TOPOLOGY PROCEEDINGS Volume 9, 1984

Pages 293–295

http://topology.auburn.edu/tp/

A BAIRE SPACE WITH FIRST CATEGORY $$G_{\delta}$\mbox{-}TOPOLOGY$$

by

RALPH FOX AND RONNIE LEVY

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A BAIRE SPACE WITH FIRST CATEGORY G₈-TOPOLOGY

Ralph Fox and Ronnie Levy

In this note, we construct a Baire space X, which, when given the G_{δ} -topology, is first category in itself. The space X will be a subspace of a product of two spaces, one of which is first countable and the other of which is a P-space. Therefore, the G_{δ} -topology will give the topological union of subspaces of X.

An ordinal is the set of its predecessors and a cardinal is an initial ordinal. We will denote by M the minimum cardinal of a dense, Baire subset of the space R of real numbers. Clearly, M has uncountable cofinality. If A is a subset of R which is second category in R, then A has cardinality at least M; for if card(A) < M, then the union of all rational translates of A would be a dense Baire subset of R having cardinality less than M. Also if D is a dense Baire subset of R and I is any non-empty open interval, then card(I \cap M) > M.

If A and B are sets, ^AB denotes the set of functions from A to B. For each ordinal $\alpha \leq m$, let $Y_{\alpha} = U_{\beta < \alpha} \beta_{\omega_1}$ ordered by extension: $f \leq g$ if $f \subseteq g$. With this partial order, Y_{α} is a tree. For $p \in Y_{\alpha}$, let S(p) be the set of immediate successors of p, and for $K \subseteq S(p)$, let $N_{K}^{\alpha}(p) = \{p\} \cup \{x \in Y_{\alpha}: k \leq x \text{ for some } k \in K\}$. Topologize Y_{α} by using for a base $\{N_{K}^{\alpha}(p): p \in Y_{\alpha} \text{ and } S(p) \setminus K \text{ is counta$ $ble}\}$. If $\alpha < \beta$, then Y_{α} is a subspace of Y_{β} .

293

Fox and Levy

We will need the folloiwng lemma, the proof of which is given in [L].

Lemma 1. Let α be a limit ordinal, $\alpha < M$.

(i) Y_{α} is a regular P-space without isolated points.

(ii) If a has countable cofinality, then \boldsymbol{Y}_{α} is first category in itself.

(iii) If a has uncountable cofinality, then Y_{α} is Baire. In particular, the Baire P-space Y_{M} is the union of the M subspaces, $Y_{\alpha+\omega_{0}}$, $\alpha < M$, each of which is first category in itself.

If X is a space, δX denotes X with the G_{δ} -topology, that is, the topology generated by the G_{δ} -sets of X. Before giving the main example, we give an easier example.

Example 1. Let $X = \mathbf{R} \times Y_{\omega_0}$ with the usual product topology strengthened so that if $u \neq 0$, the point (u,v) is isolated. Then X has a dense set of isolated points, so it is Baire, but δX contains $\{0\} \times Y_{\omega_0}$ as an open subspace, and $\{0\} \times Y_{\omega_0}$, being homeomorphic to Y_{ω_0} , is first category in itself by Lemma 1. Thus, δX is not Baire.

The idea of the main example is to make certain that the pathology of Example 1 occurs often enough that the G_{δ} -topology not only fails to be Baire, but is actually first category in itself. We will use the following fact:

Lemma 2 (Oxtoby [0]). Suppose M is a separable metric space, Y is a regular Baire space, and A is a subset of

294

 $M \times Y$ such that for each y in Y, the set $\{x \in M: (x,y) \in A\}$ is second category in M. Then A is second category in $M \times Y$.

Example 2. Let M be a dense Baire subset of **R** such that M has cardinal **M**. Let $\{x_{\alpha}: \alpha < M\}$ be a well-ordering of M. Let $X = \bigcup_{\alpha < M} (\{x_{\alpha}\} \times Y_{\alpha + \omega_{0}})$, and give X the subspace topology from M × Y_{M} , so a subset of X is first category in X if and only if it is first category in M × Y_{M} . Suppose I × S is a basic open set of M × Y_{M} , where I is an open interval of M, and let A = (I × S) ∩ X. If y \in S, say $N_{K}^{\alpha}(y) \subseteq S$, then $\{\gamma: (x_{\gamma}, y) \notin A\} \subseteq [0, \alpha]$; therefore, $\{x: (x, y) \notin A\}$ has cardinality less than M and so, by the definition of M is first category in I. Hence, $\{x: (x, y) \in A\}$ is second category in I, so, by Lemma 2, A is second category in I × S. Since A is an arbitrary basic open set, X is Baire. On the other hand, δX is the topological union of the first category spaces $Y_{\alpha+\omega_{0}}$, $\alpha < M$, so δX is first category in itself.

References

- [L] R. Levy, Showering spaces, Pac. J. Math. 57 (1975), 223-232.
- [0] J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157-166.