TOPOLOGY PROCEEDINGS Volume 10, 1985 Pages 1–5

http://topology.auburn.edu/tp/

A FACTORIZATION OF THE COLLINS-ROSCOE THEOREM

by

H. R. BENNETT

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A FACTORIZATION OF THE COLLINS-ROSCOE THEOREM

H. R. Bennett

In [CR] Collins and Roscoe proved the following metrization theorem:

Theorem 1. [CR] In order that a T_1 -space be metrizable it is necessary and sufficient that, for each $x \in X$, there is a countable decreasing local neighborhood basis $\{W(i,x) |$ $i \in N\}$ (where N denotes the set of natural numbers) satisfying

(A) if $x \in U$ and U is an open set, then there exists a natural number n = n(x,U) and an open set V = V(x,U) containing x such that $x \in W(n,y) \subseteq U$ whenever $y \in V$.

In this note the Collins-Roscoe theorem is factored so one can topologically see why the result holds.

Definition 1. A countable local neighborhood basis for a space X is a collection $\mathcal{W} = \{W(i,x) | i \in N, x \in X\}$ of not necessarily open sets such that

(i) For each $i \in N$ and $x \in X$, $x \in W(i,x)^0$, and

(ii) If x is in an open set U, then there exists $n = n(x,U) \in N$ such that $W(n,x) \subseteq U$.

Definition 2. A space X is quasi-developable [Be] if there is a sequence $\mathcal{G} = \{G_1, G_2, \dots\}$ of collections of open sets such that if x is in an open set $U \subseteq X$, then there exists $n(x,U) = n \in N$ such that $st(x,G_n) \subseteq U$. The sequence \mathcal{G} is a quasi-development for X. All undefined terms and concepts are as in [E]. All spaces are T_1 -spaces.

Consider the following conditions on a countable local neighborhood bases $\mathcal{U} = \{W(i,x) | i \in N, x \in X\}$ for a space X:

A(1). Given $W(i,x)^{\circ}$ there is an open set V(i,x) containing x and a natural number $b(i,x) \ge i$ such that if $y \in V(i,x)$, then $x \in W(b(i,x),y)$,

A(2). Given $W(i,x)^{\circ}$ there is an open set V(i,x) containing x and a natural number b(i,x) such that if $y \in V(i,x)$, then $x \in W(b(i,x),y) \subset W(i,x)^{\circ}$,

A(3). For each $x \in X$ and $i \in N$, $W(i+1,x) \subset W(i,x)$.

The Michael Line [M] satisfies A(1) and A(2) but not A(3). Heath's plane [H] satisfies A(1) and A(3) but not A(2).

It is clear that if the hypothesis of the Collins-Roscoe Theorem is assumed on a countable local neighborhood base then A(2) and A(3) are satisfied. To see that A(1) is satisfied let W(i,x)^O be given. Choose j(i) to be the first natural number such that W(j(i),x)^O is properly contained in W(i,x)^O. Let V(i,x) = V(x,W(j(i),x)^O) and $b(i,x) = n(x,W(j(i),x)^O)$. If $x \in V(i,x)$, then it follows that $x \in W(b(i,x),x)^O \subseteq W(b(i,x),x) \subseteq W(j(i),x)^O$. Thus $W(b(i,x),x) \subseteq W(i,x)^O \subseteq W(i,x)$. Since the local neighborhood base is decreasing it must follow that b(i,x) > i.

Theorem 2. Let X be a T_1 -space with a countable local neighborhood basis W. Then

(i) If W satisfies A(1) and A(3), then closed subsets of X are G_k -sets,

(ii) If W satisfies A(2), then X is a quasi-developable space, and

(iii) If W satisfies A(2) and A(3) X is a collection-wise normal space.

Proof. (i) This follows immediately from Theorem 11 of [CR].

(ii) Let \mathscr{U} be a local neighborhood basis for X that satisfies A(2). Let $G_0 = \{\{x\} | \{x\} \text{ is open in X}\}$. Arbitrarily fix i \in N. For each x \in X, W(i,x)^O induces an open set $V_1(i,x)$ containing x and a natural number $b_1(i,x)$ such that if $y \in V_1(i,x)$ then x \in W($b_1(i,x), y$) \subseteq W(i,x)^O. Notice that $V_1(i,x) \subseteq$ W(i,x)^O. Choose m(i,x) \in N such that

$$\begin{split} \mathbb{W}\left(\mathsf{m}\left(\mathsf{i},\mathsf{x}\right),\mathsf{x}\right) &\subseteq \mathbb{V}_{1}\left(\mathsf{i},\mathsf{x}\right) \,\cap\, \mathbb{W}\left(\mathsf{b}_{1}\left(\mathsf{i},\mathsf{x}\right),\mathsf{x}\right)^{\mathsf{O}}. \end{split}$$
 Then $\mathbb{W}\left(\mathsf{m}\left(\mathsf{i},\mathsf{x}\right),\mathsf{x}\right)^{\mathsf{O}}$ induces an open set $\mathbb{V}_{2}\left(\mathsf{i},\mathsf{x}\right)$ containing x and a natural number $\mathsf{b}_{2}\left(\mathsf{i},\mathsf{x}\right)$ such that if $\mathsf{y} \in \mathbb{V}_{2}(\mathsf{i},\mathsf{x})$ then

 $x \in W(b_2(i,x),y) \subseteq W(m(i,x),x)^{\circ}.$

Let $G(i,j,k,l) = \{V_2(i,x) | b_1(i,x) = j, m(i,x) = k, b_2(i,x) = l\}$, and let $\mathcal{G} = \{G_0\} \cup \{G(i,j,k,l) | (i,j,k,l) \in N^4\}$.

It follows that \mathcal{G} is a quasi-development for X since if $\{x\}$ is open in X then $st(x,G_0) \subseteq U$ where U is any open set containing x. If $\{x\}$ is not open in X and $x \in U$ where U is open in X then choose i $\in N$ such that $W(i,x) \subseteq U$. Let

 $\label{eq:V2} \begin{array}{l} \mathbb{V}_2(\mathtt{i},\mathtt{z}) \ \in \ \mathsf{G}(\mathtt{i},\mathtt{b}_1(\mathtt{i},\mathtt{x}),\ \mathtt{m}(\mathtt{i},\mathtt{x}),\ \mathtt{b}_2(\mathtt{i},\mathtt{x})) \end{array}$ such that $\mathtt{x} \ \in \ \mathbb{V}_2(\mathtt{i},\mathtt{z})$. Thus $\mathtt{z} \ \in \ \mathbb{W}(\mathtt{b}_2(\mathtt{i},\mathtt{z}),\mathtt{x})$ and since $\mathtt{b}_2(\mathtt{i},\mathtt{z}) = \mathtt{b}_2(\mathtt{i},\mathtt{x}),$ it follows that

 $x \in W(b_{2}(i,x),x) \subseteq W(m(i,x),x)^{\circ} \subseteq V_{1}(i,x).$ Hence $x \in W(b_{1}(i,x),z) \subseteq W(i,x)^{\circ} \subset U.$ Since

Bennett

 $V_2(i,z) \subseteq W(b_1(i,x),z) = W(b_1(i,z),z) \subseteq U$ it follows that

st(x,G(i,b₁(i,x),m(i,x),b₂(i,x)) \subseteq U and X is a quasi-developable space.

(iii) This is noted in the remark following Theorem 11 of [CR] and specifically proved in Theorem 3 of [CRRR].

Clearly imposing conditions A(1), A(2) and A(3) and a local neighborhood bases W for a T_1 -space X is equivalent to the conditions in the Collins-Roscoe theorem. This represents the factorization of the Collins-Roscoe theorem.

Proof of Theorem 1. Since X has a countable local neighborhood basis satisfying A(1), A(2) and A(3) it is a quasi-developable space having closed sets G_{δ} -sets and, thus, is developable [Be]. It is also a collection-wise normal T_1 -space and, hence, metrizable [Bi].

This factorization clearly shows the importance of the countable local neighborhood base being decreasing in the Collins-Roscoe Theorem. It also shows that a countable local neighborhood base that satisfies all the conditions of the Collins-Roscoe Theorem except being decreasing also implies a good deal of structure, i.e., quasi-developability, on the space.

References

- [Be] H. R. Bennett, On quasi-developable spaces, Gen. Top. Appl. 1 (1971), 253-262.
- [Bi] R. H. Bing, Metrization of topological spaces, Canad.J. of Math. 3 (1951), 175-186.
- [CR] P. J. Collins and A. W. Roscoe, Criteria for metrizability, Proc. Amer. Math. Soc. (to appear).

- [CRRR] _____, G. M. Reed, M. E. Rudin and A. W. Roscoe, A lattice of conditions on topological spaces, Proc. Amer. Math. Soc. 94 (1985), 487-496.
- [E] R. Engelking, General topology, Polish Scientific Publishers, Warsaw 1977.
- [H] R. W. Heath, Screenability, pointwise-paracompactness, and metrization of Moore spaces, Canad. J. Math. 16 (1964), 763-770.
- [M] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376.

Texas Tech University

Lubbock, Texas 79409