TOPOLOGY PROCEEDINGS

Volume 10, 1985
Pages 75-82
http://topology.auburn.edu/tp/

CONCERNING THE EXTENSION OF CONNECTIVITY FUNCTIONS

by
Richard G. Gibson and Fred Roush

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

CONCERNING THE EXTENSION OF CONNECTIVITY FUNCTIONS

Richard G. Gibson and Fred Roush

In his classic paper, Stallings [7] asked if a connectivity function $I \rightarrow I$ could always be extended to a connectivity function $I^{2} \rightarrow I$ when I is considered embedded in I^{2} as $I \times 0$. Several authors answered this negatively by giving examples of connectivity functions $I \rightarrow I$ which are not almost continuous, [1], [6]. In [7] Stallings proved that an almost continuous function $I \rightarrow I$ is a connectivity function and, curiously enough, a connectivity function $I^{2} \rightarrow I$ is an almost continuous function. Later it was shown by Kellum [4] that an almost continuous function $I \rightarrow I$ can be extended to an almost continuous function $I^{2} \rightarrow I$. This naturally leaves the question "can an almost continuous function $I \rightarrow I$ be extended to a connectivity function $I^{2} \rightarrow$ I?" Theorem 2 of this paper together with the first example of [2] shows that this is not the case.

For simplicity no distinction will be made between points of $I \times 0$ and I. Also, $B(y, r)$ denotes an open ball about y with radius r where d is the usual distance function.

Definition l. A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ between spaces X and Y is said to be almost continuous if each open set containing the đraph of f also contains the graph of a continuous function with the same domain. The function f is said to be a connectivity function if for each connected subset
C of X the graph of f restricted to C, denoted by $f \mid C$, is a connected subset of $X \times Y$. The function f is said to be a Darboux function if $f(C)$ is connected whenever C is a connected subset of X .

Definition 2. A function $\mathrm{f}: ~ \mathrm{I} \rightarrow$ I has the Cantor Intermediate Value Property (CIVP) if for any Cantor set K in the interval ($f(x), f(y)$) the interval (x, y) or (y, x) contains a Cantor set C such that $f(C) \subset K$ where $x, y \in I=$ [0,1]. The function f has the Weak Cantor Intermediate Value Property (WCIVP) if there exists a Cantor set C between x and y such that $f(C) \subset(f(x), f(y))$.

Theorem l. If $\mathrm{f}: \mathrm{I} \rightarrow \mathrm{I}$ has the CIVP, then f has the WCIVP.

Proof. Obvious.

Example 1. There exists a function f: I \rightarrow I that has the WCIVP but does not have the CIVP. Let $S_{y}, Y \in I$, be the collection of Cantor dense subsets of I constructed in [2]. Let $r \in I$ be fixed. Let $g: I \rightarrow U_{Y \neq r} S_{y}$ where $y \in I$ be l-l and onto. Define $f(x)=g(y)$ where $x \in S_{y}$ and $y \neq r$. If $x \in S_{r}$, let $f(x)=0$. If x is not in any S_{y}, let $f(x)=0$. Let $a, b \in I$ and assume that $f(a)<f(b)$. Let k be a Cantor set in $(f(a), f(b))$ such that $K \subset S_{y}$ for some $y \neq r$. Choose $z \in K$ such that $r \neq g^{-l}(z)=w$. Consider S_{w}. If $x \in S_{w^{\prime}}$ then $f(x)=g(w)=z$ and $f\left(S_{w}\right) \subset K$. By Cantor density there exists a Cantor set $C \subset S_{w}$ such that $C \subset(a, b)$ or $C \subset(b, a)$. Therefore $f(C) \subset(f(a), f(b))$ and hence f has the WCIVP.

Let K be a cantor set in $(f(a), f(b))$ such that $K \subset S_{r}$. Since K contains no points of the range of f, there exists no Cantor set $C \subset I$ such that $f(C) \subset K$. Therefore f does not have the CIVP.

Theorem 2. If $\mathrm{f}: \mathrm{I}^{2} \rightarrow \mathrm{I}$ is a connectivity function, then $\mathrm{f} \mid \mathrm{I} \times 0$ has the WCIVP. Moreover, the Cantor set can be selected such that f restricted to it is continuous.

Proof. It follows that a function $I^{2} \rightarrow I$ is a connectivity function if and only if it is peripherally continuous [3]. The function $f: I^{2} \rightarrow I$ is peripherally continuous if and only if U is an open subset of I^{2} containing a point x and V is an open subset of I containing $f(x)$, then there is an open subset W of U containing x such that $f(b d(W))$ is a subset of V, where $b d(W)$ is the boundary of W.

Assume $a, b \in I$ such that $f(a)<f(b)$. Choose $y \in I$ between a and b such that $f(y) \in(f(a), f(b))$. Let $\varepsilon=\min \{d(f(a), f(y)), d(f(y), f(b))\}$. Let U be a connected open subset of I^{2} with connected boundary C such that $y \in U \subset \bar{U} \subset B(y, \eta / 5)$ where $\eta=\min \{d(y, a), d(y, b)\}$, and $f(C) \subset B(f(y), \varepsilon / 5)$. Then there exists $Y_{0}, Y_{1} \in I$ which are in C such that $Y_{0}<Y<Y_{1}$.

$$
\begin{array}{ll}
y_{0} \in B(y, \eta / 5), & f\left(y_{0}\right) \in B(f(y), \varepsilon / 5), \\
y_{1} \in B(y, \eta / 5), & f\left(y_{1}\right) \in B(f(y), \varepsilon / 5) .
\end{array}
$$

Clearly $d\left(y_{0}, y\right)<n / 5$ and $d\left(y_{1}, y\right)<n / 5$. Also $d\left(f\left(Y_{0}\right), f(y)\right)<\varepsilon / 5$ and $d\left(f\left(Y_{1}\right), f(y)\right)<\varepsilon / 5$.

Now there exist connected open subsets U_{0} and U_{1} of I^{2} with connected boundaries C_{0} and C_{1} such that

$$
y_{0} \in \mathrm{u}_{0}, \overline{\mathrm{u}}_{0} \subset \mathrm{~B}\left(\mathrm{y}_{0}, \mathrm{n}_{0} / 5\right), \mathrm{f}\left(\mathrm{C}_{0}\right) \subset \mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{0}\right), \varepsilon / 5^{2}\right)
$$

and

$$
\mathrm{y}_{1} \in \mathrm{U}_{1}, \overline{\mathrm{u}}_{1} \subset \mathrm{~B}\left(\mathrm{y}_{1}, \mathrm{n}_{1} / 5\right), \mathrm{f}\left(\mathrm{C}_{1}\right) \subset \mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{1}\right), \varepsilon / 5^{2}\right)
$$

where $\eta_{0}=d\left(y_{0}, y\right)$ and $\eta_{1}=d\left(y_{1}, y\right)$. So $\eta_{0}<n / 5$ and $\eta_{1}<n / 5$.

Now C_{0} has points $Y_{00}, Y_{01} \in I$ and C_{1} has points $Y_{10}, y_{11} \in I$ such that

$$
\begin{aligned}
& a<y_{00}<y_{0}<y_{01}<y<y_{10}<y_{1}<y_{11}<b, \\
& y_{00}, y_{01} \in B\left(y_{0}, \eta_{0} / 5\right), f\left(y_{00}\right), f\left(y_{01}\right) \in B\left(f\left(y_{0}\right), \varepsilon / 5^{2}\right) \\
& y_{10}, y_{11} \in B\left(y_{1}, \eta_{1} / 5\right), f\left(y_{10}\right), f\left(y_{11}\right) \in B\left(f\left(y_{1}\right), \varepsilon / 5^{2}\right) .
\end{aligned}
$$

There exists connected open subsets $\mathrm{U}_{00}, \mathrm{U}_{01}, \mathrm{U}_{10}, \mathrm{U}_{11}$ of I^{2} with connected boundaries $C_{00}, C_{01}, C_{10}, C_{11}$ such that
$Y_{00} \in U_{00}, \bar{U}_{00} \subset B\left(y_{00}, \eta_{00} / 5\right), f\left(C_{00}\right) \subset B\left(f\left(y_{00}\right), \varepsilon / 5^{3}\right)$,
$Y_{01} \in U_{01}, \bar{U}_{01} \subset B\left(Y_{01}, \eta_{01} / 5\right), f\left(C_{01}\right) \subset B\left(f\left(Y_{01}\right), \varepsilon / 5^{3}\right)$,
$\mathrm{y}_{10} \in \mathrm{U}_{10}, \overline{\mathrm{U}}_{10} \subset \mathrm{~B}\left(\mathrm{y}_{10}, \mathrm{\eta}_{10} / 5\right), \mathrm{f}\left(\mathrm{C}_{10}\right) \subset \mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{10}\right), \varepsilon / 5^{3}\right)$,
$\mathrm{Y}_{11} \in \mathrm{U}_{11}, \overline{\mathrm{U}}_{11} \subset \mathrm{~B}\left(\mathrm{y}_{11}, \eta_{11} / 5\right), \mathrm{f}\left(\mathrm{C}_{11}\right) \subset \mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{11}\right), \varepsilon / 5^{3}\right)$, where $\eta_{00}=d\left(y_{00}, y_{0}\right), \eta_{01}=d\left(y_{01}, y_{0}\right), \eta_{10}=d\left(y_{10}, Y_{1}\right)$, and $\eta_{11}=a\left(y_{11}, y_{1}\right)$.

Now C_{00} has points $Y_{000}, Y_{001} \in I, C_{01}$ has points $\mathrm{Y}_{010}, \mathrm{Y}_{011} \in \mathrm{I}, \mathrm{C}_{10}$ has points $\mathrm{Y}_{100}, \mathrm{Y}_{101} \in \mathrm{I}$, and C_{11} has points $\mathrm{y}_{110}, \mathrm{y}_{111} \in \mathrm{I}$ such that $a<\mathrm{y}_{000}<\mathrm{y}_{00}<\mathrm{y}_{001}<\mathrm{y}_{0}<$ $\mathrm{y}_{010}<\mathrm{y}_{01}<\mathrm{Y}_{011}<\mathrm{y}<\mathrm{y}_{100}<\mathrm{y}_{10}<\mathrm{Y}_{101}<\mathrm{y}_{1}<\mathrm{y}_{110}<$ $Y_{11}<y_{1 l l}<b$.

$$
\begin{aligned}
& y_{000}, y_{001} \in B\left(y_{00}, \eta_{00} / 5\right), f\left(y_{000}\right), f\left(y_{001}\right) \in B\left(f\left(y_{00}\right), \varepsilon / 5^{3}\right), \\
& y_{010}, y_{011} \in B\left(y_{01}, \eta_{01} / 5\right), f\left(y_{010}\right), f\left(y_{011}\right) \in B\left(f\left(y_{01}\right), \varepsilon / 5^{3}\right), \\
& y_{100}, y_{101} \in B\left(y_{10}, \eta_{10} / 5\right), f\left(y_{100}\right), f\left(y_{101}\right) \in B\left(f\left(y_{10}\right), \varepsilon / 5^{3}\right),
\end{aligned}
$$

and

$$
\mathrm{y}_{110}, \mathrm{y}_{111} \in \mathrm{~B}\left(\mathrm{y}_{11}, \mathrm{n}_{11} / 5\right), \mathrm{f}\left(\mathrm{y}_{110}\right), \mathrm{f}\left(\mathrm{y}_{111}\right) \in \mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{11}\right), \varepsilon / 5^{3}\right)
$$

Continuing this process let α be a finite sequence of 0's and l's of length k. Thus for y_{α} we obtain

$$
\begin{aligned}
& y_{\alpha 0}<y_{\alpha}<y_{\alpha 1}, \\
& y_{\alpha 0} \in B\left(y_{\alpha}, \eta_{\alpha} / 5\right), \\
& y_{\alpha 1} \in B\left(y_{\alpha}, \eta_{\alpha} / 5\right), \\
& \eta_{\alpha 0}=d\left(y_{\alpha 0}, y_{\alpha}\right), \\
& \bar{U}_{\alpha 0} \subset B\left(y_{\alpha 0}, \eta_{\alpha 0} / 5\right), \\
& f\left(C_{\alpha 0}\right) \subset B\left(f\left(y_{\alpha 0}\right), \varepsilon / 5^{k+2}\right), \\
& \eta_{\alpha 1}=d\left(y_{\alpha 1}, y_{\alpha}\right), \\
& \bar{U}_{\alpha 1} \subset B\left(y_{\alpha 1}, \eta_{\alpha 1} / 5\right), \text { and } \\
& f\left(C_{\alpha 1}\right) \subset B\left(f\left(y_{\alpha 1}\right), \varepsilon / 5^{k+2}\right)
\end{aligned}
$$

where $\eta_{\alpha 0}=d\left(y_{\alpha 0}, Y_{\alpha}\right)$ and $\eta_{\alpha I}=d\left(y_{\alpha 1}, y_{\alpha}\right)$. Now $C_{\alpha 0}$ has points $Y_{\alpha 00}, Y_{\alpha 01} \in I$ and $C_{\alpha 1}$ has points $Y_{\alpha 10}, Y_{\alpha l l} \in I$ such that

$$
\begin{aligned}
& \qquad y_{\alpha 00}<\mathrm{y}_{\alpha 0}<\mathrm{y}_{\alpha 01}<\mathrm{y}_{\alpha}<\mathrm{y}_{\alpha 10}<\mathrm{y}_{\alpha l}<\mathrm{y}_{\alpha 11} \text {, } \\
& \mathrm{y}_{\alpha 00}, \mathrm{y}_{\alpha 01} \in \mathrm{~B}\left(\mathrm{y}_{\alpha 0}, \eta_{\alpha 0} / 5\right), \mathrm{f}\left(\mathrm{y}_{\alpha 00}\right), \mathrm{f}\left(\mathrm{y}_{\alpha 01}\right) \in \mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{\alpha 0}\right), \varepsilon / 5^{\mathrm{k}+2}\right), \\
& \mathrm{y}_{\alpha 10}, \mathrm{y}_{\alpha 11} \in \mathrm{~B}\left(\mathrm{y}_{\alpha 1}, \eta_{\alpha 1} / 5\right), \mathrm{f}\left(\mathrm{y}_{\alpha 10}\right), \mathrm{f}\left(\mathrm{y}_{\alpha 11}\right) \in \mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{\alpha 1}\right), \varepsilon / 5^{\mathrm{k}+2}\right) . \\
& \text { We now claim that if } \alpha \text { and } \beta \text { are finite binary sequences } \\
& \text { of equal length } \mathrm{n} \text { of the form } \alpha=\gamma 0 \mu \text { and } \beta=\gamma 1 v \text { where } \gamma \\
& \text { is of length } k \leq n-1, \text { then }
\end{aligned}
$$

(1) $Y_{\alpha}<Y_{\beta}$,
(2) $3 / 4\left(n_{\gamma 0}+\eta_{\gamma 1}\right) \leq\left|Y_{\alpha}-Y_{\beta}\right| \leq 5 / 4\left(n_{\gamma 0}+n_{\gamma 1}\right)$, and
(3) $\left|f\left(y_{\alpha}\right)-f\left(y_{\beta}\right)\right|<\varepsilon / 2\left(5^{k}\right)$.

By construction $y_{\alpha}<y_{\beta}$ and $Y_{\gamma 0}<y_{\gamma l}$. Thus $y_{\gamma l}-y_{\gamma 0}=$ $y_{\gamma l}-y_{\gamma}+y_{\gamma}-y_{\gamma 0}=\eta_{\gamma 0}+\eta_{\gamma l}$. Also
$d\left(y_{\alpha}, y_{\gamma 0}\right)<\eta_{\gamma 0}\left((1 / 5)+\left(1 / 5^{2}\right)+\cdots+\left(1 / 5^{n-k}\right)\right)<\frac{1}{4} \eta_{\gamma 0}$ and
$a\left(y_{\beta}, y_{\gamma I}\right)<\eta_{\gamma I}\left((1 / 5)+\left(1 / 5^{2}\right)+\cdots+\left(1 / 5^{n-k}\right)\right)<\frac{1}{4} n_{\gamma I}$.
From this it follows that (2) is true.

$$
\begin{aligned}
& \text { Now }\left|f\left(y_{\gamma 0}\right)-f\left(y_{\gamma}\right)\right|<\varepsilon / 5^{k+1} \text { and }\left|f\left(y_{\gamma 1}\right)-f\left(y_{\gamma}\right)\right|<\varepsilon / 5^{k+1}, \\
& \left|f\left(y_{\alpha}\right)-f\left(y_{\gamma}\right)\right|<\varepsilon\left(\left(1 / 5^{k}\right)+\left(1 / 5^{k+1}\right)+\cdots+\left(1 / 5^{n}\right)\right) \text {, and } \\
& \left|f\left(y_{\beta}\right)-f\left(y_{\gamma}\right)\right|<\varepsilon\left(\left(1 / 5^{k}\right)+\left(1 / 5^{k+1}\right)+\cdots+\left(1 / 5^{n}\right)\right) . \\
& \left|f\left(y_{\alpha}\right)-f\left(y_{\beta}\right)\right|
\end{aligned}
$$

So

Let $\alpha(n)$ denote a binary sequence with n terms such that the first $n-1$ terms of $\alpha(n)$ is $\alpha(n-1)$. Define

$$
y_{\alpha}=\operatorname{Lim}_{n \rightarrow \infty} y_{\alpha(n)}
$$

Then the previous claim holds true for infinite sequences α and β. We now prove that $f\left(y_{\alpha}\right)=\lim _{n \rightarrow \infty} f\left(y_{\alpha(n)}\right)$. Each $C_{\alpha(k+1)}$ intersects $C_{\alpha(k)}$ since one point of $C_{\alpha(k+1)}$ is inside the interval formed by $C_{\alpha(k)}$ and one point is outside. Thus for any γ of length k the union of all sets $C_{\gamma v}$ is a connected set and its image points differ from $f\left(y_{\gamma}\right)$ by at most $\left(\varepsilon / 5^{k}\right)+\left(\varepsilon / 5^{k+1}\right)+\cdots=\varepsilon / 4\left(5^{k-1}\right)$. Since f is a Darboux function (the image of connected sets is connected),

$$
f\left(\overline{U C_{Y \nu}}\right) \subset \overline{\mathrm{f}\left(\overline{U C_{Y \nu}}\right)} \subset \overline{\mathrm{B}\left(\mathrm{f}\left(\mathrm{y}_{\gamma}\right), \varepsilon / 4\left(5^{\mathrm{k-1}}\right)\right) .}
$$

Thus $d\left(f\left(Y_{\alpha}\right), f\left(y_{\alpha(n)}\right)<\varepsilon / 4\left(5^{n-1}\right)\right.$ where $\alpha(n)=\gamma$ and it follows that $f\left(Y_{\alpha(n)}\right)$ converges to $f\left(Y_{\alpha}\right)$.

Now it follows that the function defined by the assignment $\alpha \rightarrow y_{\alpha}$ is a homeomorphism from a Cantor set to $S=\left\{y_{\alpha}\right\}$. Thus S is a Cantor set and $f(S) \subset(f(a), f(b))$. So $f \mid I \times 0$ has the WCIVP and $f \mid S$ is continuous.

Example 2. The first example of [2] is an example of an almost continuous function $I \rightarrow I$ which does not have the WCIVP. For completeness that example will be described
here. There exists a subset $G \subset I$ which intersects every

Cantor set in every interval (a,b) but contains no Cantor set. Thus $G(a, b)$ contains C points. Let $F_{I}=\{(x, 0)$: $x \notin G\}$. Consider the collection $\{K\}$ of closed subsets of I^{2} such that the x-projection of K has cardinality c. The x-projection of any set in the collection is closed and contains a Cantor set. Hence it contains a point of G. Select a subset $F_{2} \subset I^{2}$ by transfinite induction such that
(1) F_{2} intersects each member of the collection $\{\mathrm{K}\}$ and
(2) if p and q are distinct points of F_{2}, then their x-projections are distinct points of G.

Let $F_{3}=\{(t, 1): t \in I$ but t is neither in the x-projection of F_{1} nor in the x -projection of F_{2}. .

Let $f=F_{1} \cup F_{2} \cup F_{3}$. Then the x-projection of f is I and f is the graph of a function $f: I \rightarrow I$.

Remarks. The second example of [2] is an example of a function $I \rightarrow I$ which has the WCIVP but is not a Darboux function. Also, it follows that if $f: I \rightarrow I$ is continuous then f has the P.

References

1. J. L. Cornette, Connectivity functions and images on Peano continua, Fund. Math. 58 (1966), 183-192.
2. R. G. Gibson and F. Roush, The Cantor intermediate value property, Top. Proc. 7 (1982), 55-62.
3. M. R. Hagan, Equivalence of connectivity maps and peripherally continuous transformations, Proc. A.M.S. 17 (1966), 175-177.
4. K. R. Kellum, The equivalence of absolute almost continuous retracts and e-absolute retracts, Fund. Math. 96 (1977), 229-235.
5. \qquad and B. D. Garrett, Almost continuous real functions, Proc. A.M.S. 33 (1972), 181-184.
6. J. H. Roberts, Zero-dimensional sets blocking connectivity functions, Fund. Math. 57 (1965), 173-179.
7. J. Stallings, Fixed point theorem for connectivity maps, Fund. Math. 47 (1959), 249-263.

Columbus College
Columbus, Georgia 31900
and
Alabama State University
Montgomery, Alabama 36101

