TOPOLOGY PROCEEDINGS Volume 9, 1984

Pages 307-311

http://topology.auburn.edu/tp/

ON HOMEOMORPHISMS ON THE CANTOR SET THAT HAVE FIXED POINTS

by

ANDRZEJ GUTEK

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON HOMEOMORPHISMS ON THE CANTOR SET THAT HAVE FIXED POINTS

Andrzej Gutek

In [3] Knaster and Reichbach proved that any homeomorphism defined on a closed subset P of the Cantor set C can be extended to a homeomorphism of the Cantor set onto itself. It was proven in [1] and [2] that if P is closed and nowhere dense, then the extended homeomorphism has the following property: an orbit of a point in C-P is dense in C. In fact, there is a dense G_{σ} of such points. We prove here that in a special case, when the given homeomorphism is an identity on P, an orbit of any point in C-P is dense in C-P.

By C we denote the Cantor set in the closed unit interval [0,1] done by the usual ternary construction.

Let β_n denote the family of all sets $\left[\frac{k-1}{3^n}, \frac{k}{3^n}\right] \cap C$ that consist of more than two points, where $k = 1, 2, \dots, 3^n$. Hence β_n is a family of 2^n closed-open and disjoint subsets of C and $\beta = \cup \{\beta_n : n = 1, 2, 3, \dots\}$ is a basis of C.

If f is a homeomorphism on C then, for any integer n, f^n is defined by

 $f^{o}(x) = x$ $f^{n+1}(x) = f(f^{n}(x))$

where $x \in C$.

Theorem. If D is a closed subset of the Cantor set C then there exists a homeomorphism f from C onto itself such

that $f|_{D} = id|_{D}$ and for every point $c \in (C - D)$ the set $\{f^{n}(c): n \text{ is an integer}\}$ is dense in C - D.

Proof. If $D = \emptyset$ or D = C then the theorem is true. Suppose then that D is a proper non-empty subset of C. Let l' be a family of pairwise disjoint elements of β such that U l' = C - D.

For every $B \in \beta$ let B(1) and B(2) denote elements of β such that diam $B(1) = \text{diam}B(2) = 3^{-1} \cdot \text{diam}B$, $B(1) \cup B(2) = B$, and if $x_1 \in B(1)$ and $x_2 \in B(2)$ then $x_1 < x_2$.

For every positive integer n we define a function f_n and a family A_n such that the following conditions are fulfilled:

(i) If $A \in A_n$ then diamA $\leq 3^{-n}$.

(ii)
$$\cup A_{n-1} \subseteq \cup A_n$$
.

(iii) If $U \in U$ and diam $U \ge 3^{-n}$ then $U \subseteq UA_n$.

(iv) Let $B \in \beta_n$. If $B \cap D = \emptyset$ then $B \subseteq \bigcup A_n$. If $B - (\bigcup A_{n-1} \cup D) \neq \emptyset$ then there is $\bigcup \in U$ such that $\bigcup \subseteq B - (\bigcup A_{n-1} \cup D)$ and $\bigcup (1), \bigcup (2) \in A_n$.

(v) If $A \in A_n$ then $A_n = \{f_n^i(A) : i = 1, 2, \dots, m(n)\}$, where m(n) is a number of elements in A_n .

(vi) For any $A \in A_n$ a restriction $f_n|_A$ is an increasing and linear function from A onto $f_n(A)$.

(vii) $f_n |_{C-\cup A_n} = id |_{C-\cup A_n}$.

(viii) $f_n(A) = f_{n-1}(A)$ for $A \in A_{n-2}$.

(ix) For every $x \in C$ we have $|f_n(x) - f_{n-1}(x)| \le 3^{1-n}$.

(x) If $B \in \beta_n$ and $B \cap (\cup A_n - \cup A_{n-1}) \neq \emptyset$ then there are $A_1, A_2 \in A_n$ such that $A_1, A_2 \subseteq B \cap (\cup A_n - \cup A_{n-1})$ and $f_n(A_1) = A_2$.

Step 1. The family β_1 consists of two sets, say B_1 and B_2 . For i = 1,2 we put $A_1(i) = \{U(s): s = 1, 2 \text{ and } \}$ $U \in \mathcal{U}$ and $U \subseteq B_i$, if $B_i \cap D = \emptyset$. If $B_i \cap D \neq \emptyset$ and $B_i - D \neq \emptyset$ then we put $A_1(i) = \{U(1), U(2)\}$ where $U \in U$ and $U \subseteq B_i - D$. We put $A_1 = A_1(1) \cup A_1(2)$. Families $A_1(1)$ and $A_1(2)$ are finite, say $A_1(1) = \{A_1, \dots, A_{m(1)}\}$ and $A_1(2) = \{A_1^{\star}, \cdots, A_{m(2)}^{\star}\}$. We define f_1 so that - $f_1|_{A_i}$ is a linear and increasing function from A_i onto A_{j+1} for $j = 1, \dots, m(1)-1$ - $f_1|_{A_1(1)}$ is a linear and increasing function from $A_{m(1)}$ onto A_1^* - $f_1|_{A_1^*}$ is a linear and increasing function from A_1^* onto A_{i+1}^{*} for $j = 1, \dots, m(2)$ - $f_1 |_{A_{m}^{*}(2)}$ is a linear and increasing function from $A_{m(2)}^{\star}$ onto A_{1} $- f_1 |_{C-UA_1} = id |_{C-UA_1}$ It is easy to see that conditions (i)-(x) are

fulfilled.

Step n+1. Suppose that we have defined families A_k and functions f_k for $k = 1, 2, \dots, n$. Let the elements of β_{n+1} be denoted by B_j , $j = 1, 2, \dots, 2^{n+1}$, in such a way that $(B_{2i} \cup B_{2i-1}) \in \beta_n$ for $i = 1, 2, \dots, 2^n$. Let $A_{n+1} = \{A(s):$ s = 1, 2 and $A \in A_n\}$. Let $A_{n+1}(j) = \{U(s): s = 1, 2 \text{ and} U \in U$ and $U \subseteq B_j - UA_n\}$ if $B_j \cap D = \emptyset$. If $B_j \cap D \neq \emptyset$ and $B_j - (D \cup UA_n) \neq \emptyset$ then we put $A_{n+1}(j) = \{U(1), U(2)\}$ for some $U \in U$ such that $U \subseteq B_j - (D \cup UA_n)$.

Let $A_{n+1}^{\cdot} = \bigcup \{A_{n+1}^{\cdot}(j): j = 0, 1, \dots, 2^{n+1}\}$. Conditions (i)-(iv) are satisfied by A_{n+1} . Let A be a fixed element of A_n . Define function g_n by $-g_{O|C-A} = f_{n|C-A}$ $-g_{o|A(1)}$ is an increasing and linear function from A(1) onto $f_n(A(2))$ $-g_{0|A(2)}$ is an increasing and linear function from A(2) onto $f_{n(A(1))}$. Conditions (v)-(x) are satisfied by g_0 and $A_{n+1}(0)$. If $A_{n+1} = A_{n+1}(0)$ then we put $f_n = g_0$. Suppose that $A_{n+1} \neq A_{n+1}(0)$. Because $(B_{2i-1} \cup B_{2i}) \in \beta_n$ for $i = 1, 2, \dots, 2^n$, then diameter of $U(A_{n+1}(2i-1) \cup A_{n+1}(2i))$ is less than or equal to 3^{-n} . Consider $A_{n+1}(1) \cup A_{n+1}(2)$. If it is an empty set then we put $g_1 = g_0$. Otherwise it is finite. Suppose that both $A_{n+1}(1)$ and $A_{n+1}(2)$ are not empty and put $A_{n+1}(1) = \{A_1, \dots, A_m(1)\}$ and $A_{n+1}(2) =$ $\{A_1^{\star}, \dots, A_{m(2)}^{\star}\}$. Because $B_1 \cup B_2$ is an element of β_n and $(B_1 \cup B_2) - (\cup A_{n-1} \cup D) \neq \emptyset$ then, by (iv), (x), and the definitions of $A_n(0)$ and g_0 there are $E_1, E_2 \in A_n(0)$ such that $E_1, E_2 \subseteq (B_1 \cup B_2) - (\bigcup A_n - \bigcup A_{n-1})$ and $g_0(E_1) = E_2$. We define g₁ from C onto itself as follows:

$$= g_1 | C - (E_1 \cup \cup A_{n+1}(1) \cup \cup A_{n+1}(2)) =$$

 $g_{0} | C - (E_{1} \cup \cup A_{n+1}(1) \cup \cup A_{n+1}(2))$

- $g_1|_{E_1}$ is a linear and increasing function from E_1 onto A,

 $-g_1|_{A_r}$ is a linear and increasing function from A_r onto A_{r+1} for $r = 1, 2, \dots, m(1)-1$ $-g_1|_{A_m(1)}$ is a linear and increasing function from $A_m(1)$ onto A_1^*

- $g_1 |_{A_r^*}$ is a linear and increasing function from A_r^* onto A_{r+1}^* for $r = 1, 2, \dots, m(2)-1$

 $= g_1 \Big|_{A_m^*(2)}$ is a linear and increasing function from $A_m^*(2)$ onto E_2 .

If one of the families $A_{n+1}(1)$, $A_{n+1}(2)$ is empty then some obvious modifications of the preceding process are required. In any case it is easy to see that the family $A_{n+1}(0) \cup A_{n+1}(1) \cup A_{n+1}(2)$ and the function g_1 satisfy (i)-(x). We repeat this procedure for families $A_{n+1}(2i-1) \cup A_{n+1}(2i)$, where $i = 2, 3, \dots, 2^n$.

If we put $f_{n+1} = g_n$ then (i)-(x) are fulfilled for such a function and the family A_{n+1} .

Conditions (i)-(x) imply that $f = \lim_{n \to \infty} f_n$ is a homeomorphism on C that is an identity on D and $\{f^k(c): k \text{ is} an \text{ integer}\}$ is dense in C - D for any point c in C - D.

References

- [1] A. Gutek, On extending homeomorphisms on the Cantor set, Topological Structures II, Mathematical Centre Tracks 115, Amsterdam 1979, 105-116.
- [2] _____ and J. van Mill, Continua that are locally a bundle of arcs, Top. Proc. 7 (1982), 63-69.
- [3] B. Knaster and M. Reichbach, Notion d'homogénéitè et prolongement des homéomorphies, Fund. Math. 40 (1953), 180-193.

Tennessee Tech University Cookeville, Tennessee 38505