TOPOLOGY PROCEEDINGS

Volume 9, 1984

Pages 353-355

http://topology.auburn.edu/tp/

A NEW PROOF OF A MARTIN'S METRIZATION THEOREM

by Salvador Romaguera

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NEW PROOF OF A MARTIN'S METRIZATION THEOREM

Salvador Romaguera

In [4] H. W. Martin obtains several weak base metrization theorems which generalize well-known theorems belonging to Frink, Nagata, Ceder-Nagata, Morita, Jones, Stone and Arhangel'skii. However, the generalization of the Ceder-Nagata theorem [4, Theorem 2.4] admits an easy proof.

We assume throughout the paper that all topological spaces are \mathbf{T}_1 . Also, we let N denote the set of all positive integers.

Let X be a topological space, and for each $x \in X$ let β_{x} be a collection of subsets of X which is closed under finite intersections such that each element of β_{x} contains x. The collection $\beta = \{\beta_{x} \colon x \in X\}$ is called a weak base for X [1] if the following condition holds: a subset V of X is open if and only if for each $x \in V$, there is some $B_{x} \in \beta_{x}$ such that $B_{x} \subset V$.

The proof of the following result is a generalization of a technique of Hodel [3, Theorem 2.1].

Lemma. Let X be a topological space and let $\beta = \{\beta_{\mathbf{x}} \colon \mathbf{x} \in \mathbf{X}\} \text{ be a weak base for X such that:}$

- (i) For each $x \in X$ $\beta_x = \{B_n(x) : n = 1, 2, \cdots\}$ and $B_{n+1}(x) \subset B_n(x)$.
- (ii) For each $x \in X$ and each $n \in N$ there is an $m = m(n,x) \ge n \text{ satisfying: } y \in B_m(x) \text{ implies } B_m(y) \subset B_n(x).$

354 Romaguera

Then $\{int B_n(x): n = 1, 2, \cdots \}$ is a neighbourhood basis of x.

Proof. Let $x \in X$, $n \in N$ and $g_n(x) = int B_n(x)$. Let $V = \{ y \in X \colon B_{j_y}(y) \subset B_n(x) \text{ for some } j_y \}.$

It is clear that $x \in V \subset B_n(x)$, and so it remains to show that V is open. Suppose it is not. Then there is an $y \in V$ and a sequence $\{x_k \colon k = 1, 2, \cdots\} \subset X$ such that $x_k \in B_k(y) - V$ for $k = 1, 2, \cdots$; consequently, $B_k(x_k) \not\subset B_n(x)$ and there is a $q_k \in B_k(x_k) - B_n(x)$ for $k = 1, 2, \cdots$.

Since $y \in V$ there is a $B_j(y) \subset B_n(x)$. For k = j+1 we deduce, by (ii), that $B_m(x_m) \subset B_{j+1}(y)$ for some $m \ge j+1$, therefore $q_m \in B_{j+1}(y) \subset B_j(y) \subset B_n(x)$, a contradiction.

Theorem (Martin [4]). A necessary and sufficient condition that a space X be metrizable is that X have a sequence $\{G_n\colon n=1,2,\cdots\}$ of closure-preserving covers which satisfy the following two conditions:

- (i) Let $B_n(x) = \bigcap\{G: x \in G \in G_n\}$; then $\beta = \{\beta_x: x \in X\}$ where $\beta_x = \{B_n(x): n = 1, 2, \cdots\}$, is a weak base for X.
- (ii) For each $x \in X$ there exists $H_k(x) \in G_k$ such that $x \in H_k(x)$ for all $k \in N$ and such that if $B_n(x)$ is given, then there exists an m = m(n,x) for which $cl H_m(x) \subset B_n(x)$.

Proof. It is not restriction to suppose $B_{n+1}(x) \subset B_n(x)$ for each $x \in X$ and each $n \in N$. Let $g_n(x) = \operatorname{int} B_n(x)$. If $y \in B_n(x)$ we have, by (i), $B_n(y) \subset B_n(x)$. Therefore, condition $y \in g_n(x)$ implies $g_n(y) \subset g_n(x)$ and, by lemma, X is non-archimedeanly quasi-metrizable.

Now let A = $\{A_n: n = 1, 2, \cdots\}$ with $A_n = \{(g_n(x), cl H_n(x)): x \in X\}$ for each $n \in N$. If V is a neighbourhood

of x there is, by (ii), a pair n,m such that $x \in g_m(x) \subset cl\ H_m(x) \subset B_n(x) \subset V$. Hence, A is a pair-base for X. Also, if $Y \subset X$ we have

cl
$$\cup \{g_n(x): x \in Y\} \subset cl \cup \{H_n(x): x \in Y\} = U\{cl H_n(x): x \in Y\}$$

since G_n is closure-preserving. Consequently, each A_n is cushioned and X is a stratifiable γ -space. Then, following [2, Theorem 6.1] X is metrizable. The converse is obvious.

References

- [1] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
- [2] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-263.
- [3] _____, Metrizability of topological spaces, Pacific J. Math. 55 (1974), 441-459.
- [4] H. W. Martin, Weak bases and metrization, Trans. Amer. Math. Soc. 222 (1976), 337-344.

Universidad Politécnica Valencia-22, Spain