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A TOPOLOGICAL PROOF OF PAROVICENKO’S
CHARACTERIZATION OF N - N

R. Engelking!

The following properties of the remainder P = 8N - N
are well-known:

(1) P is a zero-dimensional compact space without
isolated points.

(2) Every two disjoint open Fo—sets in P have disjoint
closures (i.e., P is an F-space).

(3) Every non-empty Gé—set in P has a non-empty interior.

As shown by the four propositions below, these are in

fact properties of a larger class of remainders.

Proposition 1. For each strongly zero-dimensional

space X the remainder BX - X is zero-dimensional.

Proposition 2. For each o-compact space X the remainder

BX - X has no isolated points.

Proposition 3. ([GH]) . For each locally compact

o-compact space X the remainder BX - X 18 an F-gpace.

Proposition 4. ([FG]). For each locally compact
realcompact space X every non-empty Gg-set in BX - X has a

non-empty interior.

We shall call a space P a Paroviéenko space, if P

has properties (1)-(3). Since every infinite compact

lThis paper has been written while the author was visit-
ing Miami University (Oxford, Ohio).
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F-space contains a copy of BN ([GJ], 14N.5), every
Parovidenko space has weight > c.
In his 1963 paper [P] Paroviéenko established the

following two theorems:

First Paroviéenko Theorem. Every compact space of

weight < Nl 18 a continuous image of BN - N.

Second Parovidenko Theorem. The Continuum Hypothesis
implies that every Parovi&enko space of weight ¢ is homeo-

morphic to BN - N.

The original proofs were in Boolean algebraic language,
and no topological proofs were available until 1980, when
BYaszczyk and SzymafAski presented in [BS] a proof of the
First Parovi&enko Theorem using the inverse systems tech-
nique. Developing their ideas, we shall present here a
topological proof of the Second Parovidéenko Theorem. Our
terminology and notations follow [E].

We start with two characterizations of Parovidenko

spaces:

Lemma. For every compact space P the following condi-
tions are equivalent.

(i) P is a Paroviéenko space.

(ii) For every continuous mapping £ of P onto a compact
metrizable space X and every pair Fl,F2 of closed subsets
UF, = X there exists an open-and-closed

1 2
set U c P such that £(U) = F

of X such that F
1 and £(p - U) = Fz.
(iii) For every continuous mapping £ of P onto a compact

metrizable space X and every continuous mapping g of a
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compact metrizable space Y onto X there exists a continuous

mapping h of P onto Y such that gh = f.

Let us precede the proof of our Lemma by brief comments
on conditions (ii) and (iii). Condition (iii) first appeared
in [N], where it was proved under CH that BN - N satisfies
(iii) and that (iii) topologically characterizes BN - N
in the class of all compact spaces of weight Nl (as a matter
of fact, there was one more requirement in the characteriza-
tion of BN - N given in [N], viz. that every non-empty com-
pact metric space M is a continuous image of BN - N, but
this follows directly from (iii) by letting X = {0} and
Y = M). Condition (ii) was introduced in [BS], where it
was proved that (i) and (ii) are equivalent for every compact
space P and that (iii) implies (ii) (in that paper (iii) is
misstated: the requirement that h(P) = Y is missing and

without this requirement one cannot show in the proof of

the implication (iii) = (ii) that £(U) = Fl and
f(p - U) = F2).

Proof of the Lemma. It remains to prove that (ii)
implies (iii). Since every compact metrizable space Y is

3
a continuous image of the Cantor set D 0 (see [E], Problem

4.5.9(b)), it suffices to prove (iii) under the additional
N
assumption that Y = D 0 _ H§=1Di’ where Di =D = {0,1} for

i=1,2,+++., For every finite sequence il,iz,---,ik of

zeros and ones the set F,

SEURTRE Fgadg i) x

= D
i=k+1"i

define inductively open-and-closed subsets U, . ., of P
Tty

Il is open-and-closed in D 0. Applying (ii) we can

such that
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£(U, ) = g(F,

lllzoiolk llznnnlk
U, . . nu, . . =g,
Iglpeerip 40 Bpdyeerip 1
u. . . TR . = U, . .,
iydpeneip 40 ipdgeneip S b R ' |
U0 n Ul = @ and U0 U Ul = P.

For each x € P there is exactly one infinite sequence

il,iz,--- such that x ¢ Ui i eeei for k =1,2,.-+, and
172 k

. : . el
the corresponding intersection n

U .
k=1 1112---1k

consists of

a single point, so that by letting

m_ F. . . for x € nm_ u. . .

k=1 i1, i k=1 il ey

. . Ro .

we define a mapping h: P -+ D . Since the sets F, ,F., . ,

i iji

R 1 172

are closed in the compact space D 0 and form a decreasing

).

h(x) =n

(o] Qo
sequence, we have g(n 1Fs s ) = n__,9(F. . e
k=1 i i, i, k=1 i1, i

) = ny_,9(F, . L) =
k=1 igdyeeedy
f. One easily

o0

so that f(x) € nk=l

£U; 5 .4
1t k
g(nk=lFi i "'ik) = g(h(x)), and thus gh =

172
checks that
h-l(Fi foeeei ) = UG Ly d
172 k 172 k R
the family of all the sets F. . . being a base for D 0
112"k

R
this implies that h is continuous and maps P onto D 0.

Proof of the Second Parovidenko Theorem. It suffices

to prove that any Parovicdenko spaces P, X of weight Nl are

R
homeomorphic. Since X is embeddable in I l, one can

assume that X = lim{X , ﬁa,
“ a B

a < ml}, where Xa are compact

metrizable spaces, projections Ty X - Xa are mappings onto,

and for each limit number X < wy we have lim Xa’ ng,
+

= Xx (see [E], Proposition 2.5.6). Let {Va’ a € A}, where

’

o < A}
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A is the set of all non-limit countable ordinal numbers, be
a base for the space P consisting of open-and-closed sets
with Vl = P,

Applying transfinite induction we shall define for
each a < wy @ countable ordinal number ¢ (a) > a and a con-
tinuous mapping fa of P onto X¢(a) such that

(1) ¢(B) < ¢(a) and n¢(a)f = f for 8 < o and

$(B) o 8
(2) £,(v)) n £ (P -V) =¢ if a € A.
Let ¢ (1) = 1 and fl be an arbitrary continuous mapping of P
onto X,; conditions (l) and (2) are satisfied for o = 1.

Assume that ¢ (a) and fa are defined for a < y and satisfy
conditions (1) and (2).

If vy is a limit number, we define ¢ (y) = sup{¢(a):
a < vy} and fY = lim{fa, @ < y}. Condition (l) is satisfied
for o« = y and, by Corollary 3.1.16 in [E], fY maps P onto
lim{x¢(a): a < y} = X¢(Y).

If y = ¢ + 1, the ordinal number ¢(8) and the mapping

fé are already defined, and the sets fé(vY)' fé(P - VY) are

closed and cover the space X¢(6)’ Since X is a Parovidenko
space, there exists by (ii) an open-and-closed set U < X
such that
= £ _(V X -U) =£f (P -V_).
ﬂ¢(d)(U) s ¢ Y) and ﬂ¢(d)( ) 6( Y)

The limit of an inverse system of non-empty compact
spaces being non-empty, there exists a countable ordinal
number ¢ (y), larger than both y and ¢(8), such that

() n -~ U) = g. Now, since everynon-empty

o (v) o(y) &

open-and-closed subspace of a Parovifenko space is a Parovi-

¢enko space, there exist by (iii) continuous mappings
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Mo (v) (0 "oy X -0
f' fll
Y ¢ (y) Y % (y)
T (8) "o (8)
———————————————— - ——————— -
VY . fé(vy) P VY . fG(P VY)
8 8
f; of VY onto ﬂ¢( )(U) and f; of P—VY onto W¢(Y)(X - U)
such that
ﬂ¢(Y)f'(X) = f (x) for x € V. and
$(8) 7y S Y
o (y) cu -
W¢(6)f (x) = fé(x) for x € P - VY
By letting

f'(x), iIf x €V
£ (x) = { Y Y
Y f"(x), if x € P -V
Y Y
we define a continuous mapping fY of P onto X¢(Y) such that
(1) and (2) are satisfied for o = vy.
The limit mapping f = lim{fa, o < wl} maps P onto

lim{x yr @ < wl} = X. To show that f is a homeomorphism,

¢ (a
it suffices to observe that by (2) f is a one-to-one mapping.
Let us add that a proof of the First Paroviéenko Theorem,
in principle identical with the one given in [BS], can be
obtained by obvious simplifications in the above proof. It
should be also added that, as established in [DM], the
assumption that every Parovilenko space of weight c is
homeomorphic to the remainder BN - N implies the Continuum
Hypothesis.
I am most grateful to Professor Roman Pol who suggested

a simplication of my original proof.
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