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A NOTE ON ALMOST 2-FULLY NORMAL SPACES

H. P. Kiinzi

All spaces considered are Hausdorff spaces. A
topological space X is called almost 2-fully normal if the
set of the neighborhoods of the diagonal of X is a uni-
formity. Every paracompact space is almost 2-fully
normal and every almost 2-fully normal space is collec-
tionwise normal [2]. Moreover, although Mary Ellen Rudin's
Dowker space is almost 2-fully normal [7,8], every weakly
Lindeldf almost 2-fully normal space is countably para-
compact [15]. M. J. Mansfield has shown that every
GO-space is almost 2-fully normal [17]. 1In [14] it is
shown that a locally compact separable normal M-space of
D. K. Burke and E. K. van Douwen is almost 2-fully normal.
In the same paper a countably compact non-compact
Franklin-Rajagopalan space [5] is considered. It is well
known that such a space is normal. Answering a question
implicitly contained in [14], we show in this note that
every countably compact Franklin-Rajagopalan space is almost
2-fully normal.

In the second section of this paper we consider the
property of almost 2-full normality in I-products.

H. H. Corson has proved that a I-product of complete
separable metric spaces is almost 2-fully normal ([3],
compare [12]). In [13] it has been shown by A. P. Kombarov
that for a Z-product I of uncountably many nontrivial

paracompact p-spaces the following conditions are equivalent:
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a) Each factor space is of countable tightness.

b) £ is collectionwise normal.

c) I is normal.

Kombarov's result suggests that I-products of para-
compact p~spaces of countable tightness are almost 2~fully
normal., In this note we verify this conjecture. 1In
particular, I-products of metric spaces are almost 2-fully
normal, which answers a question of ([10], p. 48).

We call a subset A of a topological space X a refiner
of a cover ) of X, if A is a subset of some member of J
[14]. We will use the following characterization of almost

2-full normality.

[1,18] A normal topological space X is almost 2-fully
normal if and only if for every open cover J of X there is
a locally finite open cover # of X such that every refiner

of # with at most 2 elements is a refiner of 2.

Let n denote an arbitrary cardinal number greater
than 1. If one substitutes n for 2 (finitely many for 2)
in the given characterization of almost 2-full normality
one gets a characterization of the property of almost

n-full normality (almost finite full normality) [17,18,14].

1. Countably Compact Franklin-Rajagopalan Spaces
Let 1 be an ordinal and let (Aa)a<u be a sequence of
infinite subsets of the set w of natural numbers such that
(i) if o« < B < u, then Aa c* AB (i.e. AB\Aa is infinite

and Aa\AB is finite),
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(ii) there is no infinite subset M of w such that,
for each o < u, A, c* M c* g,
On the set y U w (where u is considered to be disjoint
from w) a topology is defined as follows: Points of w are
isolated. If 0 < B < a < yu and F is a finite subset of w,

set U{(a¢,B8,F) = (B,c] U (Aa\A J\F, and if o« = 0 and F is a

B
finite subset of w, set U(0,8,F) = {0} U (AO\F). For each

o € u, U(e,R,F) is a basic neighborhood of a. In [21]

a topological space of this kind is called a countably
compact non-compact Franklin-Rajagopalan space. In the
following let T be a countably compact non-compact Franklin-
Rajagopalan space whose basic neighborhoods are defined in

terms of (A ) Let S be a cofinal subset of u.

o a<u’

Lemma 1 can be proved by straightforward induction on

Lemma 1. Let n € w and let [w]™ = {C « w|card(C) = n}.
Let £ be an infinite disjoint subfamily of [w]n. Then there
exists an o € S such that the family {E € £|E c A} is

infinite.

Lemma 2. Let n € w., Then there exists k € w such
that for each E € [w\k]" = {C c w\k|card(C) = n}, the set
{a € S|E = A} is oofinal in w.

Proof. Assume that the assertion is wrong for some
n € w\{0}. 8Since the cofinality of u is uncountable (see
e.g. [21]), there is a y € S and an infini;e disjoint sub-
family £ of [w]n such ﬁhat for each E €  and for each

B € 8§ with vy < B we have that E\AB # #. On the other hand,
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by Lemma 1 there exists a § € S such that {E € {|E c AG} is
infinite. Let B € S such that vy < B and § < B. Since

AG c* AB' we have reached a contradiction.

Now we show that T is almost n-fully normal where
n € w\{0,1}. Our proof is similar to the corresponding

proof given in [14].

Let C be an open cover of T. Without loss of gen-
erality we assume that ( = {U(x,Bx,Fx)Ix € u} u {{k}|x € w).
Then x L+Bx where x € yu defines a regressive function on u.
Since the cofinality of p is uncountable, there exists
B < u such that {y € u|BY < B} is cofinal in u (see e.g.
[16, p. 153]). Hence there is a cofinal subset S of u and
a finite subset F of w such that for each x € 5, (B,x] U
((Ax\AB)\F) is a subset of U(x'Bx,Fx)' By Lemma 2 there
exists a k € w such that for each E € [w\k]™, the set
{a € S|E Aa} is cofinal in y. Set R = (B,u) U
(U{Ax\(AB UFUKk)|x €S and x > 8}). Then R is an open set,
and since p\R is compact, there is a finite subcollection
(" of ( so that \Rc U('. Let R = (' U {R} U {{x}|x ¢

U({* U {R})}. Then R is a locally finite open cover of T.

Let M ¢ R such that card (M) < n. There is an s € §
such that M N p < (B,s] and M N w < As. Thus M < U(s,BS,FSL
We conclude that every refiner of R with at most n elements

is a refiner of C. Hence T is almost n-fully normal.

Remark 1. Since a separable almost No-fully normal

space is paracompact [l, Prop. 7], T is not almost No—fully
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normal. We do not know whether T is almost finitely-fully

normal.

2. 2-Products of Paracompact p-Spaces

Theorem. A I-produet of paracompact p-spaces of
countable tightness is almost 2-fully normal.

Remark (December 1984). Our original proof of this
theorem was based on results of [11]. In the meantime
Y. Yajima published the following result: If I is a
I-product of paracompact I-spaces and L is of countable
tightness, then I is collectionwise normal (23], (Recall
that every paracompact p-space is a r~-space [20].) Revising
our paper, we decided to give a variant of our proof that
is based on his Lemma 4. We observe that it follows from
our proof that a I-product of paracompact first-countable
I-spaces is almost 2-fully normél (compare [23, Corollary
1]).

Proof. Let I be a I-product of paracompact p-spaces
(x

) of countable tightness with base point

ieI
p € H{Xi|i € I}. 1In order to simplify the notation we

i

will identify in the proof some subspaces of

Xp = H{Xi]i € I} and X; x X, that are in fact only homeo-

morphic. We will have to consider the I-product I x I with
base point (p,p) in its Tychonoff product X . ;} X Xy, (53.
For each countable subset B of I x {1} U I x {2}, PB will

denote the projection from I % I onto X, = H{Xili € B}.

B
For a countable subset A of I, QA will denote the projection

from I onto X, = T{x;]i € A}. The diagonal of I will be

denoted by A.
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A IL-product is of countable tightness, if each finite
product of factor spaces is of countable tightness. Since
finite products of paracompact p-spaces of countable
tightness are of countable tightness, I x I is of countable
tightness (see Remark 1 of [13]). Let J be an open cover
of I. Set U = U{C x C|C € J}. Since each factor space of
LI x L is a paracompact I~-space, by Lemma 4 of [23] there
is a g-locally finite cover § of I x I satisfying for each
Ge ¢

(i) there exists a countable subset R(G) of I x {1,2}

G is a cozero-set in X and 77 G.

L p 6=
R(G) R(G) R(G) R(G)
(ii) G is disjoint from A or (I x I)\U.

such that P

In the following we assume that § = U{¢ |n € w} where,
for each n € w, § is locally finite. Let G € §.
We choose a countable subset T(G) of I such that

R(G) « T(G) x {1,2}. sSet S(G) = T(G) x {1,2}. Since

XT(G) is a countable product of paracompact I-spaces,
XT(G) is a paracompact I-space [20]. Note that

a1l 5 , et s
G = ?S(G)/S(G)G and that ?S(G)G is a cozero-set 1in XS(G)'
Since XT(G) is a paracompact I-space, XS(G) = XT(G) X XT(G)
is a rectangular product [22]. Hence PS(G)G = U{Umk(G)|

k € w} where for each k € w mk(G) is a collection of

cozero~-set rectangles in X X that is locally

() ~ *r(6)
finite in XS(G) [9, Lemma 1].

ol
For each k € w let ﬁi(G) = {QT(G)

For each n,k € w set Rnk = U{ﬁ%(G)|G € §n}. Let

({CcnD|c xDE /’)k(G)}.

R = U{Rnkln,k € wl.
We show that R is a normal open cover of I such that

U{K x K|[K € R} cU. Let # # K € R. Then there are n,k € w
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such that K ¢ ﬂnk' Therefore there are G € 96 and

C xDE mk(G) such that K = (Cn D). Then

-1

r'(c)
_ o1 -1

K X K = /S(G)[(c N D) x (CND)] < PS(G)(C x D)

P

-1 5 _ .
S(G)/S(G)G = G < U. We show that R is a cover of I. Let

X € Z. Then (x,x) € G for some G € §. There is ann € w
such that G € 96. Hence there are a k € w and a cozero-set

rectangle C x D € Mk(G) such that 7 )(x,x) € C x D.

s (G

Hence (x) € cCnDand x € UR .
) nk

.
Obviously, each member of R is a cozero-set of I.

It remains to show that, for each n,k € w, Rnk ig locally
finite [19, Theorem 1.2]. Let n,k € w and let x € Z. There
is an open neighborhood E of x such that E x E hits only
0’...’Gs‘

For each j € {0,-++,s} there ié an open neighborhood Mj of

finitely many members of §n.‘ %ist these sets as G

QT(Gj)(x) in XT(Gj) such that Mj x Mj hits only finitely
- s -1
many members of mk(Gj). Let M = E N [nj=0QT(Gj)Mj]'

Then Mx is an open neighborhood of x in Z. We show that

Mx hits only finitely many members of Rnk’ Let y € Mx n K
. _ a1

with K € R ,. Then K = Qr(g) (€ N D) where G € g, and

C xDE mk(c). Then (y) € C nD. Hence PS(G)(y,y) €

T (G)

CxDel?P G and (y,y) € G n E x E. Therefore G =G

s(G) 3
for some j € {0,+++,s8}. Moreover, for this j € {0,**+,s}
we have that QT(G.)(Y) € Mj N CnNnD. Only finitely many
rectangles in mk(éj) satisfy the last condition. Hence
ﬂnk is locally finite. We conclude that I is almost
2-fully normal.

Remark 2. By Lemma 3 of [4] we see that a I-product

of paracompact p-spaces of countable tightness is in fact
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almost n-fully normal for every n € w\{0,l1}. Note that we
can get this result directly, if we consider £ instead

of ¥ x I in the proof given above. In [4] it is shown

that a I-product of uncountably many copies of the

integers is almost No—fully normal. We do not know
whether each I-product of paracompact p~spaces of countable
tightness is almost No—fully normal (almost finitely-fully

normal).
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