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CONCERNING THE EXTENSION OF 

CONNECTIVITY FUN(~TIONS 

Richard G. Gibson and Fred .Roush 

In his classic paper, Stallings [7] asked if a connec­

tivity function I ~ I could always be extended to a connec­

2 2tivity function 1 ~ I when I is considered embedded in 1 

as I x O. Several authors answered this negatively by 

giving examples of connectivity functions I ~ I which are 

not almost continuous, [1], [6].. In [7] Stallings proVed 

that an almost continuous function I ~ I is a connectivity 

function and, curiously enough, a connectivity function 

21 ~ I is an almost continuous function. Later it was shown 

by Kellum [4] that an almost continuous function I ~ I can 

2be extended to an almost continuous function 1 ~ I. This 

naturally leaves the question "can an almost continuous 

function I ~ I be extended to a connectivity function 

1 2 ~ I?" Theorem 2 of this paper together with the first 

example of [2] shows that this is not the case. 

For simplicity no distinction will be made between 

points of I x 0 and I. Also, B(y,r) denotes an open ball 

about y with radius r where d is the usual distance function. 

Definition 1. A function f: X ~ Y between spaces X 

and Y is said to be almost continuous if each open set con­

taining the qraph of f also contains the graph of a continu­

ous function with the same domain. The function f is said 

to be a connectivity function if for each connected subset 
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C of X the graph of f restricted to C, denoted by flC, is 

a connected subset of X x Y. The function fis said to be 

a Darboux function if f(C) is connected whenever C is a 

connected subset of X. 

Definition 2. A function f: I ~ I has the Cantor 

Intermediate Value Property (CIVP) if for any Cantor set 

K in the interval (f(x) ,f(y)) the interval (x,y) or (y,x) 

contains a Cantor set C such that f(C) c K where x,y E I 

[0,1]. The function f has the Weak Cantor Intermediate 

Value Property (WCIVP) if there exists a Cantor set C 

between x and y such that f(C) c (f(x) ,f(y}). 

Theorem 1. If f: I ~ I has the CIVP, then f has the 

WCIVP. 

Proof. Obvious. 

Example 1. There exists a function f: I ~ I that has 

the WCIVP but does not have the CIVP. Let S , Y E I, be the y 

collection of Cantor dense subsets of I constructed in [2]. 

Let r E I be fixed. Let g: I ~ U "I S where y E I be 1-1 y r y 

and onto. Define f(x) g(y) where x E S and y "I r. If y 

x let f(x) = o. If x is not in any let f(x) = o.E Sr' Sy' 

Let a,b E I and assume that f(a) < f(b) • Let K be a Cantor 

set in (f(a),f(b)) such that K c S for some y ~ r. Choose 
y 

z E K such that r "I g-l(z) = w. Consider Sw. If x E Sw' 

then f(x) = g(w) = z and f(Sw) c K. By Cantor density there 

exists a Cantor set C c Sw such that C c (a,b) or C c (b,a). 

Therefore f(C) c (f(a) ,f(b)) and hence f has the WCIVP. 
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Let K be a Cantor set in (f(a),f(b)) such that K C Sr. 

Since K contains no points of the range of f, there exists 

no Cantor set C c I such that f{C) c K. Therefore f does 

not have the CIVP. 

2. .. f .Theorem.2 Iff : I ~ I ~8 a connect~v~ty unct~on, 

then f II x 0 has the WCIVP. M01)eOVer, the Cantor set can 

be selected such that f restricted to it is continuous. 

2Proof. It follows that a function 1 ~ I is a connec­

tivity function if and only if it is peripherally continu­

2 ous [3]. The function f: r ~ I is peripherally continuous 

2if and only if U is an open subset of 1 containing a point 

x and V is an open subset of r containing f(x), then there 

is an open subset W of U containing x such that f(bd(W)) 

is a subset of V, where bd(W) is the boundary of W. 

Assume a,b E I such that f(a) < f(b). Choose y E I 

between a and b such that f(y) E (f(a),f(b)). Let 

s = rnin{d(f(a) ,f(y)),d(f(y),f(b))}. Let U be a connected 

2 open subset of 1 with connected boundary C such that 

Y E U cITe B(Y,n/S) where n = rnin{d(y,a),d(y,b)}, and 

f(C) c B(f(y) ,siS). Then there exists YO'YI E I which are 

in C such	 that Yo < Y < Yl. 

yO E B(y,n/S), f(y ) E B(f(y) ,siS),O

Yl E B(y,n/S ), f(Yl) E B(f(y),s/S). 

Clearly d(yO'y) < n/S and d(Yl'y) < n/S • Also 

d(f(YO),f(y)) < siS and d(f(Yl),f(y)) < siS. 

Now there exist connected open subsets U and Ul of o 

1 
2 with connected boundaries Co and Cl such that 
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and 

E Ul , D C B(yl,nl/S), f(C 1 ) C B(f(Yl) ,E/S )Yl l 
2 

where nO d(yo'Y) and nl = d(Yl'Y). So nO < n/S and 

nl < n/S. 

Now Co has points Y 'Y01 E I and C has pointsOO 1 

Y10'Y1l E I such that 

a < YOO < YO < < Y < < Yl < < b,Y01 Y10 Y1l 

YOO'YOl E B(Yo,n o/ S ), f(yoo ) ,f(Y01) E B(f(YO),E/S
2 
), 

Y10'Yll E B(yl,n1/ S ), f(y10 ) ,f(y1l ) E B(f(Yl) ,E/S
2 
). 

There exists connected open subsets UOO'U01'U10'Ull 

2
of 1 with connected boundaries COO'C01,CIO'Cll such that 

D c B(Yoo,nOO/S)' f(C OO ) c B(f(yOO ) ,E/S ),YOO E UOO ' OO	 
3

3 
YOl	 E U01' DOl c B(Y01,nOl/S), f(C 01 ) c B(f(Y01) ,E/S ), 

E c B(Y10,nlO/S), f(C10 ) c B(f(ylO ) ,E/S ),Y10 U10 ' 010 
3 

c B(Y1l,nll/5), f(Cll ) c B(f(Y11) ,E/S
3
),Y1l E Ull , 011 

where nOD = d(yoo'YO) ,nOl = d(Y01'YO),nlO = d(YlO'Yl)' and 

nIl d(YII'YI) · 

Now Coo has points YOOO'YOOl E I, COl has points 

Y010'YOll E I, has points Y100'Y10l E I, and Cll hasC10 

points YllO'Ylll E I such that a < YOOO < YOO < YOOl < YO < 

YOlO < < YOll < Y < YIO O < < < < <YOl YIO YlOl Y1 Y110 

Yll < Yl ll < b. 
3

E B(Yoo,noo/S), f(y ) ,f(y ) E B(f(y ) ,s/S ),YOOO'YOOl oOO OOl oO 

E B(YOl,nOI/S) , f(y ) ,f(y ) E B(f(y ) ,E/S 3 ),Y01O'Y011 OlO oll Ol 

E B(YlO,nlO/S), f(y lOO ) ,f(Y1Ol) E B(f(y ) ,s/S 3 ),Y1OO'Y10l lO 

and 

3 
YI1O'Ylll E B(Yll,nll/S), f(YllO),f(Ylll) E B(f(Yll)'s/S ). 
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Continuing this process let a be a finite sequence of 

O's and lis of length k. Thus for yO'. we obtain 

YaO < yO'. < Yal ,
 

E B{Y ,n / 5 ),
YaO a a


E B{Y ,n / 5 ),
Yal a a


naO d{yao'Ya ) ,
 

c B{YaO,naO/5),
DaO
 
k+2


f{C ) c B{f{y ) ,E/5 ),
aO aO
 

d{yal,y ),
nal a 

[fal c B{Yal,nal/5), and 

flCall c BlflYall ,£/Sk+2) 

where naO = d{yaO'Y ) and = d{yal,y )· Now CO'.O hasa nal a 

points YaOO'YaOl E I and Cal has points YalO'Yall E I such 

that 

< < YaOl < yO'. < YalO < Yal < Yall' 
k+2 

YaOO YaO 

YaOO'YaOl E B{YaO,naO/5), f{YaOO),f{YaOl) E B{f{YaO ),E/5 ), 
k+2 

YalO'Yall E B{Yal,nal/5), f{YalO) ,f{yall ) E B(f{yal ),s/5 ). 

We now claim that if a and S are finite binary sequences 

of equal length n of the form a yO~ and S = ylv where y 

is of length k ~ n-l, then 

(1) Yo'. < Y S' 

(2) 3/4{n O+n 1) < Iy -YSI < 5/4{n O+n 1)' and y y - a - y y 
k

(3) If{ya)-f{YS)1 < E/2(5). 

By construction yO'. < Y and < · Thus ­
S 

YyO Yyl Yyl YyO 

Yyl - Yy + Yy - YyO = n yO + nyl· Also 

1 
d{Ya,yyO ) < nyOlll/Sl+ll/s2l+ooo+ll/Sn-kll <	 "4 nyO and 

1 
< nyllll/Sl+ll/s2l+ooo+ll/Sn-kll <d{YS,Yyl) 4" nyl· 

From this it follows that (2) is true. 
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Now If(YyO)-f(yy ) I < £/Sk+l and If(Yyl)-f(y
y 

) I < £/Sk+l, 

If(y )-f(y ) I < £«l/Sk)+(l/Sk+l)+ ••• +(l/Sn», and 
a y 

If(ye)-f(y
y 

) I < £«l/Sk)+(l/Sk+l)+",+(l/Sn»), 

So If(ya)-f(Ye)1 < 2£«1/Sk)+(1/Sk+l)+",+(1/Sn») 

< 2£ (l/Sk) (1/4) 

£/2 (Sk) . 

Let a(n) denote a binary sequence with n terms such 

that the first n-l terms of a(n) is a(n-l). Define 

Ya = ~!m Ya(n)· 

Then the previous claim holds true for infinite sequences 

a and S. We now prove that f(y ) = ~!m f(Ya(n». Each a 

Ca(k+l) intersects Ca(k) since one point of Ca(k+l) is 

inside the interval formed by Ca(k) and one point is outside. 

Thus for any y of length k the union of all sets C is a 
yv 

connected set and its image points differ from fey ) by at 
y 

most (E/Sk)+(£/Sk+l)+ ••• = £/4(Sk-l). Since f is a Darboux 

function (the image of connected sets is connected), 

f(~) c f(uC ) c B(f(y ) ,£/4(Sk-l}}.
yv yv y 

Thus d(f(ya),f(Ya(n» < £/4(Sn-l) where a(n) = y and it 

follows that f(Ya(n» converges to f(y ).a 

Now it follows that the function defined by the assign­

ment a ~ Y is a homeomorphism from a Cantor set to S = {Y }.
a a 

Thus S is a Cantor set and f(S) c (f(a),f(b». So flI x a 

has the WCIVP and fls is continuous. 

Example 2. The first example of [2] is an example of 

an almost continuous function I ~ I which does not have the 

WCIVP. For completeness that example will be described 

here. There exists a subset Gel which intersects every 
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Cantor set in every interval (a,b) but contains no Cantor 

set. Thus G n (a,b) contains c points. Let F = {(x,O):
l 

x ~ G}. Consider the collection {K} of closed subsets of 

2
1 such that the x-projection of K has cardinality c. The 

x-projection of any set in the collection is closed and 

contains a Cantor set. Hence it contains a point of G. 

2Select a subset F c 1 by transfinite induction such that2 

(1)	 F intersects each member of the collection {K} and2 

(2) if p and q are distinct points of F then their2 , 

x-projections are distinct points of G. 

Let F = {(t,l): tEl but t is neither in the x-projection3 

of F nor in the x-projection of F 2 }.l 

Let f = F U F U F Then the x-projection of f is I and3 .1 2 

f is the graph of a function f: I + I. 

Remarks. The second example of [2] is an example of 

a function I + I which has the WCIVP but is not a Darboux 

function. Also, it follows that if f: I + I is continuous 

then f has th P. 
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