

http://topology.auburn.edu/tp/

A NOTE ON ALMOST 2-FULLY NORMAL SPACES

by

H. P. KÜNZI

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NOTE ON ALMOST 2-FULLY NORMAL SPACES

H. P. Künzi

All spaces considered are Hausdorff spaces. A topological space X is called almost 2-fully normal if the set of the neighborhoods of the diagonal of X is a uniformity. Every paracompact space is almost 2-fully normal and every almost 2-fully normal space is collectionwise normal [2]. Moreover, although Mary Ellen Rudin's Dowker space is almost 2-fully normal [7,8], every weakly Lindelöf almost 2-fully normal space is countably paracompact [15]. M. J. Mansfield has shown that every GO-space is almost 2-fully normal [17]. In [14] it is shown that a locally compact separable normal M-space of D. K. Burke and E. K. van Douwen is almost 2-fully normal. In the same paper a countably compact non-compact Franklin-Rajagopalan space [5] is considered. It is well known that such a space is normal. Answering a question implicitly contained in [14], we show in this note that every countably compact Franklin-Rajagopalan space is almost 2-fully normal.

In the second section of this paper we consider the property of almost 2-full normality in Σ -products. H. H. Corson has proved that a Σ -product of complete separable metric spaces is almost 2-fully normal ([3], compare [12]). In [13] it has been shown by A. P. Kombarov that for a Σ -product Σ of uncountably many nontrivial paracompact p-spaces the following conditions are equivalent:

319

a) Each factor space is of countable tightness.

b) Σ is collectionwise normal.

c) Σ is normal.

Kombarov's result suggests that Σ -products of paracompact p-spaces of countable tightness are almost 2-fully normal. In this note we verify this conjecture. In particular, Σ -products of metric spaces are almost 2-fully normal, which answers a question of ([10], p. 48).

We call a subset A of a topological space X a refiner of a cover D of X, if A is a subset of some member of D[14]. We will use the following characterization of almost 2-full normality.

[1,18] A normal topological space X is almost 2-fully normal if and only if for every open cover \hat{D} of X there is a locally finite open cover # of X such that every refiner of # with at most 2 elements is a refiner of \hat{D} .

Let n denote an arbitrary cardinal number greater than 1. If one substitutes n for 2 (finitely many for 2) in the given characterization of almost 2-full normality one gets a characterization of the property of almost n-full normality (almost finite full normality) [17,18,14].

1. Countably Compact Franklin-Rajagopalan Spaces

Let μ be an ordinal and let $(A_{\alpha})_{\alpha < \mu}$ be a sequence of infinite subsets of the set ω of natural numbers such that

(i) if $\alpha < \beta < \mu$, then $A_{\alpha} \subset A_{\beta}$ (i.e. $A_{\beta} \setminus A_{\alpha}$ is infinite and $A_{\alpha} \setminus A_{\beta}$ is finite), (ii) there is no infinite subset M of ω such that, for each $\alpha < \mu$, $A_{\alpha} \subset M \subset \omega$.

On the set $\mu \cup \omega$ (where μ is considered to be disjoint from ω) a topology is defined as follows: Points of ω are isolated. If $0 \leq \beta < \alpha < \mu$ and F is a finite subset of ω , set $U(\alpha, \beta, F) = (\beta, \alpha] \cup (A_{\alpha} \setminus A_{\beta}) \setminus F$, and if $\alpha = 0$ and F is a finite subset of ω , set $U(0, \beta, F) = \{0\} \cup (A_{0} \setminus F)$. For each $\alpha \in \mu$, $U(\alpha, \beta, F)$ is a basic neighborhood of α . In [21] a topological space of this kind is called a countably compact non-compact Franklin-Rajagopalan space. In the following let T be a countably compact non-compact Franklin-Rajagopalan space whose basic neighborhoods are defined in terms of $(A_{\alpha})_{\alpha \leq \mu}$. Let S be a cofinal subset of μ .

Lemma 1 can be proved by straightforward induction on n.

Lemma 1. Let $n \in \omega$ and let $[\omega]^n = \{C \subset \omega | card(C) = n\}$. Let ξ be an infinite disjoint subfamily of $[\omega]^n$. Then there exists an $\alpha \in S$ such that the family $\{E \in \xi | E \subset A_{\alpha}\}$ is infinite.

Lemma 2. Let $n \in \omega$. Then there exists $k \in \omega$ such that for each $E \in [\omega \setminus k]^n = \{C \subset \omega \setminus k | card(C) = n\}$, the set $\{\alpha \in S | E \subset A_{\alpha}\}$ is cofinal in μ .

Proof. Assume that the assertion is wrong for some $n \in \omega \setminus \{0\}$. Since the cofinality of μ is uncountable (see e.g. [21]), there is a $\gamma \in S$ and an infinite disjoint subfamily ξ of $[\omega]^n$ such that for each $E \in \xi$ and for each $\beta \in S$ with $\gamma < \beta$ we have that $E \setminus A_g \neq \emptyset$. On the other hand,

by Lemma 1 there exists a $\delta \in S$ such that $\{E \in \mathcal{E} | E \subset A_{\delta}\}$ is infinite. Let $\beta \in S$ such that $\gamma < \beta$ and $\delta < \beta$. Since $A_{\delta} \subset A_{\beta}$, we have reached a contradiction.

Now we show that T is almost n-fully normal where $n \in \omega \setminus \{0,1\}$. Our proof is similar to the corresponding proof given in [14].

Let (be an open cover of T. Without loss of generality we assume that $(= \{ U(x, \beta_x, F_x) | x \in \mu \} \cup \{ \{ k \} | k \in \omega \}$. Then $x \mid \neq \beta_x$ where $x \in \mu$ defines a regressive function on μ . Since the cofinality of μ is uncountable, there exists $\beta < \mu$ such that $\{ \gamma \in \mu | \beta_\gamma < \beta \}$ is cofinal in μ (see e.g. [16, p. 153]). Hence there is a cofinal subset S of μ and a finite subset F of ω such that for each $x \in S$, $(\beta, x] \cup ((A_x \setminus A_\beta) \setminus F)$ is a subset of $U(x, \beta_x, F_x)$. By Lemma 2 there exists a $k \in \omega$ such that for each $E \in [\omega \setminus k]^n$, the set $\{ \alpha \in S | E \subset A_\alpha \}$ is cofinal in μ . Set $R = (\beta, \mu) \cup (U\{A_x \setminus (A_\beta \cup F \cup k) | x \in S \text{ and } x > \beta \})$. Then R is an open set, and since $\mu \setminus R$ is compact, there is a finite subcollection $(\cdot \circ f (s \circ that \mu \setminus R \subset U (\cdot) Let R = (\cdot \cup \{ R \} \cup \{ \{ x \} | x \notin U ((\cdot \cup \{ R \}) \} \})$. Then R is a locally finite open cover of T.

Let $M \subset \mathbb{R}$ such that card $(M) \leq n$. There is an $s \in S$ such that $M \cap \mu \subset (\beta, s]$ and $M \cap \omega \subset A_s$. Thus $M \subset U(s, \beta_s, F_s)$. We conclude that every refiner of \mathcal{R} with at most n elements is a refiner of (. Hence T is almost n-fully normal.

Remark 1. Since a separable almost \aleph_0^{-fully} normal space is paracompact [1, Prop. 7], T is not almost \aleph_0^{-fully}

normal. We do not know whether T is almost finitely-fully normal.

2. **D**-Products of Paracompact p-Spaces

Theorem. A Σ -product of paracompact p-spaces of countable tightness is almost 2-fully normal.

Remark (December 1984). Our original proof of this theorem was based on results of [11]. In the meantime Y. Yajima published the following result: If Σ is a Σ -product of paracompact Σ -spaces and Σ is of countable tightness, then Σ is collectionwise normal [23]. (Recall that every paracompact p-space is a Σ -space [20].) Revising our paper, we decided to give a variant of our proof that is based on his Lemma 4. We observe that it follows from our proof that a Σ -product of paracompact first-countable Σ -spaces is almost 2-fully normal (compare [23, Corollary 1]).

Proof. Let Σ be a Σ -product of paracompact p-spaces $(X_i)_{i \in I}$ of countable tightness with base point $p \in \Pi\{X_i \mid i \in I\}$. In order to simplify the notation we will identify in the proof some subspaces of $X_I = \Pi\{X_i \mid i \in I\}$ and $X_I \times X_I$ that are in fact only homeomorphic. We will have to consider the Σ -product $\Sigma \times \Sigma$ with base point (p,p) in its Tychonoff product $X_{I \times \{1\}} \times X_{I \times \{2\}}$. For each countable subset B of $I \times \{1\} \cup I \times \{2\}, \ \mathcal{P}_B$ will denote the projection from $\Sigma \times \Sigma$ onto $X_B = \Pi\{X_i \mid i \in B\}$. For a countable subset A of I, Q_A will denote the projection from Σ onto $X_A = \Pi\{X_i \mid i \in A\}$. The diagonal of Σ will be denoted by Δ . A Σ -product is of countable tightness, if each finite product of factor spaces is of countable tightness. Since finite products of paracompact p-spaces of countable tightness are of countable tightness, $\Sigma \times \Sigma$ is of countable tightness (see Remark 1 of [13]). Let \hat{D} be an open cover of Σ . Set $U = U\{C \times C | C \in \hat{D}\}$. Since each factor space of $\Sigma \times \Sigma$ is a paracompact Σ -space, by Lemma 4 of [23] there is a σ -locally finite cover \mathcal{G} of $\Sigma \times \Sigma$ satisfying for each $G \in \mathcal{G}$

(i) there exists a countable subset R(G) of I × {1,2} such that $\mathcal{P}_{R(G)}G$ is a cozero-set in $X_{R(G)}$ and $\mathcal{P}_{R(G)}^{-1}\mathcal{P}_{R(G)}G = G$.

(ii) G is disjoint from Δ or $(\Sigma \times \Sigma) \setminus U$. In the following we assume that $\mathcal{G} = U\{\mathcal{G}_n | n \in \omega\}$ where, for each $n \in \omega$, \mathcal{G}_n is locally finite. Let $G \in \mathcal{G}$.

We choose a countable subset T(G) of I such that $R(G) \subset T(G) \times \{1,2\}$. Set $S(G) = T(G) \times \{1,2\}$. Since $X_{T(G)}$ is a countable product of paracompact Σ -spaces, $X_{T(G)}$ is a paracompact Σ -space [20]. Note that $G = \mathcal{P}_{S(G)}^{-1} \mathcal{P}_{S(G)}G$ and that $\mathcal{P}_{S(G)}G$ is a cozero-set in $X_{S(G)}$. Since $X_{T(G)}$ is a paracompact Σ -space, $X_{S(G)} = X_{T(G)} \times X_{T(G)}$ is a rectangular product [22]. Hence $\mathcal{P}_{S(G)}G = \cup \{\bigcup \mathcal{M}_{K}(G) \mid$ $k \in \omega\}$ where for each $k \in \omega \ \mathcal{M}_{K}(G)$ is a collection of cozero-set rectangles in $X_{T(G)} \times X_{T(G)}$ that is locally finite in $X_{S(G)}$ [9, Lemma 1].

For each $k \in \omega$ let $\mathcal{N}_{k}(G) = \{Q_{T(G)}^{-1}(C \cap D) | C \times D \in \mathcal{M}_{k}(G)\}$. For each n, $k \in \omega$ set $\mathcal{R}_{nk} = \cup \{\mathcal{N}_{k}(G) | G \in \mathcal{G}_{n}\}$. Let $\mathcal{R} = \cup \{\mathcal{R}_{nk} | n, k \in \omega\}$.

We show that \Re is a normal open cover of Σ such that $U\{K \times K | K \in \Re\} \subset U$. Let $\emptyset \neq K \in \Re$. Then there are n,k $\in \omega$

such that $K \in \mathcal{R}_{nk}$. Therefore there are $G \in \mathcal{G}_{n}$ and $C \times D \in M_{K}(G)$ such that $K = Q_{T(G)}^{-1}(C \cap D)$. Then $\mathbf{K} \times \mathbf{K} = \mathcal{P}_{\mathbf{S}(\mathbf{G})}^{-1} \left[(\mathbf{C} \cap \mathbf{D}) \times (\mathbf{C} \cap \mathbf{D}) \right] \subset \mathcal{P}_{\mathbf{S}(\mathbf{G})}^{-1} \left(\mathbf{C} \times \mathbf{D} \right) \subset$ $\mathcal{P}_{S(G)}^{-1}\mathcal{P}_{S(G)}G = G \subset U$. We show that \mathcal{R} is a cover of Σ . Let $x \in \Sigma$. Then $(x,x) \in G$ for some $G \in G$. There is an $n \in \omega$ such that $G \in \mathcal{G}_n$. Hence there are a $k \in \omega$ and a cozero-set rectangle C × D $\in M_k(G)$ such that $\mathcal{P}_{S(G)}(x,x) \in C \times D$. Hence $Q_{T(G)}(x) \in C \cap D$ and $x \in U \mathcal{R}_{pk}$.

Obviously, each member of R is a cozero-set of Σ . It remains to show that, for each n,k $\in \omega$, \mathcal{R}_{nk} is locally finite [19, Theorem 1.2]. Let n,k $\in \omega$ and let x $\in \Sigma$. There is an open neighborhood E of x such that E × E hits only finitely many members of \mathcal{G}_n . List these sets as G_0, \cdots, G_s . For each j $\in \{0, \dots, s\}$ there is an open neighborhood M_j of $Q_{T(G_{i})}(x)$ in $X_{T(G_{i})}$ such that $M_{j} \times M_{j}$ hits only finitely many members of $\mathcal{M}_{k}(G_{j})$. Let $M_{x} = E \cap \left[\bigcap_{j=0}^{s} Q_{T}(G_{j}) M_{j} \right]$. Then M_x is an open neighborhood of x in Σ . We show that M_{y} hits only finitely many members of \mathcal{R}_{nk} . Let $y \in M_{y} \cap K$ with $K \in \mathcal{R}_{nk}$. Then $K = Q_{T(G)}^{-1}(C \cap D)$ where $G \in \mathcal{G}_n$ and $C \times D \in \mathcal{M}_{k}(G)$. Then $Q_{T(G)}(y) \in C \cap D$. Hence $\mathcal{P}_{S(G)}(y,y) \in$ $C \times D \subset \mathcal{P}_{S(G)}G$ and $(y, y) \in G \cap E \times E$. Therefore $G = G_{1}$ for some $j \in \{0, \dots, s\}$. Moreover, for this $j \in \{0, \dots, s\}$ we have that $Q_{T(G_i)}(y) \in M_j \cap C \cap D$. Only finitely many rectangles in $M_k(G_j)$ satisfy the last condition. Hence \mathcal{R}_{nk} is locally finite. We conclude that Σ is almost 2-fully normal.

Remark 2. By Lemma 3 of [4] we see that a Σ -product of paracompact p-spaces of countable tightness is in fact almost n-fully normal for every $n \in \omega \setminus \{0,1\}$. Note that we can get this result directly, if we consider Σ^n instead of $\Sigma \times \Sigma$ in the proof given above. In [4] it is shown that a Σ -product of uncountably many copies of the integers is almost \aleph_0 -fully normal. We do not know whether each Σ -product of paracompact p-spaces of countable tightness is almost \aleph_0 -fully normal (almost finitely-fully normal).

References

- G. Aquaro, Intorno ad una generalizzazione degli spazi paracompatti, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 38 (1965), 824-827.
- H. J. Cohen, Sur un problème de M. Dieudonné, C. R. Acad. Sci. Paris 234 (1952), 290-292.
- H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785-796.
- 4. _____, Examples relating to normality in topological spaces, Trans. Amer. Math. Soc. 99 (1961), 205-211.
- S. P. Franklin and M. Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc. 155 (1971), 305-314.
- S. P. Gul'ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505-508 (Soviet Math. Dokl. 18 (1977), 1438-1442).
- K. P. Hart, Strong collectionwise normality and M. E. Rudin's Dowker space, Proc. Amer. Math. Soc. 83 (1981), 802-806.
- More on M. E. Rudin's Dowker space, Proc. Amer. Math. Soc. 86 (1982), 508-510.
- 9. T. Hoshina and K. Morita, On rectangular products of topological spaces, Top. Appl. 11 (1980), 47-57.
- H. J. K. Junnila, Covering properties and quasiuniformities of topological spaces, Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg (1978).

- 11. B. S. Klebanov, On factoring mappings of products of topological spaces, Dokl. Akad. Nauk SSSR 262 (1982), 1059-1064 (Soviet Math. Dokl. 25 (1982),177-181).
- 12. A. P. Kombarov, On the product of normal spaces. Uniformities on Σ-products, Dokl. Akad. Nauk SSSR 205 (1972), 1033-1035 (Soviet Math. Dokl. 13 (1972), 1068-1071).
- 13. _____, On tightness and normality of Σ-products, Dokl. Akad. Nauk SSSR 239 (1978), 775-778 (Soviet Math. Dokl. 19 (1978), 403-407).
- H. P. Künzi and P. Fletcher, A topological space without a complete quasi-uniformity, Proc. Amer. Math. Soc. 90 (1984), 611-615.
- 15. ____, Some questions related to almost 2-fully normal spaces, Rocky Mountain J. Math. 15 (1985), 173-183.
- 16. A. Levy, Basic set theory, Springer, Berlin, 1979.
- M. J. Mansfield, Some generalizations of full normality, Trans. Amer. Math. Soc. 86 (1957), 489-505.
- K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/62), 223-236.
- 19. ____, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.
- 20. K. Nagami, Σ-spaces, Fund. Math. 65 (1969), 169-192.
- 21. P. J. Nyikos and J. E. Vaughan, Ordinal extensions of ω and sequential compactness (preprint).
- 22. B. A. Pasynkov, On the dimension of rectangular products, Dokl. Akad. Nauk SSSR 221 (1975), 291-294 (Soviet Math. Dokl. 16 (1975), 344-347).
- Y. Yajima, On Σ-products of Σ-spaces, Fund. Math. 123 (1984), 29-37.

University of Bern

3012 Bern, Switzerland