n \mid n = 1, 2, \dots\}$, $L = \bigcup \{L_n \mid n = 1, 2, \dots\}$ and $I = \bigcup \{I_n \mid n = 1, 2, \dots\}$ where for each n, $R_n \subseteq R_{n+1}$, $L_n \subseteq L_{n+1}$ and $I_n \subseteq I_{n+1}$.

If $X = GO_Y(R, E, I, L)$ is a metrizable GO-space where Y is a metric LOTS with metric d then in order to find a metric for X compensation functions must be found (as in the countable case). This is motivated by embedding X in L(X) and observing how one "travels" from point to point. If $x \leq y$, let $R(x,y) = 2^{-i}$, where i is the first natural number such that $R_i \cap [x,y] \neq \emptyset$. If no such i exists let R(x,y) = 0. Let $L(x,y) = 2^{-j}$ where j is the first natural number such that $L_j \cap [x,y] \neq \emptyset$. If no such j exists let L(x,y) = 0. If x < y let $I(x,y) = 2^{-k}$ where k is the first natural number such that $I_K \cap [x,y] \neq \emptyset$. If no such k exists or if x = y let I(x,y) = 0.

Bennett

Let

$$\label{eq:rho} \begin{split} \rho\left(y,x\right) \ &= \ \rho\left(x,y\right) \ &= \ d\left(x,y\right) \ + \ R\left(x,y\right) \ + \ L\left(x,y\right) \ + \ I\left(x,y\right). \end{split}$$
 It is a matter of checking cases to see that ρ is a metric function on X. Notice if $y_1 \ < \ y_2$ and $x \ < \ y_1$ then $\rho\left(x,y_1\right) \ &\leq \ \rho\left(x,y_2\right). \end{split}$

Theorem 2. Let Y be a LOTS with metric d and $X = GO_Y(R,E,I,L)$ be a metrizable G)-space. Then ρ , defined above, is a metric on X.

Proof. All that needs to be shown is that ρ preserves the topology on X. Consider the following cases:

(i) If $x \in I$ then let k be the first natural number such that $x \notin I_{K}$. It follows that $S_{O}(x, 2^{-k}) = \{x\}$.

(ii) If $x \in \mathbb{R}$ and $S_{\rho}(x,\varepsilon)$ is given, choose the first natural number n such that $3 \cdot 2^{-n} < \varepsilon \cdot 2^{-2}$. Let $K_n = \bigcup \{\mathbb{R}_i \cup \mathbb{L}_i \cup \mathbb{I}_i | i = 1, \cdots, n\}$. Choose y > x such that $d(x,y) < \varepsilon \cdot 2^{-2}$ and $]x,y[\cap K_n = \phi$. This can be done since K_n is discrete and $x \in \mathbb{R}$. It follows that $\rho(x,y) < \varepsilon \cdot 2^{-2} + 3 \cdot \varepsilon \cdot 2^{-2} = \varepsilon$. Thus $[x,y] \subset S_{\rho}(x,\varepsilon)$.

If [x,b[is given let n be the first natural number such that $x \in R_n$. Let $\varepsilon = \min\{d(x,b), 2^{-n}\}$. Then $S_n(x,\varepsilon) \subseteq [x,b[.$

(iii) If $x \in L$ argue analogously to (ii).

(iv) If $x \in E$ combine (ii) and (iii).

Hence ρ preserves the topology on X and, hence, is a metric for X.

Corollary. If $R \cup L \cup I$ is dense in the metrizable GO-space X then

 $\rho(\mathbf{x},\mathbf{y}) = R(\mathbf{x},\mathbf{y}) + L(\mathbf{x},\mathbf{y}) + I(\mathbf{x},\mathbf{y})$ is a metric on X.

Let E denote the real line with the usual order topology.

Example 3. Let $X = GO_E(Q, E-Q, \Phi, \Phi)$ and let q_1, q_2, \cdots be any counting of the rational numbers. Then

$$\rho(x, y) = R(x, y) = 2^{-j}$$

(where q_j is the first rational number in]x,y]) is a metric on X.

If $Y = GO_Q(Q, \Phi, \Phi, \Phi)$ (i.e., the Sorgenfrey Line) then the above ρ is a metric on Y that is simpler than the metric given in Example 1.

References

- [A] D. R. Anderson, Metric in half-open interval topology, Amer. Math. Monthly 77 (1970), Advanced problem 5694.
- [Fa] M. J. Faber, Metrizability in generalized ordered spaces, Math. Centre Tract 53.
- [Fr] M. Fréchet, Les dimensions d'un ensemble abstrait, Math. Ann. 68 (1910), 145-168.
- [L] D. J. Lutzer, On generalized ordered spaces, Dissertations Math. 89 (1971), 1-36.
- [S] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631-632.

Texas Tech University Lubbock, Texas 79409