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CONCERNING THE EXTENSION OF
CONNECTIVITY FUNCTIONS

Richard G. Gibson and Fred Roush

In his classic paper, Stallings [7] asked if a connec-
tivity function I - I could always be extended to a connec-
tivity function 12 + I when I is considered embedded in 12
as I x 0. Several authors answered this negatively by
giving examples of connectivity functions I » I which are
not almost continuous, [l], [6]. In [7] Stallings proved
that an almost continuous function I » I is a connectivity
function and, curiously enough, a connectivity function
12 > I is an almost continuous function. Later it was shown
by Kellum [4] that an almost continuous function I » I can
be extended to an almost continuous function I2 > I. This
naturally leaves the question "can an almost continuous
function I - I be extended to a connectivity function
12 > I?" Theorem 2 of this paper together with the first
example of [2] shows that this is not the case.

For simplicity no distinction will be made between

points of I x 0 and I. Also, B(y,r) denotes an open ball

about y with radius r where d is the usual distance function.

Definition 1. A function f: X » Y between spaces X
and Y is said to be almost continuous if each open set con-
taining the graph of f also contains the graph of a continu-
ous function with the same domain. The function f is said

to be a connectivity function if for each connected subset
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C of X the graph of f restricted to C, denoted by f|C, is
a connected subset of X x Y. The function f is said to be
a Darboux function if £(C) is connected whenever C is a

connected subset of X.

Definition 2. A function f: I » I has the Cantor
Intermediate Value Property (CIVP) if for any Cantor set
K in the interval (f(x),f(y)) the interval (x,y) or (y,x)
contains a Cantor set C such that f(C) < K where x,y € I =
[0,1]. The function f has the Weak Cantor Intermediate
Value Property (WCIVP) if there exists a Cantor set C

between X and y such that £(C) < (f(x),f(y)).

Theorem 1., If f: I » I has the CIVP, then f has the
WCIVP,

Proof. Obvious.

Example 1. There exists a function f: I » I that has
the WCIVP but does not have the CIVP. Let Sy, y € I, be the
collection of Cantor dense subsets of I constructed in [2].

Let r € I be fixed. Let g: I » U S where y € I be 1-1

y#r'y
and onto. Define f(x) = g(y) where x € Sy and v # r. If
X € Sr’ let f(x) = 0, If x is not in any Sy' let f(x) = 0.

Let a,b € I and assume that f(a) < f(b). Let K be a Cantor
set in (f(a),f(b)) such that K < Sy for some y # r. Choose

z € K such that r # g—l

(z) = w. Consider S . If x € S ,

W W
then f(x) = g(w) = z and f(Sw) < K. By Cantor density there
exists a Cantor set C < Sw such that C < (a,b) or C ¢ (b,a).

Therefore f£(C) <« (f(a),f(b)) and hence f has the WCIVP.
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Let K be a Cantor set in (f(a),f(b)) such that K c Sr'
Since K contains no points of the range of f, there exists
no Cantor set C ¢ I such that f(C) <« K. Therefore f does

not have the CIVP.

Theorem 2. If f: 12 + I i8 a connectivity function,

then £|I x O has the WCIVP. Moreover, the Cantor set can
be selected such that f restricted to it is continuous.

Proof. It follows that a function I2 + I is a connec-
tivity function if and only if it is peripherally continu-
ous [3]. The function f: 12 + I 1is peripherally continuous
if and only if U is an open subset of 12 containing a point
x and V is an open subset of I containing f(x), then there
is an open subset W of U containing x such that f(bd(W))
is a subset of V, where bd(W) is the boundary of W.

Assume a,b € I such that f(a) < f(b). Choose y € I
between a and b such that f(y) € (f(a),f(b)). Let
e = min{d(f(a),f(y)),d(f(y),f(b))}. Let U be a connected
open subset of 12 with connected boundary C such that
y € UcU c B(y,n/5) where n = min{d(y,a),d(y,b)}, and
f(C) « B(fly),c/5). Then there exists Ygr¥ € I which are
in C such that Yo <Y < ¥y

Y, € B(y,n/5), f(yo) € B(f(y),e/5),
y, € B(y,n/5), fly)) € B(f(y),e/5).

Clearly d(yo,y) < n/5 and d(yl,y) < n/5. Also
d(f(yo),f(y)) < ¢/5 and d(f(yl),f(y)) < g/5.

Now there exist connected open subsets U0 and Ul of

12 with connected boundaries C0 and Cl such that
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= 2
vg € Uys Uy < Blyg,ng/5), £(Cy) < B(E(y,), e/5%)
and
= 2
Yl € Ull Ul [t B(Yl,ﬂl/S), f(Cl) < B(f(Yl),€/5 )
where ng = d(yo,y) and ny = d(yl,y). So ng < n/5 and
ny < n/s.

Now C. has points Yo0'¥91 € I and C. has points

0
€ I such that

1

Y10'¥11
3 < ¥oo Yo < Yoy Y < V¥yg ¥y ¥y <P
¥o0r¥o1 € BWgrng/5)s £(ygy) 1E(ygy) € BUE(y,) ,e/5%),
¥igr¥1y € B¥yon,/5), £y o) E(y ) € B(E(y)) ,e/57).

There exists connected open subsets UOO'UOl'UlO’Ull

of 12 with connected boundaries C such that

00701710711
~ 3

€ Ugpr Tg1 © Blygpingy/5) s £(Cop) < BUE(yyy),e/5%),

01’ "01

€ Upgr Uy = Blygpinyg/5), £(Cyp

Uy1r Upy = Blygpomy /50 £(Gy)

01
) < B(f(y ) ,e/5%),

n

B(f(y;)),e/57),
where ngg = dlyggr¥g)imgy = dlygyr¥g)ingg = dlyygeyy), and
Ny = 4lyyyeyy)-

Now C00 has points Y000'Y001 €I, C01 has points
Y9107 Y011 € I, C10 has points Y100:¥101 € I, and Cll has
points Y110:Y111 € I such that a < Yo00 < Yoo < Ypo1 < Yo <

Yo10 < Yo1 < Yo11 Y < Y100 € Y19 < Y01 < Y1 < Y330 ©
Y11 < Y111 < B-

Y900 ¥po1 € BlYogrNgg/5) s Fl¥ggq) 1£(¥ggy) € BIE(ygy) e/57),
Yo10'Y011 € BWo1rMo1/5) s £(g10) i Flygyy) € BIE(yg))se/5)),
Y100/¥101 € B(W1grn10/5) s E(¥y00) E(¥yg1) € B(E(y; ) /5%,

and

. 3
yllolylll € B(Yllrﬂll/S), f(Yllo),f(Ylll) € B(f(yll)r€/5 )-
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Continuing this process let o be a finite sequence of

0's and 1's of length k.
Yoo © Yo

Bly,,n/5),

< Y1
yaO ¢

Y, € Bly . /5),

Meo = d(ya0’yu)'

9) c

a0 B(yuO'nao/S)'

k+2
f(caO) c B(f(yao),€/5

a1l = d(yul'ya)'

Ual c B(yal,nal/S), and

f(cal)

where Nyo = d(yao’yu) and Ny1 =

k+2
e B(fly ;) ,e/5"

d(y

Thus for y, we obtain

)y

)

has

X 0

ul'ya Now Ca

points Y400 Yq01 € I and cal has points Y 107Y411 € I such

that

Y00 < Yg0

< Yh01 S Yy < Yo10 Yol < Y11t

k+2
Y,00'Yq01 € B(yao,nao/S), f(Yuoo)'f(ya01) € B(f(yao),e/5 ),

k+
Yo10¥a11 € BlYo1Ma1/3) s £(¥g0) By,yy) € BUE(Y ) e/3

We now claim that if o and B
of equal length n of the form a =
is of length k < n-1, then

(l) Yu < YBI

(2) 3/4(n g*n 1) < |y, ~vgl

(3) [E(y )-F(y )| < e/2(55).

a )
By construction Y, < yB and YYO <

- + - = + .
Y1 T ¥yt Y, T ¥, =gt

Ay, iy, g) < N g (L/5)+(L/5%) +e et (1/577) <

Qlygey,g) < nyy (/504 (1/5%) 40wt (175776 <

From this it follows that (2)

2
)
are finite binary sequences

yOu and B = ylv where vy

< 5/4(nY0+nYl), and

le. Thus le - YYO =
Also
1
7 nYO and
1
4 nyl'

is true.

.



80 Gibson and Roush

k+1 k+1
Now lf(yYO)—f(yY)] < €/5 and [f(le)-f(yY)l < g/5 ,

ERBELBIE e ((1/5%)+(1/5% e cev(1/5™)), ana
[£yg)-£(y )| < e((1/5%)+(1/55 e irays™))

k+l)

2e ((1/5%)+ (/55 e o (1/5™))

A

So If(ya)—f(ys)l

< 2e(1/5%) (1/4)

= e/2(5%).

Let o (n) denote a binary sequence with n terms such
that the first n-1 terms of a(n) is a{n-l). Define
Yo = %ig Yo(n)-

Then the previous claim holds true for infinite sequences
o and B. We now prove that f(ya) = %ig f(ya(n))' Each
is

intersects C since one point of Ca(

Ca(k+1) a (k)

inside the interval formed by C

k+1)

o (k) and one point is outside.

Thus for any y of length k the union of all sets cyv is a

connected set and its image points differ from f(yY) by at

k+1

most (e/Sk)+(e/5 Ytees = 5/4(5k_l). Since f is a Darboux

function (the image of connected sets is connected),
k-1

f(UCYv) < f(UCYv) < B(f(yY),€/4(5 ).

Thus &(£(y ), £(y, p)) < e/a (5”7t

) where a(n) = y and it
follows that f(ya(n)) converges to f(ya).

Now it follows that the function defined by the assign-
ment a > Yq is a homeomorphism from a Cantor set to S = {ya}.

Thus S is a Cantor set and £(S) < (f(a),f(b)). So £|I x 0

has the WCIVP and f|S is continuous.

Ezample 2. The first example of [2] is an example of
an almost continuous function I + I which does not have the
WCIVP. For completeness that example will be described

here. There exists a subset G ¢ I which intersects every
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Cantor set in every interval (a,b) but contains no Cantor

set. Thus G N (a,b) contains c points. Let Fl = {(x,0):

x € G}. Consider the collection {K} of closed subsets of

I2 such that the x-projection of K has cardinality c. The

x-projection of any set in the collection is closed and

contains a Cantor set. Hence it contains a point of G.

Select a subset F2 [~ I2

(1) F2 intersects each member of the collection (K} and

(2) if p and g are distinct points of F

by transfinite induction such that

2 then their

x-projections are distinct points of G.

Let Fy = {(t,1): t € I but t is neither in the x-projection

of F, nor in the x-projection of Fz}.

Let f = Fl U F2 U F3. Then the x-projection of f is I and

f is the graph of a function f: I - I.

Remarks. The second example of [2] is an example of
a function I » I which has the WCIVP but is not a Darboux
function. Also, it follows that if f£: I = I is continuous

then f has the P.
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