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INFINITE-DIMENSIONAL DIMENSION THEORY 

Dennis J. Garity and Richard M. Schori 

1.	 Introduction 

In this paper we will include a brief historical 

account of the dimension theory of infinite-dimensional 

spaces especially as it was motivated by the Cell-Like 

Dimension Raising Mapping Problem (see [S]). We will 

construct the important example of R. Pol {P] and discuss 

why it indicates that the current "theory" is inadequate. 

We will introduce a new concept of dimension and will review 

an alternate definition of dimension given by Vainstein 

[V]. We will compare these and discuss how they correct 

for the problem in the current theory. Finally, several 

authors of current papers in this field, including Pol, have 

referred to a result implying that certain totally discon­

nected spaces can be chosen in such a way that they are 

Go-spaces. The references have been very obscure and 

consequently we conclude this paper with a proof that each 

map between compact metric spaces has a Go-section. 

2. Background 

The study of dimension theory discussed in this paper 

is motivated by the study of cell-like maps. R. H. Bing 

did much of the initial work with decompositions of R3 into 

cell-like sets. For these decompositions the quotient map 

is a cell-like map; a sample reference is [Bl]. The cell ­

like notions were introduced by Lacher in 1968 [La]; by a 
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cell-like map we mean a proper map where each point inverse 

has the shape of a point. In the work on cell-like maps 

since then, a standard assumption has been that the dimen­

sion of the range space is finite. It is still not known 

if a cell-like map on a finite-dimensional compactum can 

raise the dimension. This question has become known as 

the Cell-Like Diemnsion Raising Mapping Problem and is 

discussed at length in [S]. 

The real motivation for the research being discussed 

in this paper, assuming an interest in cell-like maps, carne 

from the paper of George Kozlowski [K]. He proved many 

things about fine homotopy equivalences and reminded us of 

the earlier results from cohomology theory that if a cell­

like map raises the dimension then it is raised to infinity 

and that any space containing subspaces of arbitrarily high 

finite dimension cannot be the image of a cell-like dimen­

sion raising map. This was the motivation for the authors 

of [RS~] to take a new look at the very interesting example 

of D. Henderson [H]. The assumption was that Henderson's 

example carne the closest of anything in the literature to 

having the properties required of the image of a cell-like 

dimension raising map. 

Henderson's example [H] in 1967 was the first infinite­

dimensional cornpactum that contained no n-dimensional 

(n > 1) closed subsets. This answered an old problem that 

Tumarkin was credited with asking in 1926 (see [H]) and 

that first appeared in print in 1933 by Mazurkiewicz [M]. 

R. H. Bing studied the long and difficult paper of (his 
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student) Henderson and in [B2] he published a simpler version. 

In 1971, Zarelua [Zl] gave an even simpler construction of a 

Henderson-type example and in 1974 [Z2] he constructed 

another example such that each non-degenerate subcontinuum 

was strongly infinite-dimensional. 

In 1979, Rubin, Schori, and Walsh [RSW] developed a 

unified theory of dimension using essential families and 

continuum-wise separators for efficient construction of 

such examples. The same techniques also provided very 

easy constructions of n-dimensional and strongly infinite­

dimensional totally disconnected spaces. Pol used the 
i

latter of these in his construct:ion, as mentioned above. 

The techniques for constructing the Henderson-type examples 

were further refined in [SW] and in [S] and then Walsh [Wl] 

made a major breakthrough with the first construction of a 

compactum containing no n-dimensional subsets of any kind 

(n ~ 1). This result closed off any hope of a quick nega­

tive solution to the dimension-raising problem. 

Rubin in [RUl] and [Ru2] generalized Walsh's result in 

[WI] to obtain examples of hereditarily strongly infinite­

dimensional compacta. In another direction, Walsh {W2], 

Bowers [Bo], and Rubin [Ru3], IRu4] computed the cohomologi­

cal dimension of most of the known hereditarily strongly 

infinite-dimensional examples to be infinity. The hope of 

course was to find an example with finite cohomological 

dimension since it was also well understood from Vietoris's 

theorems that the cohomological dimension of the image of a 

cell-like dimension raising map had to be finite. In fact, 
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R. D. Edwards proved and Walsh [W3] wrote up the beautiful 

result that there exists a compactum of infinite dimension 

and finite cohomological dimension iff there exists a cell-

like map of a compactum of finite dimension onto a compactum 

of infinite dimension. This showed that two well-known old 

problems in dimension theory were equivalent. 

3. Pol's Example 
 
In this section we will present R. Pol's example [P] 

and discuss why it struck a shattering blow to the current 

theory of infinite dimensions. By space we will mean metric 

space. First, an n-family for a space X is a collection 

C = {(Ai,B ): i = l, •• ·,n} of n pairs of disjoint closed
i 

sets in X. In this definition we allow n to be a positive 

integer or w. The collection C is essential if whenever a 

closed set Si separates Ai and B i = l,··.,n, theni , 

nS ~~. A space is n-dimensionaZ if it has an essentiali 

n-family and does not have an essential (n + I)-family 

(see [RSW]). A space is infinite-dimensional if it is 

n dimensional for any positive integer n. A space is 

strongly infinite-dimensional (SID) if it has an essential 

w-family and an infinite-dimensional space is weakly 

infinite-dimensionaZ (WID) if it is not strongly infinite-

dimensional. Finally, a space is countable infinite-

dimensional (CID) if it is infinite-dimensional and the 

countable union of O-dimensional spaces. 

An example of a SID space is the Hilbert cube 

Q = n~ II., where each I. is the closed unit interval.
1= 1 1 

An essential w-family for Q is {(Ai,Bi ): i > l} where 
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-1 -1
Ai = TI (0) and B = TI i (1) for the projection map TIi: Q + Ii.i i 

An example of a CID space is the disjoint union of n-cells, 

n = 1,2,···. 

It is well known that a SID space is not CID, i.e. CID 

implies vvID, but it was an old problem of Alexandrov's as 

to whether WID implies CID. Pol's example provides a 

counterexample. In particular, Pol constructed a compact 

metric WID space X = Y U R where Y is SID and R is CID. 

The shattering blow to the general theory is that weak 

infinite dimensionality is not hereditary, i.e. X contains 

a subspace Y that is SID. More specifically, Y is a totally 

disconnected, SID, Go-space. Pol correctly stated that the 

existence of a SID totally disconnected space is implicit 

in section 4 of [RSW] and that" as remarked in the introduc­

tion, it can be chosen to be a Go-subset of Q. We will now 

explicitly do these constructions. A section for a map 

f: X + Y is any subset SeX which intersects every non­

empty f-l(y) in exactly one point. The following result 

follows from [RSW]. 

Lemma. If Y is a subset of the HiZbert cube Q such 

that Y intersects each continuum in Q from Al to B then
l

, 

Y is SID. 

Theorem 1. There exists a SID totaZZy disconnected 

Go-subset of Q. 

Proof. Let ~ c II be a Cantor set and let S be the 

collection of all continua in Q meeting Al and B • The setl 

S with the Hausdorff metric is a compact metric space ana 
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hence we can take a continuous surjection a: ~ + S. Letting 

-1
M = U{TI I (t) n a(t): t E ~}, the compactness of ~ and the 

continuity of a imply that M is compact and aIM is a con­

tinuous function from M onto~. Hence we can apply Theorem 

3 to obtain a Go-section Y. Thus TIllY is a 1-1 surjection 

onto the Cantor set ~ and thus Y is totally disconnected. 

Furthermore, Y is SIn by the Lemma since it intersects 

each continuum from Al to B •l 

The next lemma follows directly from Corollary 3.2 of 

[Le]. For completeness, we include an alternate proof 

based on infinite dimensional topology. We thank the referee 

for this suggestion. 

Lemma. Every separabZe metric space that is an absoZute 

Go can be compactified with a CIn remainder. 

Proof. Let X be any complete separable metric space. 

Then X can be embedded as a closed subset of separable 

infinite-dimensional Hilbert space. To see this, embed X 

in the Hilbert cube Q c 1 2 • Then remove X \ X (which is 

a-compact) from 1 2 • The result is homeomorphic to 1 2 and 

X is a closed subset of this space. Now consider 1 2 to be 

the complement of a CIn fd-cap set in Q. This err~eds X in 

Q in such a way that X \ X is a subset of the CID fd-cap 

set. This is the required compactification of X. 

PoZ's ExampZe. There exists a WIn compactum X that is 

not CIn. 
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Proof. Take the space Y as constructed in 

Theorem 1 and by the above lemma let X be a compacti­

fication of Y with a CID remainder X - Y = R. 

The space X is not CID since it contains a SID subset 

and the property of being CID is hereditary. We now prove 

that X is WID. Let { (Ai ,B ) : i > I} be a potential essen­i 

tial w-family for X. Let R = U{X i > 2} where each X.i : 
J. 

is O-dimensional and for each i > 2 let S. be a separatorJ. 

of Ai and Bi in X where Si and Xi are disjoint. It is a 

standard theorem in dimension theory that a separator can 

be chosen to miss a given O-dimensional set. Then 

S = n:=2si is a compact subset of the totally disconnected 

space Y and hence is O-dimensional. Thus, let Sl be a 

separator in X of Al and that misses S. Then n~ IS' ~BI J.= J. 

and this completes the proof that X is WID. 

Consequently we have the unfortunate situation of 

historically having three main classifications of infinite 

dimensional spaces, namely, CID, WID, and SID, where the 

WID and SID properties are not hereditary (or monotone) as 

we expect of a "dimension theory." For a discussion of the 

philosophy of dimension, see the Appendix of [HW]. 

4. Another definition for infinite dimensionality 

We present a new definition of dimension directly 

motivated by Pol's example. This definition is equivalent 

to the usual one for finite dimensions, but leads to a type 

of weak infinite dimensionality that is hereditary. In 
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fact the new concept of weak infinite dimensionality is 

equivalent to hereditarily weak infinite dimensionality in 

the usual sense. Our definition is closely tied to the 

essential family approach to dimension and clarifies the 

relationship between Pol's example and the concept of 

essential families. 

Definitions. A collection {(Ai,B ): i E J} is ai 

dimension family for X (d-family) if each pair (Ai,B )
i 

of (not necessarily closed) subsets of X is separated in X 

and if (A . U B.) n (U.EJ(A. n E.» =~. Such a d-family is 
1 1 J J J 

essential if whenever {Si: i E J} is a collection of closed 

subsets of X separating A. and B. in X, then 
1 1 niEJs i ¢ 

UiEJ(Ai n Bi ) · A space X has dimension > n with respect to -

dimension families (d-dim(X) > n) if X has an essential 
-

d-family of cardinality > n. A space X is strongly infinite-

dimensional with respect to dimension families (SID-d) if X 

has a denumerable essential d-family. Otherwise, X is 

weakZy infinite-dimensionaZ with respect to dimension fami­

lies (WID-d). 

2Example. Let X = 1 and let Y = {(x,y) E X: y is 

irrational}. Let n be the quotient map from X onto XIG 

where G is the decomposition of X into points and the sets 

I x {OJ and I x {l}. Let A = {OJ x I and B = {l} x I. Then 

{n(A n Y),n(B n Y)} is an essential family in n(Y) and is an 

essential d-family for n(X) even though it is not an essen­

tial family for n(X). 

The above example illustrates the following theorem. 
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Theorem 4. A space X has an essential d-family if 

and only if X has a subspace Y with an essential family of 

the same cardinality. 

Proof· (~) Suppose {(Ai,B ): i E J} is an essentiali 

d-family in X. Let Y = X - UiEJ(A n Bi ). Then eachi 

(K. n Y,~. n Y) is a p~ir of nonempty closed disjoint sub­
1 1 

sets of Y. Let {T. : i E J} be a collection of closed sub­
1 

sets of Y separating A. n Y and E. n Y in Y. For each i,
1 1 

choose disjoint open (in X) sets W. and Z. with K. n Y c ~Vi'1 1 1 

Bi nyc Zi' and such that if Si 

Si - UiEJ(Ai n Bi ) is contained in Ti · Since niEJs i ¢ 

u·EJ(K. n E.), we have n.EJT. ~ ~.
11111 

(~) Suppose Y is a subspace of X with an essential 

family {(Ci,D ): i E J}. It is straightforward to checki 

that {(Ci,D ): i E J} is an essential d-family for X.i 

This theorem yields the following corollaries: 

Corollary 1. dim (X) < n if and only if d-dim(X) < n. 

CorolLary 2. X is WID-d if and onLy if X is HWID. 

Consequently, even though Pol's example is WID, it is 

SID-d. 

It was recently pointed out to us that A. I. Vain-

stein [V] gave a definition of dimension in 1968 similar to 

the approach given above. Vainstein seemed to be motivated 

by the fact that weak infinite dimensionality could not be 

shown to be hereditary. (Pol's example shows that it is 

not.) It is clear that a space that is weakly infinite 
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dimensional in Vainstein's sense is hereditarily weakly 

infinite dimensional. It is not clear whether the reverse 

implication holds. For completeness, we outline Vainstein's 

apprvach. 

Definitions. Following Vainstein [V, p. 411], if A and 

B are closed subsets of a space X (A and B can intersect) , 

then a closed set C is a barrier between A and B provided 

C U (A n B) separates A - Band B - A in X. To simplify the 

statements of the following two theorems we introduce some 

terminology. A collection of pairs of closed subsets of X, 

{(Ai,B ): i E J} is called a Vainstein family, or v-family,i 

Such a v-family is essential if whenever {C : i E J} is a
i 

collection of barriers between Ai and B theni , 

niEJc i ¢ UiEJ(Ai n Bi ). 

A space X has Vainstein-dimension < n (v-dim(X) < n) if it 

has no essential v-family of cardinality ~ n + 1. A space 

X is strongly infinite-dimensional in the sense of Vainstein 

(SID-v) if it has a countable essential v-family. Otherwise, 

X is weakly infinite-dimensional in the sense of Vainstein 

(WID-v) . 

Theorem [V, p. 411] 2. dim(X) < n if and only if 

v-dim (X) < n. 

Theorem [V, p. 411] 3. If X is WID-v and Y c X, then 

Y is WID-v. 

The first theorem shows that Vainstein's dimension is 

equivalent to covering dimension for finite dimensional 
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spaces. The second shows that WID-v is hereditary whereas 

Pol's example shows WID is not. Vainstein observes that 

any WID-v space is WID. This together with the second 

theorem above shows that WID-v implies hereditarily WID 

(HWID) . 

It is natural to ask whether WID-v and HWID are the 

same. If one could show that a space X has an essential 

v-family if and only if a subspace Y had an essential 

family of the same cardinality, then WID-v and HWID would 

be equivalent. One might attempt to produce an essential 

family by starting with an essential v-family {(Ai,B ):i 

i E J} by taking {(Ai - Y,B - Y): i E J} in X - Y wherei 

Y UiEJ(Ai n Bi ). The following example shows this does 

not work. 

Example. Let X [0,1] x [0,1], Al = {OJ x [0,1], 

B {I} x [0,1], A Al U B U [0,1] x {l}, andl 2 l 

B A U B U [0,1] x {OJ. Then {(Al,B ), (A ,B )} is an2 l l l 2 2 

essential v-family for X, but the above procedure does not 

yield an essential family for a subspace of X. 

It should be clear that if {(Ai,B ): i E J} is ani 

essential d-family then {(A.,B.): i E J} is an essential 
1 1 

v-family. 

Question. Are WID-v and WID-d the same? 

5. The existence of Go sections. 

In this section we prove a theorem that was used in the 

construction of Pol's example. As stated in the Introduction 
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the following theorem has been frequently quoted in the 

current literature but since the references to it seem to 

be quite obscure we include a proof. 

Theorem 5 [Bu]. If f: X ~ Y is a map between compact 

metric spaces~ then there exists a Go-section. 

Proof. Construct a sequence {]n}n>O of finite closed 

covers of X such that 

]) me sh ] n < land 
2n 

2) for each n > 0, each F in] is equal to a union of 
n 

elements of ]n+l. 

(Before proceeding, we pause to discuss the idea of the 

proof. First, it is helpful to view a section of f: X ~ Y 

as a subset 8 of X where {f(x): x E 8} partitions Y (into 

points). We will achieve this as follows: For each of 

our closed covers J we will construct a refinement 
n 

{h (F): F E J } (in general many of the h (F) will be 
n n n 

empty) where l){f[hn(F)]: F E I } partitions Y, 2) if n 

F c F - l , (F i E J i ), then hn(F ) C hn-l(F - l ), andn n n n 

3) Sn = U{hn(F): F E ]n} is a Go. Our section will then 

be S = n00 08 .)n= n 

We now continue with the proof. Construct a function 

Pn: I +l ~ I such that for F E I , F = U{F' E I +l : n n n n 

F' E p~l(F)}. Now, for each F E I , let IF] f-l[f(F)].n 

Linearly order «) each J and for each F E J define h (F)n n n 

as follows: For F E J O' 

hO(F) = F - U{[F']: F' E JO,F' < Fl. 

Clearly, each hO(F) is a Go since each closed set in a metric 

space is one. For F E I +l , let n 



71 TOPOLOGY PROCEEDINGS Volume 10 1985 

Pn (F) , F I < F} 

CZaim. For each n > 0 and each fiber H = f-l(y) 

there exists a unique element F E I such that hn(F) meets n 

H, and we have hn(F) n H = F n H, which is therefore a 

closed set. 

. We continue the proof of the theorem assuming the Claim. 

For each integer n, let S = U{h (F) : F E J } . Then S is n n n n 

a G since it is a finite union of Gas, and we have 
a 

S c S Then S = n{Sn: n > o} is also a G set since itn+l n - a 

is the countable intersection of Gas. We shall show that 

S meets each H = f-l(y) in exactly one point. For each n, 

let Fn(H) be the unique element F E I such that hn(F)n 

meets H. Then Sn n H = Fn(H) n Hand S n H 

The sequence of closed sets {Fn(H)} is nested and the 

diameters converge to 0; and the same is true for {Fn(H) n H} 

and hence the intersection of the latter sequence, which is 

equal to S n H, is a single point. This completes the proof 

of the theorem. 

Proof of CZaim. For n = 0, consider the smallest 

(relative to the linear ordering <) element F E J O that 

meets H; then F n H does not meet any set [F I
] for which 

F I E J O and F I < F; hence it is contained in hO(F) n Hand 

consequently is equal to this set. For uniqueness, we have 

H c [F] and therefore hO(F ' ) n H ~ for F I E J O and F I > F. 

Thus the assertion is proved for n o. We continue by 
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induction on n: by the inductive hypothesis there exists 

a unique element D E 3 such that hn(D) meets H and this n 

set is contianed in D which is the union of the sets F 

for which F E Pn
-1 

(D). There is a smallest element 

F E -l(D) such that D meets H. We therefore havePn
 

F n H c D n H = hn(D) n H
 

by the	 inductive hypothesis. Hence 

F n H c F n hn(D) 

and since by definition F n H meets none of the sets [F I ] 

for which F I E p-l(D) and F I < F, it follows from the 
n 

definition that 

F n H c hn+l(F) 

but we	 clearly have h + (F) n H c F n H and hence n l 

F n H = hn+l(F) n H. Moreover, for uniqueness we have 

-1
H c [F] and therefore if F I E Pn (D) is such that F I > F , 

then hn+l(F I ) n H =~. Hence the Claim is proved for all 

n. 
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