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A NOTE ON IRREDUCIBILITY AND
WEAK COVERING PROPERTIES

J. D. Mashburn

I. Introduction

A space X is irreducible if every open cover of X has
a minimal open refinement. Interest in irreducibility began
when Arens and Dugendji [1l] used this property to showvthat
metacompact countably compact spaces are compact. It was
natural, then, to find out what other types of spaces would
be irreducible and therefore compact in the presence of
countable compactness or Lindel8f in the presence of
Nl—compactness. So the covering properties considered were
weakened. A space X is 8-refinable if for every open cover
of X there is a sequence {gn: n € w} of open refinements
such that every element of X has finite order in at least
one §n. X is weakly 6-refinable if every open cover of X
has an open refinement § = Ugn such that every element of
X has finite order in at least one gn' 1f, besides this,
the collection {9;: n € w}, where g; represents the union
of all elements of §n, is point finite, then X is weakly
6 -~refinable. Wicke and Worrel [16] stated and J. R. Boone
[4] later proved that 8-refinable spaces are irreducible.
Then J. R. Boone [5] and J. C. Smith [14] showed that weakly
B-refinable spaces are irreducible. There are several
examples of weakly 6-refinable spaces that are not irreduci-
ble. See example 2.2 of Davis and Smith [9], van Douwen

and Wicke [11], and deCaux [10] for three such spaces.
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But the method of proof used for spaces with point-
finite properties cannot be used for spaces with point-
countable properties. To circumvent this difficulty, J. R.
Boone [6] introduced the concept of irreducible of order a.
A space X is irreducible of order o if, for every open cover
{/ of X, there is an open refinement V = UaEAVa of {/ and a
family of discrete closed collections {Ja: a € A} where
|a| < a such that:

1) for each T € ja' VT = {V € Va: T < V} # # and

Vgl < @

2) {v:vel}Yy, TE ja' a € A} covers X
He also showed in the same paper that §6-refinable spaces
are irreducible of order “1' A space is 66-refinable if for
every open cover of X there is a sequence {gn: n € w} of
open refinements such that every element of X has countable
order in at least one gn' X is weakly §B-refinable if
every open cover of X has an oéen refinement § = UnEmgn
such that each element of X has countable order in at least
one 96, and {9;: n € w} is point-finite. The covers
specified above are called 66-covers and weak 58~covers.

In [7] J. R. Boone states that weakly §6-refinable spaces
are irreducible of order Nl.

It is shown in this paper that Tl §o-refinable spaces

and T, weakly 86-refinable spaces are irreducible. Since

1
examples of LindelSf spaces that are neither Tl nor irre-
ducible can be easily constructed, it is clear that the

spaces must be Tl'
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II. 66-Refinable Spaces

In order to show that a given open cover {/ of a space
X is minimal, we must show that every element of the open
cover contains a closed set which does not intersect any
other element of the open cover (see J. R. Boone [5]).

In fact, points will work just as well for us as closed
sets. The collection of these closed sets, or points, is
then discrete in X.

To motivate the proofs and point out some of the dif-
ficulties, let us consider a couple of naive approaches to
the problem. We must try to construct a discrete set D
and for each d € D pick an element V(d) of the open cover
u containing d. Hopefully at the end of the construction
{v(d): 4 € D} will cover the space. Then, if some elements
of D are in more than one element of {V(d): 4 € D}, we can
get rid of the overlap by subtracting elements of D.

There are two methods that quickly present themselves
to accomplish such a construction. If a discrete set D'
has been defined then, in order to pick the next point, we
can either choose some point outside UdED'St(d'U) or we can
try to make sure that every element of / containing a point
of D' that is not already a subset of UdED'V(d) has some
point chosen from it. Both of these methods lead to diffi-
culties. With the first method, we obtain a discrete D,
but the set {Vv(d): d € D} may not cover X. In fact, every
subcover of (/ may have elements that do not contain any
elements of D. On the other hand, after picking an infinite
number of points by the second method, we might not have

a discrete set.
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What is needed is a blending of these two methods.

For a given d € D we must pick some points outside st(d, {/)
to insure discreteness, and at the same time we must con-
tinually return to the elements of (/ containing 4 to guaran-
tee a cover of X in the end. To do this we will line up

{u e U: d € U} in such a way that we will always have room
to put new open sets between the elements of {U € (/: 4 € U}.
We will use enmeshed sequences to ennumerate each successive

set. Let I, be the odd positive integers. Of course, we

1
have an infinite number of positive integers left over to
use an indices of our next collection of open sets. Let
I, = {2(2k-1): k € w}. This gives us every other even posi-
tive integer, so we still have infinite number of possible
indices left. 1In general, let I = {2n—1(2k—1): k € wl.

One more piece of terminology, borrowed from Aull [2],
needs to be mentioned before we begin. We will say that a
subset D of X distinguishes a collection { of subsets of

X if every element of (/ contains exactly one element of

D and every element of D is in exactly one element of (.

Lemma 1. Let ([ be an open cover of a T, space X and
let C c {x € X: ord(x,{) < NO}. Then for every y € C there
18 a partial open refinement | of / and a subset D of C
such that y € D, D distinguiéhes W, D is discrete in X,
and st(d,) n ¢ «¢ W for every 4 € D.

Proof. Set d, =y and ’41 = {U € {: d, € U}. Let

1

{Aj: i€ Il} be an ennumeration of Al. Set Vl = Al and,

for bookkeeping purposes, set s, = m(l) = 1.
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Assume that Al,---,An are subsets of {/ and that
{Ai: i€ I, and i > sj} is anennumeration of Aj for
j = 1,++*,n. Further assume that Vl,-n,vn have been
chosen from Ug=lﬂj and that V| = AL (k) for k = 1,*++,n.
Finally, we assume that [(U?=1A§) ncy - U;.1=1Vj # g. We
must select V_ ., and construct An+1'

Let m(n+l) = min{i: 1 < j < n, i € Ij and Ai nceg

U;_lvk}. This can be done since the set in question is not

empty by assumption. Let j(n+l) < n such that m(n+l) €

Ij(n+1)' Set Vel = Am(n+1) and pick dn+1 € (Vn+1 ncg) -
n
Uk=lvk'
_ . n .
Let An+1 ={u € {: dn+1 € Uand U ¢ szlﬂj}. We will

use In+1 to ennumerate An+1’ but to avoid backtracking let

us start the ennumeration at a point past m(n+l). Let

S 41 = min{i € I 418 32 m(n+l)}. Ennumerate A+l @S
{a;:ie1 ,andi>s 1.
Let W, = V1 and, for every n > 1, let Wn = vn -

{dm: m < n}, Let W = {Wn: n € w} and D = {dn: n € wl.
W is an open partial refinement of {/, vy € D, and D dis-
tinguishes #.

Let U € { and a4 € U. Then UE€ Aj for some j < m.
Let U = Ai. Now {m(k): k € w} is strictly increasing,
so we can define n+l = min{k € w: m(k) > i}. The notation
n+l is used to better match the definition of m(n+l) above.
Also, n + 1 > 2 since m(l) = 1. Ifn + 1< j then
m(n+l) < m(j) < sj < i, a contradiction. Thus j < n and
By the definition of m(n+l), Ai nCc U;’(l:lvk [

. n
i€ Uk=lIk'

u/. This gives us two results. D is discrete because
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every element of the open cover (/ contains at most a finite

number of elements of D, and st(d,{) = Ul for every 4 € D.

Lemma 2. Let U be an open cover of a Tl space X and
let Cc {x € X: ord(x,l) < NO}. Then there i8 an open
partial refinement W of U covering C and a eubset'D of C
such that D dietinguishes W and ie discrete in X.

Proof. Set WO = {#}. Let B be an ordinal number and
assume that for every a < B, Wg is an open partial refine-
ment of (. Assume that C - ua<BW; # §. Pick y € C - Uoes *.
By Lemma 1, there is an open partial refinement WB of {/ and

a subset D, of C - U W* such that D, distinguishes WB,

B a<Ba 8
. . . N x *
y € Dy, Dg is discrete in X, and st(4,{) n [C Ua<BWu] < Wi
for every 4 € D.
For some ordinal number ¢ we must have C « Ua<0 a.

Let W = Ua<cwu and D = UscoPyr Clearly {/ is an open partial

refinement of (.
We claim that every element of (/ intersects at most

Then UNCcud w*

one Du‘ Let UE ( and let d € U N D o

B* as<B
So if B < § then U N D6 = @, since D6 c C =~ “a<5W§' It
then follows that U N Dg = @ for all § < B, too.

Now the proof of Lemma 1 shows that for every U € (/
and every a < ¢, U N Da is at most finite. Therefore every
element of { contains at most a finite number of elements
of D. So D is discrete. Also, since Wa is a partial

refinement of ¢, W& n DB # § if and only if o« = B. There-~

fore D distinguishes .
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Theorem 3. Every T §0-refinable space is irreducible.

Proof. Let § = Unewgn be a §6-cover of a T, space X.
Set WO = {g} and Dy = #. Let n € w and assume that
WO"'.’wh-l are open partial refinements of ¢. Let

_ . S + o0 .
¢, ={xe€ x: ord(x,gn) < Byl - U _o¥x. By Lemma 2 there is
an open partial refinement Wn of gn covering Cn and a sub-
set Dn of Cn such that Dn distinguishes Wn and is discrete
in X.
[ - _ .
For every n € w let Wn {w UrenPni W€ Wn}. Let

W’: W' = i . . -
Ue/r @nd let D = U . D . Then / is an open refine

ment of ¢, D distinguishes ¥, and D is discrete in X.
The next theorem is a corollary of Theorem 3.

Theorem (Aull [2]). Every Nl-compact T, §6-refinable

1

space 18 Lindeldf.

In (5] J. R. Boone proves that every Nl—compact T3
irreducible space has the star-finite property. A space X
has the star-finite property if every open cover of X has

a star-finite open refinement.

Corollary 4. Every Nl-compact T3 60-refinable space

has the star-finite property.

A space X is [a,»)-compact if every open cover of X
has a subcover of cardinality < o. In [6] J. R. Boone
shows that if o is a regular cardinal then every Ty
a-compact space that is irreducible of order a is
[a,»)~compact. It follows thatvif o is a regular cardinal

then every a~compact Ty §6-refinable space is [a,«)-compact.
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Corollary 5 generalizes this result to any infinite

cardinal.

Corollary 5. Every a-compact Tl 86-refinable space is

[o,%) -compact.

III. Weakly o6-Refinable Spaces

Lemma 6. Let X be a T, space and let § = be a

1
weak 8§6-cover of X. Let H# = {9;: n€ wl. Let r € w, let

UnGmgn

F ¢ w such that |F| = r, and let U be an open subset of
. * -
X such that {x € X: ord(x,#) < r} € U. Let C c (nnngn)

((u 9 ) U U). Then for every y € C there is an open

ncEw-F
partial refinement W of G and a subset D of C such that

y € D, D distinguishes [/, D is discrete in X, and
st(d,§n) N Cc UW for any 4 € D and any n € F such that
ord(d,§n) < By

Proof. Set dl = y and Al = {G: d, € G, G € 9n, and

1
ord(dl,§n) < NO}. Let {A;: i € Il] be an ennumeration of

A Set vy = Al and, for bookkeeping purposes, set

1
s, = m(l) = 1.

Assume that Al,---,ﬂn are subsets of ¢ and that
{Ai: i€ Ij and i > sj} is an ennumeration of Aj for
j =1,*++,n. Further assume that Vl,'~-,Vn have been
n
. A » -
chosen from UJ=l 3 and that Vk Am(k) where m(k) € Ij(k)
for k = 1,+++,n. Finally, assume that [(Uj=lA§) ncy -

# #. We must select V and construct An+l'

J l 3 n+l
Let m(n+l) = min{i: 1 < j < n, i € Ij, and Ai nce¢
U£=lvk} This can be done since the set in question is

nonempty by assumption. Then m(n+l) is in one of IyeeesnIy
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Say m(n+l) € Ij Set Vo and pick

(n+1) +1 = Pn(n+1)

n = -
d € (v NC) - U V. Let A, = {G: 4

n+1 n+l +1
n
G € §k, ord(dn+l,§k) < NO’ and G ¢ uj=lﬂj}' Let

€ G,

Spe1 = min{i € I 4 12> m(n+l)}. Ennumerate An+1 as
{Ai: ier and i > Sn+1}'
Let Wl =V, and, for every n > 1, let wn = Vn -

{dm: m< n}. Let ¥ = {Wn: n € w} and D = {dn: n € w}.
Clearly #/ is an open partial refinement of ¢, y € D, and
D distinguishes ¥.

Let d € D and m € F such that ord(d,gm) < N Let

o
G € §m such that d € G. Then G € ﬂj for some j € w. Let

i€ Ij such that G A,. Now {m(k): k € w} is strictly

increasing, so we can define n + 1 = min{k: m(k) > i}. 1If
n + 1 < j then m(n+l) < m(j) < sj < i, a contradiction.
Thus j < n. Then by the definition of m(n+l),

n .
A;ncCe Up—oVk < Ul/. Therefore st(d,gm) ncecy.

Finally, we must show that D is discrete. It will be
useful to break D up into a finite number of parts. For
every m € F let L. = {4 € D: ord(d,gm) < NO}. Note that

D = UmEFLm' We will show that G n Lm is finite for every

G € §m. Let G € §m and assume that 4 € G N Lm. As before,

let G = Ai and n = min{k: m(k) > i}. Then G n C =

Ai ncec U2=0Vk' Therefore G N D is finite and, in par-

ticular, G n Lm is finite.

Now let x € X. Assume that x € N For every

nEFg;'

n €F let G € §n such that x € G_ . Then N_ .G is a

neighborhood of x that contains at most a finite number of

* i *
elements of D. If x £ nnEan then either x € U or x € ¢*
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for some n € w - F. So either U or g; is a neighborhood of

x that misses D entirely.

Lemma 7. Let X be a T, space and let ¢ = U be a

1 newgn
weak §8-cover of X. Let # = {g¥: n€w}. Let r€w, let
F ¢ w such that |F| = r, and let U be an open subset of
. - *
X such that {x € X: ord(x,#) < r} <« U. Let C (nn€F§n)

« . , .
((Un€w_F§n)U). Then there is an open partial refinement
Wofr ¢ covering C and a subset D of C such that D distin-
guishes W and is discrete in X.

Proof. Let WO = {g} and D, = @. Assume that W& is an
open partial refinement of ¢ for all 0 < a < B and that
- * = - * i
C Ua<BWa #08. Let Cq C Ua<BWa and pick y € Cg- By
Lemma 6 there is an open partial refinement WB of ¢ and a
subset D, of C, such that y € DB’ DB distinguishes WB, DB

B B

is discrete in X, and st(d,( ) n C, < Uy, for every 4 € D
n B Y

B B
and n € F such that ord(d,gn) < NO'
For some ordinal number ¢ we must have C < Ua<cwa’

Before defining #/, we must show that D = VyeoPa is discrete.

For each n € F, let L = {d € D: ord(d,§ ) < R,}. Notice

that D = We claim that for every n € F and G € Gn’

Unertn-
G N Ln is finite.
Let G € Gn and assume that G N Ln # @. Let d € Gn

Ln nD,. NowGNCe st(d,gn) nNcecu It follows

B aiewa.
that G n Da =@ if ¢« > B and G n Ln n Da =@ if o < B.

Therefore G N L, =6nL nND and the proof of Lemma 6

Bl

shows that G n Ln n DB is finite.

*
Let x € X. Assume that x € nn€E§n° For each n € F

let Gn € §n such that x € G- Then N is a neighborhood

n€FGn
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ofxami|mmFQQr1D|=|umF[mmFan HJ|<“V
If x ¢ nn€F§; then either x € U or there is n € w -~ F such

that x € ¢*. So either U of ¢* is a neighborhood of x that
misses D entirely. Therefore D is discrete.

Now let Wé ={W-u : WE Wﬂ} for every B < a.

a<BDa
Set W = Ua<0W&. Then #/ is an open partial refinement of

§ covering C and D distinguishes /.

Lemma 8. Let X be a T, space and let § = un€w§n be a
weak 86-cover of X. Let r € w. Let # = {9;: n € w} and
let U be an open subset of X such that {x € X: ord(x,#)
< r} cU. Let C= {x € X: ord(x,/) = r} - U. Then there
is an open partial refinement W of § covering C and a sub-
set D of C that distinguishes W and is discrete in X.

Proof. Let 7 = {F c w: |F| = r} and let {F : n € w}
be an ennumeration of }. Set Wo = {g} and D, = 7.

Assume that WO,---,Wn_l are open partial refinements
Of §. Let Cy = (Npep G20 = [Wpe, p 61 0 U W) 1.

By Lemma 7 there is an open partial refinement Wn of
[ covering Cn and a subset D, of C, that distinguishes
Wn and is discrete in X.

For eQery ne€wlet #) ={w-vu  D:WEIWI Let

- 1 = . .
W = UnEwWh and D = U D . Then W is an open partial

refinement of § and D distinguishes §. To show that ¥
covers C, let x € C, let F = {n € w: x € gg}, and let

m € w such that F = Fm. If x g U Wﬁ, then x € Cm, so

k <m
X € W;. Thus ¥ covers C.
It remains to show that D is discrete. Let x € X.

If x € U then U is a neighborhood of x that misses D
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entirely. So we may assume that ord(x,#) > r and x € U.
If ord(x,#) > r then F = {n € w: x € §;} has more than r
elements, so nnEFgﬁ is a neighborhood of x that misses D
entirely. If ord(x,#) = r then x € C, so x € Uff. Let
W € W/ such that x € W. Then W is a neighborhood of x

that contains exactly one element of D. Thus D is discrete.

Theorem 9. Every T, weakly §8-refinable space is
irreducible.

Proof. Let § =u _ ¢ be a weak §6-cover of a T

new
space X. Let A = {g;: n € w}. Set WO = {g} and D, = 2.

Assume that W_,«++, W are open partial refinements
0 n

-1
of § and that {x € X: ord(x,#) < n} < U;;éwg. Set

- . - -y Ly i
C, = {x € X: ord(x,#) = n} Um=0wm' By Lemma 8, there is

an open partial refinement Wn of § covering C, and a subset
D, of Cn such that Dn distinguishes Wn and is discrete in
X.

For every n € w let Wﬁ = {W - UnenPp® W € Wn}.

Set W = UnEwwﬁ and D = U D . Then # is an open
refinement of § and D distinguishes J/. Therefore D is
discrete and # is minimal.

Theorem 9 generalizes the result by J. C. Smith [14]

that R, -compact, countably compact, weakly §8-refinable

1
spaces are metacompact and hence irreducible.

Corollary 10. Every Nl-compact Ty weakly S6-refinable

space has the star-finite property.

Corollary 1ll. Every a-compact Ty wveakly S6-refinable

space is [a,®)-compact.
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In particular, every Rl—compact T

| Weakly §8-refinable

space is LindelSf (J. C. Smith [14]).

Theorem 9 also provides a partial answer to a guestion

raised by J. C. Smith in [15] regarding the shrinkability

of weakly §B-refinable spaces. He defines property S* to

mean that every minimal open cover is shrinkable to a

linearly closure-preserving closed collection. Then any

T. weakly §0-refinable (or 86-refinable) space that

1

satisfies property S* is shrinkable.
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