TOPOLOGY PROCEEDINGS Volume 10, 1985

Pages 47–53

http://topology.auburn.edu/tp/

A TOPOLOGICAL PROOF OF PAROVIČENKO'S CHARACTERIZATION OF $\beta \mathbf{N} \setminus \mathbf{N}$

by R. Engelking

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A TOPOLOGICAL PROOF OF PAROVIČENKO'S CHARACTERIZATION OF β N - N

R. Engelking¹

The following properties of the remainder P = βN - N are well-known:

 P is a zero-dimensional compact space without isolated points.

(2) Every two disjoint open F_{σ} -sets in P have disjoint closures (i.e., P is an F-space).

(3) Every non-empty $G_{\delta}^{}$ -set in P has a non-empty interior.

As shown by the four propositions below, these are in fact properties of a larger class of remainders.

Proposition 1. For each strongly zero-dimensional space X the remainder βX - X is zero-dimensional.

Proposition 2. For each $\sigma\text{-compact}$ space X the remainder βX - X has no isolated points.

Proposition 3. ([GH]). For each locally compact σ -compact space X the remainder βX – X is an F-space.

Proposition 4. ([FG]). For each locally compact realcompact space X every non-empty G_{δ} -set in $\beta X - X$ has a non-empty interior.

We shall call a space P a *Parovičenko space*, if P has properties (1)-(3). Since every infinite compact

¹This paper has been written while the author was visiting Miami University (Oxford, Ohio).

F-space contains a copy of βN ([GJ], 14N.5), every Parovičenko space has weight > c.

In his 1963 paper [P] Parovičenko established the following two theorems:

First Parovičenko Theorem. Every compact space of weight $< \aleph_1$ is a continuous image of $\beta N - N$.

Second Parovičenko Theorem. The Continuum Hypothesis implies that every Parovičenko space of weight c is homeomorphic to βN - N.

The original proofs were in Boolean algebraic language, and no topological proofs were available until 1980, when BJaszczyk and Szymański presented in [BS] a proof of the First Parovičenko Theorem using the inverse systems technique. Developing their ideas, we shall present here a topological proof of the Second Parovičenko Theorem. Our terminology and notations follow [E].

We start with two characterizations of Parovičenko spaces:

Lemma. For every compact space P the following conditions are equivalent.

(i) P is a Parovičenko space.

(ii) For every continuous mapping f of P onto a compact metrizable space X and every pair F_1, F_2 of closed subsets of X such that $F_1 \cup F_2 = X$ there exists an open-and-closed set $U \subset P$ such that $f(U) = F_1$ and $f(P - U) = F_2$.

(iii) For every continuous mapping f of P onto a compact metrizable space X and every continuous mapping g of a

48

compact metrizable space Y onto X there exists a continuous mapping h of P onto Y such that gh = f.

Let us precede the proof of our Lemma by brief comments on conditions (ii) and (iii). Condition (iii) first appeared in [N], where it was proved under CH that βN - N satisfies (iii) and that (iii) topologically characterizes $\beta N - N$ in the class of all compact spaces of weight \aleph_1 (as a matter of fact, there was one more requirement in the characterization of βN - N given in [N], viz. that every non-empty compact metric space M is a continuous image of βN - N, but this follows directly from (iii) by letting $X = \{0\}$ and Y = M). Condition (ii) was introduced in [BS], where it was proved that (i) and (ii) are equivalent for every compact space P and that (iii) implies (ii) (in that paper (iii) is misstated: the requirement that h(P) = Y is missing and without this requirement one cannot show in the proof of the implication (iii) \Rightarrow (ii) that $f(U) = F_1$ and $f(P - U) = F_{2}).$

Proof of the Lemma. It remains to prove that (ii) implies (iii). Since every compact metrizable space Y is a continuous image of the Cantor set D^{\aleph_0} (see [E], Problem 4.5.9(b)), it suffices to prove (iii) under the additional assumption that $Y = D^{\aleph_0} = \prod_{i=1}^{\infty} D_i$, where $D_i = D = \{0,1\}$ for $i = 1, 2, \cdots$. For every finite sequence i_1, i_2, \cdots, i_k of zeros and ones the set $F_{i_1 i_2} \cdots i_k = \{(i_1, i_2, \cdots, i_k)\} \times \prod_{i=k+1}^{\infty} D_i$ is open-and-closed in D^{\aleph_0} . Applying (ii) we can define inductively open-and-closed subsets $U_{i_1 i_2} \cdots i_k$ of P such that

$$f(U_{i_{1}i_{2}\cdots i_{k}}) = g(F_{i_{1}i_{2}\cdots i_{k}}),$$

$$U_{i_{1}i_{2}\cdots i_{k-1}0} \cap U_{i_{1}i_{2}\cdots i_{k-1}1} = \emptyset,$$

$$U_{i_{1}i_{2}\cdots i_{k-1}0} \cup U_{i_{1}i_{2}\cdots i_{k-1}1} = U_{i_{1}i_{2}\cdots i_{k-1}},$$

$$U_{0} \cap U_{1} = \emptyset \text{ and } U_{0} \cup U_{1} = P.$$

For each $x \in P$ there is exactly one infinite sequence i_1, i_2, \cdots such that $x \in U_{i_1 i_2 \cdots i_k}$ for $k = 1, 2, \cdots$, and the corresponding intersection $\bigcap_{k=1}^{\infty} F_{i_1 i_2 \cdots i_k}$ consists of a single point, so that by letting

$$h(x) = \bigcap_{k=1}^{\infty} F_{i_1 i_2} \cdots i_k \text{ for } x \in \bigcap_{k=1}^{\infty} U_{i_1 i_2} \cdots i_k$$

we define a mapping h: $P \rightarrow D^{\aleph_0}$. Since the sets $F_{i_1}, F_{i_1 i_2}, \cdots$ are closed in the compact space D^{\aleph_0} and form a decreasing sequence, we have $g(\bigcap_{k=1}^{\infty} F_{i_1 i_2} \cdots i_k) = \bigcap_{k=1}^{\infty} g(F_{i_1 i_2} \cdots i_k)$, so that $f(x) \in \bigcap_{k=1}^{\infty} f(\bigcup_{i_1 i_2} \cdots i_k) = \bigcap_{k=1}^{\infty} g(F_{i_1 i_2} \cdots i_k) =$ $g(\bigcap_{k=1}^{\infty} F_{i_1 i_2} \cdots i_k) = g(h(x))$, and thus gh = f. One easily checks that

 $h^{-1}(F_{i_1i_2\cdots i_k}) = U_{i_1i_2\cdots i_k};$

the family of all the sets $F_{i_1i_2\cdots i_k}$ being a base for D^{\aleph_0} , this implies that h is continuous and maps P onto D^{\aleph_0} .

Proof of the Second Parovičenko Theorem. It suffices to prove that any Parovičenko spaces P, X of weight \aleph_1 are homeomorphic. Since X is embeddable in I^{\aleph_1} , one can assume that $X = \lim_{\leftarrow} \{X_{\alpha}, \pi^{\alpha}_{\beta}, \alpha < \omega_1\}$, where X_{α} are compact metrizable spaces, projections $\pi_{\alpha} : X \rightarrow X_{\alpha}$ are mappings onto, and for each limit number $\lambda < \omega_1$ we have $\lim_{\leftarrow} X_{\alpha}, \pi^{\alpha}_{\beta}, \alpha < \lambda\}$ = X_{λ} (see [E], Proposition 2.5.6). Let $\{V_{\alpha}, \alpha \in A\}$, where A is the set of all non-limit countable ordinal numbers, be a base for the space P consisting of open-and-closed sets with $V_1 = P$.

Applying transfinite induction we shall define for each $\alpha < \omega_1$ a countable ordinal number $\phi(\alpha) \ge \alpha$ and a continuous mapping f_{α} of P onto $X_{\phi(\alpha)}$ such that

(1) $\phi(\beta) < \phi(\alpha)$ and $\pi^{\phi(\alpha)}_{\phi(\beta)} f_{\alpha} = f_{\beta}$ for $\beta < \alpha$ and (2) $f_{\alpha}(V_{\alpha}) \cap f_{\alpha}(P - V_{\alpha}) = \phi$ if $\alpha \in A$.

Let $\phi(1) = 1$ and f_1 be an arbitrary continuous mapping of P onto X_1 ; conditions (1) and (2) are satisfied for $\alpha = 1$. Assume that $\phi(\alpha)$ and f_{α} are defined for $\alpha < \gamma$ and satisfy conditions (1) and (2).

If γ is a limit number, we define $\phi(\gamma) = \sup\{\phi(\alpha): \alpha < \gamma\}$ and $f_{\gamma} = \lim_{\epsilon \to 1} \{f_{\alpha}, \alpha < \gamma\}$. Condition (1) is satisfied for $\alpha = \gamma$ and, by Corollary 3.1.16 in [E], f_{γ} maps P onto $\lim_{\epsilon \to 1} \{X_{\phi}(\alpha): \alpha < \gamma\} = X_{\phi}(\gamma)$.

If $\gamma = \delta + 1$, the ordinal number $\phi(\delta)$ and the mapping f_{δ} are already defined, and the sets $f_{\delta}(V_{\gamma})$, $f_{\delta}(P - V_{\gamma})$ are closed and cover the space $X_{\phi(\delta)}$. Since X is a Parovičenko space, there exists by (ii) an open-and-closed set $U \subset X$ such that

 $\pi_{\phi(\delta)}(U) = f_{\delta}(V_{\gamma}) \text{ and } \pi_{\phi(\delta)}(X - U) = f_{\delta}(P - V_{\gamma}).$

The limit of an inverse system of non-empty compact spaces being non-empty, there exists a countable ordinal number $\phi(\gamma)$, larger than both γ and $\phi(\delta)$, such that $\pi_{\phi(\gamma)}(U) \cap \pi_{\phi(\gamma)}(X - U) = \emptyset$. Now, since every non-empty open-and-closed subspace of a Parovičenko space is a Parovičenko space, there exist by (iii) continuous mappings

 f_{γ}^{*} of V_{γ} onto $\pi_{\varphi(\gamma)}^{-}(U)$ and f_{γ}^{*} of $P-V_{\gamma}^{-}$ onto $\pi_{\varphi(\gamma)}^{-}(X-U)$ such that

 $\pi_{\varphi(\delta)}^{\varphi(\gamma)} f_{\gamma}^{*}(x) = f_{\delta}(x) \text{ for } x \in V_{\gamma} \text{ and}$

 $\pi_{\varphi(\delta)}^{\varphi(\gamma)}f_{\gamma}^{"}(x) = f_{\delta}(x) \text{ for } x \in P - V_{\gamma}.$

By letting

$$f_{\gamma}(x) = \begin{cases} f_{\gamma}'(x), & \text{if } x \in V_{\gamma} \\ f_{\gamma}''(x), & \text{if } x \in P - V_{\gamma} \end{cases}$$

we define a continuous mapping f_{γ} of P onto $X_{\phi(\gamma)}$ such that (1) and (2) are satisfied for $\alpha = \gamma$.

The limit mapping $f = \lim_{\alpha} \{f_{\alpha}, \alpha < \omega_{1}\}$ maps P onto $\lim_{\alpha} \{X_{\phi(\alpha)}, \alpha < \omega_{1}\} = X$. To show that f is a homeomorphism, it suffices to observe that by (2) f is a one-to-one mapping.

Let us add that a proof of the First Parovičenko Theorem, in principle identical with the one given in [BS], can be obtained by obvious simplifications in the above proof. It should be also added that, as established in [DM], the assumption that every Parovičenko space of weight c is homeomorphic to the remainder $\beta N - N$ implies the Continuum Hypothesis.

I am most grateful to Professor Roman Pol who suggested a simplication of my original proof.

References

- [BS] A. B¥aszczyk and A. Szymański, Concerning Parovičenko's Theorem, Bull. Acad. Pol. Sci. Sér. Sci. Math. 28 (1980), 311-314.
- [DM] E. K. van Douwen and J. van Mill, Parovičenko's characterization of βω - ω implies CH, Proc. Amer. Math. Soc. 72 (1978), 539-541.
- [E] R. Engelking, General topology, Warszawa, 1977.
- [FG] N. J. Fine and L. Gillman, Extensions of continuous functions in BN, Bull. Amer. Math. Soc. 66 (1960), 376-381.
- [GH] L. Gillman and M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391.
- [GJ] L. Gillman and M. Jerison, Rings of continuous functions, New York, 1960.
- [N] S. Negrepontis, The Stone space of the saturated Boolean algebras, Trans. Amer. Math. Soc. 141 (1969), 515-527.
- [P] I. I. Parovičenko, A universal bicompactum of weight ℵ, Soviet Math. Dokl. 4 (1963), 592-595.

Institute of Mathematics

University of Warsaw

00-901 Warsaw, PKiN, Poland