TOPOLOGY PROCEEDINGS

Volume 9, 1984
Pages 307-311
http://topology.auburn.edu/tp/

ON HOMEOMORPHISMS ON THE CANTOR SET THAT HAVE FIXED POINTS

by
Andrzej Gutek

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON HOMEOMORPHISMS ON THE CANTOR SET THAT HAVE FIXED POINTS

Andrzej Gutek

In [3] Knaster and Reichbach proved that any homeomorphism defined on a closed subset P of the Cantor set C can be extended to a homeomorphism of the Cantor set onto itself. It was proven in [1] and [2] that if P is closed ana nowhere dense, then the extended homeomorphism has the following property: an orbit of a point in $C-P$ is dense in C. In fact, there is a dense G_{σ} of such points. We prove here that in a special case, when the given homeomorphism is an identity on P, an orbit of any point in $C-P$ is dense in $\mathrm{C}-\mathrm{P}$.

By C we denote the Cantor set in the closed unit interval $[0,1]$ done by the usual ternary construction.

Let B_{n} denote the family of all sets $\left[\frac{k-1}{3^{n}}, \frac{k}{3^{n}}\right] n c$ that consist of more than two points, where $k=1,2, \ldots, 3^{n}$. Hence B_{n} is a family of 2^{n} closed-open and disjoint subsets of C and $B=U\left\{B_{n}: n=1,2,3, \cdots\right\}$ is a basis of C.

If f is a homeomorphism on C then, for any integer n, f^{n} is defined by

$$
\begin{aligned}
& f^{o}(x)=x \\
& f^{n+1}(x)=f\left(f^{n}(x)\right)
\end{aligned}
$$

where $x \in C$.

Theorem. If D is a closed subset of the Cantor set C then there exists a homeomorphism from C onto itself such
that $\left.f\right|_{D}=\left.i d\right|_{D}$ and for every point $c \in(C-D)$ the set $\left\{\mathrm{f}^{\mathrm{n}}(\mathrm{c}): \mathrm{n}\right.$ is an integer\} is dense in $\mathrm{C}-\mathrm{D}$.

Proof. If $D=\varnothing$ or $D=C$ then the theorem is true.
Suppose then that D is a proper non-empty subset of C.
Let U be a family of pairwise disjoint elements of B such that $\cup U=C-D$.

For every $B \in B$ let $B(1)$ and $B(2)$ denote elements of B such that $\operatorname{diamB}(1)=\operatorname{diamB}(2)=3^{-1} \cdot \operatorname{diamB}, B(1) \cup B(2)=B$, and if $x_{1} \in B(1)$ and $x_{2} \in B(2)$ then $x_{1}<x_{2}$.

For every positive integer n we define a function f_{n} and a family A_{n} such that the following conditions are fulfilled:
(i) If $A \in A_{n}$ then $\operatorname{diam} A \leq 3^{-n}$.
(ii) $\cup A_{n-1} \subseteq \cup A_{n}$.
(iii) If $U \in U$ and diamU $\geq 3^{-n}$ then $U \subseteq U A_{n}$.
(iv) Let $B \in B_{n}$. If $B \cap D=\varnothing$ then $B \subseteq \cup A_{n}$. If
$B-\left(\cup A_{n-1} U D\right) \neq \varnothing$ then there is $U \in U$ such that $U \subseteq B-\left(U A_{n-1} U D\right)$ and $U(1), U(2) \in A_{n}$.
(v) If $A \in A_{n}$ then $A_{n}=\left\{f_{n}^{i}(A): i=1,2, \cdots, m(n)\right\}$, where $m(n)$ is a number of elements in A_{n}.
(vi) For any $A \in A_{n}$ a restriction $\left.f_{n}\right|_{A}$ is an increasing and linear function from A onto $f_{n}(A)$.
(vii) $f_{n}\left|c-\cup A_{n}=i d\right| c-\cup A_{n}$.
(viii) $f_{n}(A)=f_{n-1}(A)$ for $A \in A_{n-2}$.
(ix) For every $x \in C$ we have $\left|f_{n}(x)-f_{n-1}(x)\right| \leq 3^{1-n}$.
(x) If $\mathrm{B} \in B_{\mathrm{n}}$ and $\mathrm{B} \cap\left(\cup A_{\mathrm{n}}-\cup A_{\mathrm{n}-1}\right) \neq \varnothing$ then there are $A_{1}, A_{2} \in A_{n}$ such that $A_{1}, A_{2} \subseteq B \cap\left(U A_{n}-U A_{n-1}\right)$ and $f_{n}\left(A_{1}\right)=A_{2}$.

Step 1. The family B_{1} consists of two sets, say B_{1} and B_{2}. For $i=1,2$ we put $A_{1}(i)=\{U(s): s=1,2$ and $U \in U$ and $\left.U \subseteq B_{i}\right\}$, if $B_{i} \cap D=\varnothing$. If $B_{i} \cap D \neq \varnothing$ and $B_{i}-D \neq \varnothing$ then we put $A_{1}(i)=\{U(1), U(2)\}$ where $U \in U$ and $U \subseteq B_{i}$ - D. We put $A_{1}=A_{1}(1) \cup A_{1}(2)$. Families $A_{1}(1)$ and $A_{1}(2)$ are finite, say $A_{1}(1)=\left\{A_{1}, \cdots, A_{m(1)}\right\}$ and $A_{1}(2)=\left\{A_{1}^{*}, \cdots, A_{m(2)}^{*}\right\}$. We define f_{1} so that
$-f_{l} \mid A_{j}$ is a linear and increasing function from A_{j}
onto A_{j+1} for $j=1, \cdots, m(1)-1$

- $f_{l} \mid A_{m}(1)$ is a linear and increasing function from $A_{m(1)}$ onto A_{1}^{*}
- $\left.f_{1}\right|_{A_{j}^{*}}$ is a linear and increasing function from A_{j}^{*}
onto A_{j+1}^{\star} for $j=1, \cdots, m(2)$
$-\left.f_{1}\right|_{A_{m(2)}^{*}}$ is a linear and increasing function from
$A_{m(2)}^{*}$ onto A_{1}
$-\mathrm{f}_{1}{\mid c-\cup A_{1}}=\mathrm{id}{\mid c-\cup A_{1}}$.
It is easy to see that conditions (i)-(x) are fulfilled.

Step $n+1$. Suppose that we have defined families A_{k} and functions f_{k} for $k=1,2, \cdots, n$. Let the elements of B_{n+1} be denoted by $B_{j}, j=1,2, \cdots, 2^{n+1}$, in such a way that $\left(B_{2 i} \cup B_{2 i-1}\right) \in B_{n}$ for $i=1,2, \cdots, 2^{n}$. Let $A_{n+1}=\{A(s):$ $s=1,2$ and $\left.A \in A_{n}\right\}$. Let $A_{n+1}(j)=\{U(s): s=1,2$ and $U \in U$ and $\left.U \subseteq B_{j}-U A_{n}\right\}$ if $B_{j} \cap D=\varnothing$. If $B_{j} \cap D \neq \varnothing$ and $B_{j}-\left(D \cup \cup A_{n}\right) \neq \varnothing$ then we put $A_{n+1}(j)=\{U(1), U(2)\}$ for some $U \in U$ such that $U \subseteq B_{j}-\left(D \cup \cup A_{n}\right)$.

Let $A_{n+1}=U\left\{A_{n+1}(j): j=0,1, \cdots, 2^{n+1}\right\}$. Conditions (i)-(iv) are satisfied by A_{n+1}.

Let A be a fixed element of A_{n}. Define function g_{o} by
$-g_{o}\left|c-A=f_{n}\right| C-A$

- $g_{0} \mid A(1)$ is an increasing and linear function from $A(1)$ onto $f_{n}(A(2))$
- $\left.g_{o}\right|_{A(2)}$ is an increasing and linear function from $A(2)$ onto $f_{n(A(1))}$.

Conditions (v) (x) are satisfied by g_{o} and $A_{\mathrm{n}+\mathrm{l}}(0)$. If $A_{n+1}=A_{n+1}(0)$ then we put $f_{n}=g_{0}$.

Suppose that $A_{n+1} \neq A_{n+1}(0)$. Because $\left(B_{2 i-1} \cup B_{2 i}\right) \in B_{n}$ for $i=1,2, \cdots, 2^{n}$, then diameter of $U\left(A_{n+1}(2 i-1) \cup A_{n+1}(2 i)\right)$ is less than or equal to 3^{-n}. Consider $A_{n+1}(1) \cup A_{n+1}(2)$. If it is an empty set then we put $g_{1}=g_{0}$. Otherwise it is finite. Suppose that both $A_{n+1}(1)$ and $A_{n+1}(2)$ are not empty and put $A_{n+1}(1)=\left\{A_{1}, \cdots, A_{m(1)}\right\}$ and $A_{n+1}(2)=$ $\left\{A_{1}^{*}, \cdots, A_{m(2)}^{*}\right\}$. Because $B_{1} \cup B_{2}$ is an element of B_{n} and $\left(B_{1} \cup B_{2}\right)-\left(\cup A_{n-1} \cup D\right) \neq \varnothing$ then, by (iv), (x), and the definitions of $A_{n}(0)$ and g_{0} there are $E_{1}, E_{2} \in A_{n}(0)$ such that $E_{1}, E_{2} \subseteq\left(B_{1} \cup B_{2}\right)-\left(U A_{n}-U A_{n-1}\right)$ and $g_{0}\left(E_{1}\right)=E_{2}$. We define g_{1} from C onto itself as follows:
$-\mathrm{g}_{1} \mid \mathrm{C}-\left(\mathrm{E}_{1} \cup \cup A_{\mathrm{n}+1}(1) \cup \cup A_{\mathrm{n}+1}(2)\right)=$
$\mathrm{g}_{\mathrm{O}} \mid \mathrm{C}-\left(\mathrm{E}_{1} \cup \cup A_{\mathrm{n}+1}(1) \cup \cup A_{\mathrm{n}+1}(2)\right)$
$-\left.g_{1}\right|_{E_{1}}$ is a linear and increasing function from E_{1} onto A_{1}
$-\left.g_{1}\right|_{A_{r}}$ is a linear and increasing function from A_{r} onto A_{r+1} for $r=1,2, \ldots, m(1)-1$
$-\left.g_{1}\right|_{A_{m(1)}}$ is a linear and increasing function from
$A_{m(1)}$ onto A_{1}^{*}
$-\left.g_{1}\right|_{A_{r}^{*}}$ is a linear and increasing function from A_{r}^{*}
onto A_{r+1}^{*} for $r=1,2, \cdots, m(2)-1$
$-\left.g_{1}\right|_{A_{m}^{*}(2)} ^{*}$ is a linear and increasing function from $\mathrm{A}_{\mathrm{m}}^{\mathrm{*}}(2)$ onto E_{2}.

If one of the families $A_{n+1}(1), A_{n+1}(2)$ is empty then some obvious modifications of the preceding process are required. In any case it is easy to see that the family $A_{\mathrm{n}+1}(0) \cup A_{\mathrm{n}+1}(1) \cup A_{\mathrm{n}+1}(2)$ and the function g_{1} satisfy (i)-(x). We repeat this procedure for families $A_{\mathrm{n}+1}(2 \mathrm{i}-1) \cup A_{\mathrm{n}+1}(2 \mathrm{i})$, where $\mathrm{i}=2,3, \cdots, 2^{\mathrm{n}}$. If we put $f_{n+1}=g_{2}$ then $(i)-(x)$ are fulfilled for such a function and the family $A_{\mathrm{n}+1}$.

Conditions (i)-(x) imply that $f=\lim _{n \rightarrow \infty} f_{n}$ is a homeomorphism on C that is an identity on D and $\left\{f^{k}(c): k\right.$ is an integer\} is dense in $C-D$ for any point c in C - D.

References

[1] A. Gutek, On extending homeomorphisms on the Cantor set, Topological Structures II, Mathematical Centre Tracks 115, Amsterdam 1979, 105-116.
[2] \qquad and J. van Mill, Continua that are Locally a bundle of arcs, Top. Proc. 7 (1982), 63-69.
[3] B. Knaster and M. Reichbach, Notion d'homogénéitè et proZongement des homéomorphies, Fund. Math. 40 (1953), 180-193.

Tennessee Tech University
Cookeville, Tennessee 38505

