TOPOLOGY PROCEEDINGS Volume 9, 1984

Pages 227–242

http://topology.auburn.edu/tp/

TYPES OF STRATEGIES IN POINT-PICKING GAMES

by

ANDREW J. BERNER

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

TYPES OF STRATEGIES IN POINT-PICKING GAMES¹

Andrew J. Berner

1. Introduction

The following ordinal game is defined in [B-J, Definition 1.1]:

Definition 1.1. If X is a topological space, and α is an ordinal, the game $\underline{G}_{\alpha}^{D}(X)$ is played in the following manner:

Two players take turns playing. A round consists of Player I choosing a non-empty open set $U \subset X$ and Player II choosing a point $x \in U$. A round is played for each ordinal less than α . Player I wins the game if the set of points Player II played is dense. Otherwise, Player II wins.

The formal definitions of strategies can be found in [B-J, Definitions 1.2, 1.3, 1.6 and Lemma 1.7]. Informally, a strategy for a player is a function from partial plays of the game that tells a player what to play on her next turn; a winning strategy is, of course, one that guarantees a win if followed.

Definition 1.2 [B-J, Def. 1.4]. We write $\underline{I} + \underline{G}_{\alpha}^{D}(\underline{X})$ (read Player I wins $\underline{G}_{\alpha}^{D}(\underline{X})$) if there is a winning strategy for Player I in $\underline{G}_{\alpha}^{D}(\underline{X})$. $\underline{II} + \underline{G}_{\alpha}^{D}(\underline{X})$ is defined similarly. Also, we write $\underline{I} \neq \underline{G}_{\alpha}^{D}(\underline{X})$ (resp. $\underline{II} \neq \underline{G}_{\alpha}^{D}(\underline{X})$) if there is

¹This work supported by funding from the O'Hara Chemical Sciences Institute of the University of Dallas.

no winning strategy for Player I (resp. Player II) in $G^{D}_{\alpha}(X)$. If I $\neq G^{D}_{\alpha}(X)$ and II $\neq G^{D}_{\alpha}(X)$, we say $G^{D}_{\alpha}(X)$ is neutral.

The main results concerning these games proved in [B-J] are:

(a) If no non-empty open subset of X has a countable $\pi\text{-base}$ then I # $G^{D}_{\omega}(X)$.

(b) If X is an HFD, then I + $G^{D}_{\omega \star \omega}(X)$.

(c) $(\diamondsuit \Rightarrow)$ There is an HFD X such that II $\not = G_{\omega}^{D}(X)$, and thus (a) shows that $G_{\omega}^{D}(X)$ is neutral.

(d) (CH \Rightarrow) There is an HFD X such that II + $G^{D}_{\omega}(X)$. The construction of this example forms the basis for Section 3 of this paper.

Definition 1.3. If X is a topological space, then $\underline{ow(X)} = \min(\{\alpha: I + G^{D}_{\alpha}(X)\}).$

If Player I plays the elements of a π -base for X, Player II is forced to play a dense set. Thus ow(X) $\leq \pi(X)$.

We will be interested in how much of the history of the game Player II needs to remember. Following the terminology of [G-T], a stationary strategy for a player is a strategy that depends only on the opponent's preceding move, and a Markov strategy for a player is one which depends only on the preceding move and the ordinal number of the round. More formally:

Definition 1.4. A winning stationary strategy for Player II in $\underline{G}_{\alpha}^{D}(X)$ is a function s: $\tau(X) \rightarrow X$ such that s(U) \in U for every U $\in \tau(X)$ (where $\tau(X)$ is the set of non-empty open subsets of X) and whenever $((U_{\beta}, s(U_{\beta}): \beta < \alpha))$ is a play of the game, $\{s(U_{\beta}): \beta < \alpha\}$ is not dense. If Player II has a winning stationary strategy for $G_{\alpha}^{D}(X)$, we will write $\underline{II} + \underline{G}_{\alpha}^{D}(X)$.

Definition 1.5. A winning Markov strategy for Player II in $\underline{G}^{D}_{\alpha}(\underline{X})$ is a function s: $\tau(\underline{X}) \times \alpha \rightarrow \underline{X}$ such that $s(\underline{U},\beta) \in \underline{U}$ for every (\underline{U},β) in $\tau(\underline{X}) \times \alpha$, and whenever $(\underline{U}_{\beta},s(\underline{U}_{\beta},\beta): \beta < \alpha)$ is a play of the game, $\{s(\underline{U}_{\beta},\beta): \beta < \alpha\}$ is not dense. If Player II has a winning Markov strategy for $\underline{G}^{D}_{\alpha}(\underline{X})$ we will write $\underline{II} + \underline{G}^{D}_{\alpha}(\underline{X})$.

Definition 1.6. A uniform strategy for Player II in $\underline{G^{D}(X)} \text{ is a function s: } \tau(X)^{< ow(X)} \times \tau(X) + X \text{ with s}((S,U)) \in U$ for all $(S,U) \in \tau(X)^{< ow(X)} \times \tau(X)$ (where $A^{<\alpha}$ is the set of all well ordered sequences of elements of A with order type less than α , including the null sequence). A uniform strategy is winning if whenever $\alpha < ow(X)$ and $((U_{\beta}, x_{\beta}):$ $\beta < \alpha)$ is a play for $G^{D}_{\alpha}(X)$ with $x_{\beta} = s(((U_{\gamma}: \gamma < \beta), U_{\beta}))$ then $\{x_{\beta}: \beta < \alpha\}$ is not dense (thus for each $\alpha < ow(X)$, $s|\tau(X)^{<\alpha} \times \tau(X)$ is a winning strategy for Player II in $G^{D}_{\alpha}(X)$). If Player II has a winning uniform strategy for $G^{D}(X)$, we will write $\underline{II} + \underline{G^{D}(X)}$.

It should be noted that if $\alpha < ow(X)$, it does not follow that II + $G^D_{\alpha}(X)$; $G^D_{\alpha}(X)$ may be neutral.

Since Player II can elect to "forget" parts of the history of a game, II $\uparrow_S G^D_{\alpha}(X) \Rightarrow II \uparrow_M G^D_{\alpha}(X) \Rightarrow II \uparrow G^D_{\alpha}(X)$. In Section 2, we will show that the converses of these implications need not hold, and show that in some circumstances, the existence of a uniform strategy is equivalent to the existence of a stationary strategy.

In Section 3, CH will be used to construct a space X for which II + $G^{D}_{\alpha}(X)$ for every $\alpha < ow(X) = \pi(X) = \omega_{1}$, but for which II $\#_{M} G^{D}_{\alpha}(X)$ for every countable α .

If A is a set and α is an ordinal, |A| will denote the cardinality of A, $[A]_{-}^{\leq \alpha}$ (resp. $[A]^{<\alpha}$, $[A]^{\alpha}$) will denote the collection of all subsets of A of cardinality at most $|\alpha|$ (resp. less than $|\alpha|$, equal to $|\alpha|$), and H(A) will denote the set of finite partial functions from A to 2, i.e., if $h \in H(A)$, then h maps a finite subset of A into $\{0,1\}$.

2. Relations Among Strategies

Theorem 2.1. II $\uparrow_S G^D_{\alpha}(X)$ if and only if there is a dense set $D \subset X$ such that for every $S \in [D]^{\leq \alpha}$, S is not dense.

Proof. Suppose t: $\tau(X) \rightarrow X$ is a winning stationary strategy for $G_{\alpha}^{D}(X)$. Let D be the image of t. Since $t(U) \in U$ for every $U \in \tau(X)$, D is dense. Suppose $S = \{x_{\beta}: \beta < \alpha\}$ is a subset of D with $|S| \leq |\alpha|$. For each $\beta < \alpha$, choose $U_{\beta} \in \tau(X)$ such that $t(U_{\beta}) = x_{\beta}$. Then $((U_{\beta}, x_{\beta}): \beta < \alpha)$ is a play of the game with Player II following t; since t is a winning strategy, S is not dense.

Conversely, suppose D is a dense subset of X such that no element of $[D]^{\leq \alpha}$ is dense. Choose t: $\tau(X) \rightarrow X$ such that $t(U) \in U \cap D$ for each $U \in \tau(X)$. On any play of $G^{D}_{\alpha}(X)$ where Player II follows t, Player II will play an element of $[D]^{\leq \alpha}$. Thus t is a winning stationary strategy.

Note: It is not assumed t is one-to-one, nor that Player II must play a "new" point on each round.

Corollary 2.2. If $|\alpha| = |\beta|$, then II $+_{S} G^{D}_{\alpha}(X)$ if and only if II $+_{S} G^{D}_{\beta}(X)$.

Example 2.3. A space with a stationary strategy. Let $X = 2^{\omega_1}$. Let $D = \Sigma(2^{\omega_1}) = \{f \in X: \exists \alpha < \omega_1 \text{ s.t.}\}$ $f(\beta) = 0$ for all $\beta > \alpha\}$. D is dense in X and every countable subset of D is nowhere dense, so Theorem 2.1 shows that II $\uparrow_S G^D_{\omega}(X)$. In fact, II $\uparrow_U G^D(X)$ since if Player II always plays an element of D and follows the rules for $G^D_{\alpha}(X)$, $\alpha < \omega_1$, Player II can't lose (see Theorem 2.4 below; also see [B-J], Example 2.6).

Theorem 2.4. If ow(X) is a successor cardinal κ^+ , then II $\uparrow_S G^D_{\kappa}(X)$ if and only if II $\uparrow_U G^D(X)$.

Proof. Suppose t: $\tau(X) \rightarrow X$ is a winning stationary strategy for $G_{K}^{D}(X)$. Let t': $\tau(X)^{\langle ow(X) \rangle} \times \tau(X) \rightarrow X$ be defined by t'((($U_{\beta}: \beta < \alpha$),U)) = t(U). Then t' is a winning uniform strategy.

Suppose, conversely, we have a winning uniform strategy t': $\tau(X)^{\langle ow(X) \rangle} \times \tau(X) \rightarrow X$ for Player II. We can think of t' as a strategy for Player II in $G_{ow(X)}^{D}(X)$, although it is not a winning strategy for that game. Since I + $G_{ow(X)}^{D}(X)$, there is a winning strategy s: $X^{\langle ow(X) \rangle} \rightarrow \tau(X)$ for Player I. Imagine the play $((U_{\beta}, x_{\beta}): \beta < ow(X))$ of $G_{ow(X)}^{D}(X)$ where Player I follows s and Player II follows t'. Let $D = \{x_{\beta}: \beta < ow(X)\}$. Since s is a winning strategy for Player I, D is dense in X. Suppose S $\in [D]^{\langle K}$. Then there is $\alpha < ow(X) = \kappa^+$ such that $S \subset \{x_{\beta}: \beta < \alpha\}$. Since t' is a winning uniform strategy for Player II, $\{x_{\beta}: \beta < \alpha\}$ and, therefore, S are not dense. Theorem 2.1, then, shows II $\uparrow_S G^D_{\kappa}(X)$.

Theorem 2.5. If II $\uparrow_M G^D_{\alpha}(X)$ and $|\beta| = |\alpha|$ then II $\uparrow_M G^D_{\beta}(X)$.

Proof. Let f: $\beta \neq \alpha$ be a bijection. Let s: $\tau(X) \times \alpha \neq X$ be a winning Markov strategy for Player II in $G_{\alpha}^{D}(X)$. Define s': $\tau(X) \times \beta \neq X$ by s'((U, γ)) = s((U,f(γ))). Suppose ((U_{γ}, x_{γ}): $\gamma < \beta$) is a play for $G_{\beta}^{D}(X)$ with $x_{\gamma} = s'((U_{\gamma}, \gamma))$ for each $\gamma < \beta$. Then ((U_{f⁺(δ)}, $x_{f⁺(<math>\delta$)</sub>): $\delta < \alpha$) is a play for $G_{\alpha}^{D}(X)$ and $x_{f^{+}(\delta)} = s'((U_{f^{+}(\delta)}, f^{+}(\delta)) =$ s((U_{f⁺(δ)}, δ)). Thus since s is a winning Markov strategy, { $x_{f^{+}(\delta)}: \delta < \alpha$ } = { $x_{\gamma}: \gamma < \beta$ } is not dense, showing s' is a winning Markov strategy in $G_{\beta}^{D}(X)$.

Theorem 2.6. II $\uparrow_M G^D_{\alpha}(X)$ if and only if there is a collection $\{D_{\beta}: \beta < \alpha\}$ of dense subsets of X such that if $\{x_{\beta}: \beta < \alpha\}$ is a set with $x_{\beta} \in D_{\beta}$ for all $\beta < \alpha$, then $\{x_{\beta}: \beta < \alpha\}$ is not dense in X.

Sketch of proof. If s: $\tau(X) \times \alpha + X$ is a winning Markov strategy, let $D_{\beta} = s(\tau(X) \times \{\beta\})$. Conversely, given the collection $\{D_{\beta}: \beta < \alpha\}$, define s: $\tau(X) \times \alpha + X$ such that $s((U,\beta)) \in U \cap D_{\beta}$.

Example 2.7. A space with a Markov strategy, but no stationary or uniform strategy.

Let X be the countable dense subset of 2^{R} constructed in [E, Theorem 2.3.7]. A point of X is specified by a finite collection of disjoint intervals with rational endpoints; the point is the function which is 0 on the union of the intervals and 1 off the union. For $x \in X$, define m(x) to be the measure of $\{\mathbf{r} \in \mathbf{R}: \mathbf{x}(r) = 0\}$. Define s: $\tau(X) \times \omega \to X$ as follows: if $(U,i) \in \tau(X) \times \omega$, choose $\mathbf{x} \in U$ such that $m(\mathbf{x}) \leq 2^{-i}$ and let $\mathbf{s}(U,i) = \mathbf{x}$. Suppose $((U_i, \mathbf{x}_i): i \in \omega)$ is a play for $G^D_\omega(X)$ with $\mathbf{w}_i = \mathbf{s}(U_i, i)$. Then $\Sigma_{i\in\omega}m(\mathbf{x}_i) \leq 2$, thus there is $r \in \mathbf{R}$ such that $\mathbf{x}_i(r) = 1$ for all i. Therefore $\{\mathbf{x}_i: i \in \omega\}$ is not dense, showing that s is a winning Markov strategy in $G^D_\omega(X)$. Since II $\uparrow_M G^D_\omega(X)$, Theorem 2.5 shows that II $\uparrow_M G^D_\alpha(X)$ for all $\alpha < \omega_1$. By $[B-J, \text{ Cor. 2.3a}], I + G^D_{\omega_1}(X)$ since X is countable, and so $\operatorname{ow}(X) = \omega_1$ (note that $\pi(X) = c$, by the way). Suppose $D \subset X$ is dense. D itself is countable, so Theorem 2.1 shows II $\neq_{\mathbf{N}} G^D_\omega(X)$.

Example 2.8. A space with a uniform strategy but no Markov or stationary strategy.

Consider the HFD X constructed in [B-J, Theorem 3.1] under CH for which II + $G^{D}_{\omega}(X)$. By [B-J, Theorem 2.7], I + $G^{D}_{\omega \cdot \omega}(X)$. Therefore Theorem 2.5 shows II $\bigstar_{M} G^{D}_{\omega}(X)$, and thus II $\bigstar_{S} G^{D}_{\omega}(X)$. The strategy given in [B-J] for $G^{D}_{\omega}(X)$ had the stronger property that any set Player II played following the strategy in $G^{D}_{\omega}(X)$ was nowhere dense (discrete, even!). Since the finite union of nowhere dense sets is nowehre dense, Player II can repeat this strategy on rounds $\{\omega \cdot n+i: i \in \omega\}$ for fixed $n \in \omega$. Thus $ow(X) = \omega \cdot \omega$ and II $\bigstar_{U} G^{D}(X)$. Thus the hypothesis on ow(X) in Theorem 2.4 cannot be eliminated.

3. A Space With No Winning Markov or Uniform Strategies

Example 3.1 (CH) A space X with $ow(X) = \pi(X) = \omega_1$ such that II + $G^{D}_{\alpha}(X)$ for every $\alpha < \omega_1$, but II $\mathscr{I}_{M} G^{D}_{\omega}(X)$.

We will construct $X \subset 2^{\omega_1}$ in a manner similar to the construction in [B-J, Section 3]. The new idea in this paper is that we will define a collection of infinite subsets to be called anti-strategic sets, each of which will be made dense in a tail. Note, though, that X cannot be an HFD since I $\neq G^{D}_{\omega \cdot \omega}(X)$ ([B-J, Theorem 2.7]).

As in the standard inductive construction of an HFD, at stage $\alpha < \omega_1$ we will define functions $f_{\beta\alpha}: \alpha + 1 + 2$ for each $\beta < \omega_1$ that extend those defined at earlier stages. X will then be $\{f_\beta = \bigcup\{f_{\beta\alpha}: \alpha < \omega_1\}: \beta < \omega_1\}$ (actually, for notational convenience, we will define X to be homeomorphic to this). To do this, we will have, at stage α , a countable collection Z(α) of countably infinite subsets of ω_1 . We find a set B(α) $\subset \omega_1$ such that for each A \in Z(α), both A \cap B(α) and A - B(α) are infinite. We will say B(α) splits Z(α).

We will pre-define some values of the f_{β} 's by defining functions $\{p_{\beta}: \beta < \omega_{1}\}$ with dom $(p_{\beta}) \subset \omega_{1}$ and range $(p_{\beta}) \subset 2$; we will assure that $p_{\beta} \subset f_{\beta}$ for each $\beta < \omega_{1}$.

To begin, let $S = [\omega_1]^{\leq \omega}$. Let $\{C_S: S \in S\}$ be a partition of ω_1 into uncountable, pairwise disjoint subsets such that if $\alpha \in C_S$ then $\alpha > \sup(S)$ (let $0 \in C_g$). Further, let i: $C_g \neq \omega_1$ be a function such that $i^+(\alpha)$ is uncountable for each $\alpha < \omega_1$. For $S \subset \omega_1$, let ot(S) be the order type of S. Let $\pi: \omega_1 \neq S$ be defined by $\pi(\alpha) = S$ if $\alpha \in C_S$.

We say a subset $S \subset \omega_1$ has the strategy property if for every $\alpha \in S$, $\pi(\alpha) = \alpha \cap S$. Note that initial segments of S also will have the strategy property. We say $S \in S$ is a strategic set if S is infinite, S has the strategy property and $i(\min(S)) = ot(S)$ (note that since S has the strategy property, $\min(S) \in C_g$). A set $S \in S$ is called anti-strategic if $|S| = \omega$ and $S \cap S'$ is finite for every strategic set S'.

Index the anti-strategic sets as $\{A_{\alpha}: \alpha \in I\}$ for some index set $I \subset \omega_1$ such that $A_{\alpha} \subset \alpha$ for each $\alpha \in I$. Index the strategic sets as $\{S_{\lambda}: \lambda \in L\}$ for some set of limit ordinals $L \subset \omega_1$, with $S_{\lambda} \subset \lambda$ for each $\lambda \in L$. For each $\lambda \in L$ and $\beta \in S_{\lambda}$ define a function $h_{\beta}^{\lambda} \in 2^{\lambda + \omega - \lambda}$ as follows: reindex S_{λ} as $\{\beta_i: i \in \omega\}$. Then let $h_{\beta_i}^{\lambda}(\lambda + j) = \begin{cases} 0 & \text{if } j = i \\ 1 & \text{if } j \neq i \end{cases}$.

For each $\beta < \omega_1$ choose a function $g_\beta \in 2^\beta$ such that for each $h \in H(\omega_1)$ and $S \in S$, there is $\beta \in C_S$ such that $h \subset g_\beta$ and also for each $h \in H(\omega_1)$ and each $\alpha < \omega_1$ there is $\beta \in C_\beta$ such that $h \subset g_\beta$ and $i(\beta) = \alpha$. Note that if $\beta \in S_\lambda \cap S_\lambda$, then $\operatorname{dom}(h_\beta^\lambda) \cap \operatorname{dom}(g_\beta) = \beta$ and $\operatorname{dom}(h_\beta^\lambda) \cap$ $\operatorname{dom}(h_\beta^\lambda') = \beta$.

We can now define p_{β} for $\beta < \omega_1$:

 $p_{\beta} = u\{h_{\beta}^{\lambda}: \beta \in S_{\lambda}\} \cup g_{\beta}$

This will guarantee that in the space X we construct, $\{f_{\beta}: \beta \in C_{S}\}$ is dense for each $S \in S$ and $\{f_{\beta}: \beta \in C_{\beta}\}$ and $i(\beta) = \alpha\}$ is dense for each $\alpha < \omega_{1}$. Also, it will guarantee that if S is a strategic set, $\{f_{\beta}: \beta \in S\}$ is discrete and hence nowhere dense.

At long last, we are ready for the induction! Suppose we are at stage α . We need to define functions { $f_{\beta\alpha}$: $\beta < \omega_1$ } and a countable collection $Z(\alpha)$ of anti-strategic sets such that if $A \in Z(\alpha)$ then $A \subset \alpha$, and we assume we have done this for all $\gamma < \alpha$. First define:

$$\begin{aligned} \mathbf{Z}_{1}(\alpha) &= \begin{cases} \mathsf{U}\{\mathbf{Z}(\gamma): \gamma < \alpha\} & \text{ if } \alpha \not\in \mathbf{I} \\ \mathsf{U}\{\mathbf{Z}(\gamma): \gamma < \alpha\} \; \mathsf{U}\{\mathbf{A}_{\alpha}\} & \text{ if } \alpha \in \mathbf{I} \end{cases} \\ + \; \text{ i for any } \lambda \in \mathbf{L} \text{ and } \mathbf{i} < \omega, \; \text{let } \mathbf{Z}_{2}(\alpha) = \mathbf{Z}_{1}(\alpha). \end{aligned}$$

If $\alpha = \lambda + i$ for some $\lambda \in L$ and $i < \omega$, let

$$Z_{2}(\alpha) = \{ A - S_{\lambda} : A \in Z_{1}(\alpha) \},\$$

Note that the definition of anti-strategic set guarantees that elements of $Z_2(\alpha)$ are infinite (and anti-strategic). Also, if $\beta \in A \in Z_2(\alpha)$, then $\alpha \notin dom(p_\beta)$.

Let $B(\alpha) \subset \omega_1$ be a set that splits $Z_2(\alpha)$, i.e. for each $A \in Z_2(\alpha)$, $A - B(\alpha)$ and $A \cap B(\alpha)$ are both infinite.

For all $\beta < \omega_1$, define $f_{\beta\alpha}$: $\alpha + 1 + 2$ to extend $p_{\beta} | (\alpha + 1)$ and $f_{\beta\gamma}$ for all $\gamma < \alpha$ such that if $\beta \in A \in Z_2(\alpha)$ then

$$f_{\beta\alpha}(\alpha) = \begin{cases} 1 \text{ if } \beta \in B(\alpha) \\ 0 \text{ if } \beta \notin B(\alpha) \end{cases}$$

Finally, let

 $Z(\alpha) = Z_1(\alpha) \cup \{A \cap B(\alpha): A \in Z_2(\alpha)\} \cup \{A - B(\alpha): A \in Z_2(\alpha)\}.$ This completes stage α of the induction.

Let $f_{\beta} = \bigcup \{ f_{\beta\alpha} : \alpha < \omega_1 \}$ for each $\beta < \omega_1$. It will be convenient to identify f_{β} with its index β . More formally, we can define a topology τ on ω_1 such that the function $f: \omega_1 + \{ f_{\beta} : \beta < \omega_1 \} \subset 2^{\omega_1}$ which takes β to f_{β} is a homeomorphism; we then let $X = (\omega_1, \tau)$.

To see that II $\uparrow G_{\alpha}^{D}(X)$ for $\alpha < \omega_{1}$, recall that since f_{β} extends g_{β} for each $\beta < \omega_{1}$, C_{S} is dense in X for each

If $\alpha \neq \lambda$

S $\in S$ and $i^{\leftarrow}(\alpha) \subset C_{\not p}$ is dense for each $\alpha < \omega_1$. Therefore, given $\alpha < \omega_1$, we can define a function s_{α} : $[X]^{<\alpha} \times \tau(X) + X$ such that $s_{\alpha}(((S,U))) \in U \cap C_S$ for all $(S,U) \in [X]^{<\alpha} \times \tau(X)$ and $i(s_{\alpha}(\not p,U)) = \alpha$ for all $U \in \tau(X)$. If $\{(U_{\beta},\gamma_{\beta}): \beta < \alpha\}$ is a play in $G_{\alpha}^{D}(X)$ with $\gamma_{\beta} = s((\{\gamma_{\delta}: \delta < \beta\}, U_{\beta}))$, then $\{\gamma_{\beta}: \beta < \alpha\}$ is a strategic set, thus not dense in X. Therefore, s_{α} is a winning strategy for Player II.

To show II $\mathscr{I}_M^{} G^D_\omega(X)$ we will need a lemma, which will be proved later.

Lemma 3.2. If O is a non-empty open subset of X and $\{D_i: i < \omega\}$ is a countable collection of dense subsets of O, then there is an infinite subset $J \subset \omega$ and an anti-strategic set $\{\beta_i: i \in J\}$ such that $\beta_i \in D_i$ for each $i \in J$.

We will use this lemma in conjunction with Theorem 2.6. Suppose we have a countable collection of dense subsets of X which we can index as $\{D_{j,k,i}: j,k,i < \omega\}$. We can construct a dense set $\{\beta_{j,k,i}: j,k,i < \omega\}$ with $\beta_{j,k,i} \in D_{j,k,i}$ for all j,k,i < ω as follows. If h \in H(ω_1), let (h) = { $\beta \in X$: f_{β} extends h}. Thus {(h): h \in H(ω_1)} is a basis for X. We will define a sequence of countable ordinals (α_j : j $\in \omega$) and the points { $\beta_{j,k,i}$: j,k,i < ω } by induction on j. First, let $\alpha_0 = \omega$. Continuing inductively, suppose we have defined α_j . Index H(α_j) as { $h_{j,k}$: k < ω }. For each k < ω , apply Lemma 3.2 to { $D_{j,k,i} \cap (h_{j,k})$: i < ω }. We get a set $J_{j,k} \subset \omega$ and an anti-strategic set { $\beta_{j,k,i}$: i $\in J_{j,k}$ } with $\beta_{j,k,i} \in$ $D_{j,k,i} \cap (h_{j,k})$. For i $\notin J_{j,k}$, choose β_j ,k,i $\in D_j$,k,i. When we constructed X, we indexed the anti-strategic sets, so $\{\beta_{j,k,i}: i \in J_{j,k}\} = A_{\alpha(j,k)}$ for some $\alpha(j,k) < \omega_1$. The construction of X guaranteed that if $h \in H(\omega_1 - \alpha(j,k))$ then $A_{\alpha(j,k)} \cap \langle h \rangle \neq \emptyset$. Let $\alpha_{j+1} = \sup(\{\alpha(j,k): k < \omega\})$. Note that if $h \in H(\alpha_j \cup (\omega_1 - \alpha_{j+1}))$ then $\{\beta_{j,k,i}: k, i < \omega\} \cap \langle h \rangle \neq \emptyset$.

Let $\alpha = \sup(\{\alpha_j: j < \omega\})$. Suppose $h \in H(\omega_1)$. Then $h = h_1 \cup h_2$, where $h_1 \in H(\alpha)$ and $h_2 \in H(\omega_1 - \alpha)$. There is $j < \omega$ such that $h_1 \in H(\alpha_j)$. Then $h_2 \in H(\omega_1 - \alpha_{j+1})$ so $h \in H(\alpha_j \cup (\omega_1 - \alpha_{j+1}))$. Thus there is $\beta_{j,k,i} \in \langle h \rangle$ for some k, $i < \omega$. This shows that $\{\beta_{j,k,i}: j,k,i < \omega\}$ is dense. Theorem 2.6, then, tells us II $\mathcal{F}_M \subseteq G^D_{\omega}(X)$.

Before we can prove Lemma 3.2, we need to further examine the strategic sets. We call a set $S \in S$ prestrategic if there is a strategic set S' such that $S \subset S'$. Note that pre-strategic sets are nowhere dense in X. We call an infinite set $S \in S$ an *initial strategic segment* if S has the strategy property and ot $(S) \leq i(\min(S))$. If S is an initial strategic segment, then S can be extended to a strategic set. For $S \subset \omega_1$ let $\Pi(S) = \bigcup_{\alpha \in S} (\pi(\alpha) \cup \{\alpha\})$. Then, if S is an initial strategic segment, $\Pi(S) = S$, and, for infinite S, S is pre-strategic if and only if $\Pi(S)$ is an initial strategic segment.

Lemma 3.3. Suppose $\{S_{\alpha} : \alpha \in J\}$ is a chain of prestrategic sets. Then $\bigcup \{S_{\alpha} : \alpha \in J\}$ is pre-strategic.

Proof. Let $S = \Pi(\bigcup\{S_{\alpha}: \alpha \in J\})$. Suppose $\beta \in S$. Then for some $\alpha \in J$ and $\beta' \in S_{\alpha}$, $\beta \in \pi(\beta') \cup \{\beta'\}$. There is a strategic set S' containing S_{α} . Since $\beta' \in S'$, $S' \cap \beta' = \pi(\beta')$. Thus $\beta \in S'$, so $S' \cap \beta = \pi(\beta)$. Since $\beta < \beta'$,

S' $\beta \subset S' \cap \beta'$, thus $\pi(\beta) \subset \pi(\beta') \subset S$. Now suppose further that $\gamma \in S \cap \beta$. There is $\alpha' \in J$ and $\beta'' \in S_{\alpha}$, such that $\gamma \in \pi(\beta") \cup \{\beta"\}$. But then for some $\delta \in J$, $\{\beta',\beta''\} \subset S_{g}$ and there is a strategic set S" containing $\boldsymbol{S}_{\boldsymbol{\delta}}^{}.$ Since $\gamma \in \pi(\beta^{"}) \cup \{\beta^{"}\}$ and S" is strategic, $\gamma \in S^{"}$. Likewise, since $\beta \in \pi(\beta') \cup \{\beta'\}, \beta \in S''$. Thus $\gamma \in S'' \cap \beta$ so $\gamma \in \pi(\beta)$. Thus $S \cap \beta = \pi(\beta)$, i.e. S has the strategy property. Suppose ot(S) > i(min(S)). Let β be the element of S such that $ot(\pi(\beta)) = i(min(S))$. For some $\alpha \in J$, $\beta \in \Pi(S_{\alpha})$, so for some strategic S', $\beta \in S' \supset S_{\alpha}$. But then, since S' $\cap \beta = S \cap \beta = \pi(\beta)$, min(S') = min(S). $\pi(\beta) \cup \{\beta\} \subset S'$ and $ot(\pi(\beta) \cup \{\beta\}) = ot(\pi(\beta)) + 1 = i(min(S)) + 1 > i(min(S')),$ contradicting the fact that S' is strategic. (Note: This is the only place where the condition on the order type of strategic sets matters!) Therefore, ot(S) < i(min(S)), so S is an initial strategic segment. This shows that $U{S_{\alpha}: \alpha \in J}$ is pre-strategic.

Proof of Lemma 3.2. Suppose $0 \in \tau(X)$ and $\{D_i: i < \omega\}$ is a collection of dense subsets of 0. For each $i < \omega$ we will inductively define $J_i \subset \omega$ with $|J_i| = \omega$ and $J_{i+1} \subset J_i$, pre-strategic sets M_i and M_i such that $M_i \subset \cup\{D_j: j \in J_i\}$ and $M_i \subset M_i \cap \cup\{D_j: j \in J_i - J_{i+1}\}$ and a strategic set $S_i \supset M_i$. Let $J_0 = \omega$. Suppose we have defined J_i for $i \le k$ and M_i, M_i and S_i for i < k. Since each S_i is strategic and thus nowhere dense, $D_j - \cup\{S_i: i < k\}$ is dense in 0 (thus non-empty!) for each j. Lemma 3.3 and Zorn's Lemma let us choose a maximal pre-strategic set $M_k \subset \cup\{D_j - \cup\{S_i: i < k\}$: $j \in J_k\}$. Let S_k be a strategic set containing
$$\begin{split} &\mathsf{M}_k. \quad \text{Choose a cofinal set } \mathsf{M}_k^* \subset \mathsf{M}_k \text{ with ot} (\mathsf{M}_k^*) \leq \omega. \quad \text{If} \\ &\text{there is } j \in \mathsf{J}_k \text{ such that } \mathsf{M}_k^* \cap \mathsf{D}_j \text{ is cofinal in } \mathsf{M}_k^*, \text{ let} \\ &\mathsf{M}_k^* = \mathsf{M}_k^* \cap \mathsf{D}_j \text{ and } \mathsf{J}_{k+1} = \mathsf{J}_k - \{j\}. \quad \text{Otherwise choose} \\ &\mathsf{M}_k^{**} = \{\alpha_i: i < \omega\} \text{ to be a cofinal subset of } \mathsf{M}_k^* \text{ and an} \\ &\text{increasing sequence } (j(i): i < \omega) \text{ from } \mathsf{J}_k \text{ such that} \\ &\alpha_i \in \mathsf{D}_j(i). \quad \text{Let } \mathsf{M}_k^* = \{\alpha_{2i}: i < \omega\} \text{ and } \mathsf{J}_{k+1} = \mathsf{J}_k - \{j(2i): \\ &i < \omega\}. \quad \text{This completes the inductive definitions. Note} \\ &\text{that if } \mathsf{M}_k \text{ is finite at any stage } k < \omega, \text{ we can let } \mathsf{J} = \mathsf{J}_k \\ &\text{and choose } \beta_j \in \mathsf{D}_j - \mathsf{U}\{\mathsf{S}_i: i < k\} \text{ for each } j \in \mathsf{J} \text{ to satisfy} \\ &\text{the lemma. So assume } \mathsf{M}_k \text{ is infinite for each } k < \omega. \end{split}$$

For each $i < \omega$, let $m_i = \min(M_i^!)$. If $\{m_i: i < \omega\}$ is anti-strategic, then for each i we can choose $j(i) < \omega$ such that $m_i \in D_{j(i)}$ and $j(i) \in J_i - J_{i+1}$. Then $\{m_i: i < \omega\}$ and $J = \{j(i): i < \omega\}$ satisfy the conclusion of Lemma 3.2.

So suppose there is a strategic set S such that $|S \cap \{m_i: i < \omega\}| = \omega. Choose a subset \{m_{i(j)}: j < \omega\} \subset$ $S \cap \{m_i: i < \omega\} \text{ such that if } j < k \text{ then } i(j) < i(k) \text{ and}$ $(\text{the ordinal!}) m_{i(j)} < m_{i(k)}. \text{ Since S has the strategy}$ property, (*) $m_{i(j)} \in \pi(m_{i(k)})$ for j < k. Suppose $j < \omega$. If $m_{i(j+1)} < \sup(M'_{i(j)})$, let $q_j = \min(\{q \in M'_{i(j)}: q > m_{i(j+1)}\})$. Since $m_{i(j+1)} \notin S_{i(j)}$ but $q_j \in S_{i(j)}$ and $S_{i(j)}$ has the strategy property, $m_{i(j+1)} \notin \pi(q_j)$. If, on the other hand, $m_{i(j+1)} \ge \sup(M'_{i(j)})$, it cannot be the case that $M'_{i(j)} \subset \pi(m_{i(j+1)})$ for if that were the case then $M'_{i(j)} \cup \{m_{i(j+1)}\} \subset S_{i(j+1)}. But M_{i(j)} \subset \Pi(M'_{i(j)})$ since $M'_{i(j)}$ is cofinal in the pre-strategic set $M_{i(j)}$. This would imply that $M_{i(j)} \cup \{m_{i(j+1)}\} \subset S_{i(j+1)}$, contradicting the maximality of $M_{i(j)}$. So there must be $q_j \in M'_{i(j)} = \pi(m_{i(j+1)})$. Either way, we have found $q_j \in M'_{i(j)}$ such that $\{q_{j}, m_{i}(j+1)\} \text{ is not pre-strategic. Pick } k(j) \in J_{i}(j) - J_{i}(j)+1 \text{ such that } q_{j} \in D_{k}(j). \text{ If } S' \text{ is a strategic set,} \\ \text{then } S' \text{ contains at most one element of } \{q_{j}: j < \omega\}, \text{ for } \\ \text{suppose, on the contrary, } \{q_{j}, q_{j}, \} \subset S', \text{ with } j < j'. \\ \text{Since } \{m_{i}(j'), q_{j'}\} \subset S_{i}(j') \text{ and } m_{i}(j') \leq q_{j'}, m_{i}(j') \in \\ \pi(q_{j},) \cup \{q_{j}, \}, \text{ thus } m_{i}(j') \in S'. \text{ But since } j + 1 \leq j', \\ (*) \text{ implies that } m_{i}(j+1) \in \pi(m_{i}(j')) \cup \{m_{i}(j')\}. \text{ Thus } \\ m_{i}(j+1) \in S', \text{ which contradicts the choice of } q_{j}. \text{ Therefore } \\ \{q_{j}: j < \omega\} \text{ is anti-strategic, and } \{q_{j}: j < \omega\} \text{ and } \\ J = \{k(j): j < \omega\} \text{ satisfy the conclusion of Lemma 3.2.} \end{cases}$

Remark 3.4. We noted in the proof of Lemma 3.3 the only place where the condition on the order types of strategic sets plays a crucial role. Since we are aiming for a space without winning Markov strategies, we know from Theorem 2.4 that we must ensure that II $\bigstar_U G^D(X)$. Eric van Douwen pointed out that the condition on order types of strategic sets is the only reason why a must be mentioned in a strategy for $G^D_{\alpha}(X)$. Indeed, there are dense subsets D of X with the strategy property, but not all initial segments of D are pre-strategic! While the condition on order types was not necessary for the inductive construction of X, had it been omitted, Player II would have had a uniform strategy for the resulting space.

4. Open Problems

- (a) Is there a neutral game in ZFC?
- (b) Can CH be eliminated from Example 3.1?
- (c) Is there a space X such that $\omega \cdot \omega < ow(X) < \omega_1$?

References

- [B-J] A. J. Berner and I. Juhász, Point-picking games and HFD's, Models and Sets, Lecture Notes in Mathematics 1103, Springer-Verlag, 1984, 53-66.
- [E] R. Engelking, Outline of general topology, North Holland Publishing Company, 1968.
- [G-T] F. Galvin and R. Telgarsky, Stationary strategies in topological games, 1983 (preprint).
- [H-J] A. Hajnal and I. Juhász, On hereditarily α-Lindelöf and α-separable spaces II, Fund. Math. 81 (1974), 147-158.

University of Dallas

Irving, Texas 75061

Current Address:

HyperGraphics Corp.

308 N. Carroll

Denton, Texas 76201