TOPOLOGY PROCEEDINGS Volume 10, 1985

Pages 83–94

http://topology.auburn.edu/tp/

MULTICOHERENCE AND PRODUCTS

by

Alejandro Illanes

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

MULTICOHERENCE AND PRODUCTS

Alejandro Illanes M.

Introduction

Let W be any space, we define $b_o(W) = (number of components of W) - 1 if this number is finite and <math>b_o(W) = \infty$ otherwise. W is *insular* when $b_o(W)$ is finite. Let Z be a connected space; the *multicoherence degree*, $\pi(Z)$, of Z is defined by $\pi(Z) = \sup\{b_o(A \cap B): A, B \text{ are closed connected subsets of Z and Z = A \cup B\}$. Z is said to be *unicoherent* if $\pi(Z) = 0$.

A region of Z is an open connected subset of Z. A map is a continuous function. We will denote by **R** the real line; by S the unit circle in the complex plane; by S^W the group of maps of W in S with the complex multiplication and by $e: \mathbb{R} \rightarrow S$ the exponential map. For $f \in S^W$, we write $f \sim 1$ if there exists a map g: $W \rightarrow \mathbb{R}$ such that $e \circ g = f$ and we write $f \not\simeq 1$ if this is not true. If $A \subset W$, the restriction of f to A will be denoted by f|A.

For two closed subsets A, B of Z, we denote by P(A,B) the subgroup of S^Z which consists of all $f \in S^Z$ such that $f|A \sim 1$ and $f|B \sim 1$. And we define $\mathcal{P}(A,B) =$ maximum number of linearly independent elements of P(A,B) if this number is finite and $\mathcal{P}(A,B) = \infty$ otherwise. A finite number of elements f_1, \dots, f_n of S^Z is said to be *linearly independent* provided that $f_1^{a_1} \dots f_n^{a_n} \sim 1$ where a_1, \dots, a_n are integers is possible only when $a_1 = \dots = a_n = 0$. Finally, we define the *analytic multicoherence degree*, $\mathcal{P}(Z)$, of Z by

Illanes M.

 $\mathcal{P}(Z) = \sup{\mathcal{P}(A,B)}$: A, B are closed subsets of Z and $Z = A \cup B$.

C. Kuratowsky (Fund. Math. 15 (1930) page 353) asked the following: Is the product of two unicoherent Peano continua unicoherent? In [1], K. Borsuk gave an affirmative answer to this question. S. Eilenberg [2] proved that the product of two connected, locally connected, unicoherent metric spaces is unicoherent. And T. Ganea [4] generalized these results proving that the product of an arbitrary family of connected, locally connected, unicoherent spaces is unicoherent.

In [3], S. Eilenberg proved that if X, Y are connected, compact, metric spaces, then $\mathcal{P}(X \times Y) = \sup\{\mathcal{P}(X), \mathcal{P}(Y)\}$. This equality was generalized to denumerable products by A. H. Stone [9] and he mentioned that is valid for arbitrary products of connected, compact, metric spaces. On the other hand, the equality $\pi(Z) = \mathcal{P}(Z)$ is proved by S. Eilenberg [3] when Z is a connected, locally connected, compact, metric space. In [8], A. H. Stone showed that this equality holds for all connected, locally connected, normal T_1 -spaces.

Using these results, we have that the equality:

$$\begin{split} & n(\Pi X_{\alpha}) = \sup\{n(X_{\alpha}): \alpha \in J\} \end{split} \tag{1} \\ \text{holds if each space } X_{\alpha} \text{ is a connected, locally connected,} \\ & \text{compact, metric space. In this paper, we prove that the} \\ & \text{equality (1) is true if each } X_{\alpha} \text{ is a connected, locally} \\ & \text{pathwise connected, normal } T_1 \text{-space.} \end{split}$$

It is important to observe that, while normality is a standard assumption in this area, a product of normal

spaces need not be normal. This difficulty is handled by using regularity (instead of normality) for most of the arguments.

1. Some Auxiliary Results

Throughout this section X and Y will denote connected, locally connected, regular spaces. If W is any space, we define $(W) = \{D: D \text{ is a component of W}\}$. If m is a positive integer, we define $\overline{m} = \{1, 2, \dots, m\}$. We use the notation $f \approx g$ to indicate that the maps f and g are homotopic.

1.1 Lemma. Let B be a closed subset of X and let U be an open insular subset of X such that $b_o(Cl_X(U) \cap B) \ge m$. Then there exists an open subset V of X such that $U \subset V$, $b_o(Cl_X(V) \cap B) \ge m$, $b_o(Cl_X(V)) = b_o(V)$ and $b_o(U) \ge b_o(V)$.

Proof. Suppose that $b_o(U) - b_o(Cl_X(U)) > 0$, then there exists a point $p \in X$ and there exist two components of U such that each one of them has p in its closure. Since $b_o(Cl_X(U) \cap B) \ge m$, there exist nonempty, pairwise disjoint closed subsets B_1, \dots, B_{m+1} of X such that $Cl_X(U) \cap B$ $B = B_1 \cup \dots \cup B_{m+1}$. Since X is regular, we can take a region W of X such that $p \in W$ and $Cl_X(W)$ intersects at most one of the B_i 's. Then $V_1 = U \cup W$ is an open subset of X such that $U \subset V_1$, $b_o(Cl_X(V_1) \cap B) \ge m$ and $b_o(V_1) < b_o(U)$. Then V can be constructed repeating this argument when necessary.

1.2 Lemma. Let B be a closed connected subset of X and let U be an open insular subset of X such that $X = B \cup U$ and $b_o(B \cap Cl_X(U)) \ge m \ge 1$. Then there exists a region W of X such that $U \subseteq W$ and $b_o(B \cap Cl_X(W)) \ge m - b_o(Cl_X(U))$. *Proof.* We can suppose that $m - b_o(Cl_X(U)) > 0$. It will be enough to prove that if U is not connected, then there exists an open subset W_1 of X such that $b_o(W_1) < b_o(U)$, $U \subset W_1$ and $b_o(B \cap Cl_X(W_1)) \ge m - 1$. Suppose then that U is not connected. We take V as in Lemma 1.1. If $Cl_X(V)$ is connected, then V is so. In this case we put $W_1 = V$. Suppose then that $Cl_X(V)$ is not connected. We put $Cl_X(V) = H \cup K$ where H, K are closed, nonempty disjoint subsets of X.

Let C_1, \dots, C_s be closed, nonempty pairwise disjoint subsets of X such that $s \ge m + 1$, $B \cap Cl_X(V) = C_1 \cup \dots \cup C_s$ and each C_i is contained in some component of $Cl_X(V)$. We make $I = \{i \in \overline{s}: C_i \subset H\}$, then I and $\overline{s} - I$ are nonempty. It is easy to prove that there exist $i \in I$, $j \in \overline{s} - I$ and D a component of $X - Cl_X(V)$ such that $Cl_X(D) \cap C_i \neq \phi$ and $Cl_X(D) \cap C_j \neq \phi$. We choose points $p \in Cl_X(D) \cap C_i$ and $q \in Cl_X(D) \cap C_j$. Let U_1, U_2 be regions of X such that $p \in U_1, q \in U_2, Cl_X(U_1) \cap (U\{C_k: k \neq i\}) = \phi$ and $Cl_X(U_2) \cap$ $(U\{C_k: k \neq j\}) = \phi$. Since $D \cap U_1 \neq \phi$ and $D \cap U_2 \neq \phi$, we have that there exists a region E of X such that $Cl_X(E) \subset D$, $E \cap U_1 \neq \phi$ and $E \cap U_2 \neq \phi$. We define $W_1 = V \cup U_1 \cup U_2 \cup E$.

1.3 Theorem. If $n(X) \ge m \ge 1$, then there exist regions U, V of X and there exists $(\subset ((X - Cl_X(U)))$ such that $b_o(H \cap K) \ge m$ and $X = H \cup K$ where $H = Cl_X(U) \cup (\cup\{D: D \in (\}))$ and $K = Cl_X(V)$.

Proof. Let A, B be closed connected subsets of X such that $X = A \cup B$ and $b_o(A \cap B) \ge m$. It is enough to prove that there exist a region U of X and $\hat{D} \subset \int (X - B)$ such that

$$\begin{split} \mathbf{X} &= \operatorname{Cl}_{\mathbf{X}}(\mathbf{U}) \ \cup \ (\mathbf{B} \ \cup \ (\cup\{\mathbf{D}: \ \mathbf{D} \in \ \partial\})) \ \text{and} \ b_{o}(\operatorname{Cl}_{\mathbf{X}}(\mathbf{U}) \ \cap \ (\mathbf{B} \ \cup \ (\cup\{\mathbf{D}: \ \mathbf{D} \in \ \partial\}))) \geq \mathsf{m}. \quad \operatorname{Let} \ \mathbf{C}_{1}, \cdots, \mathbf{C}_{\mathsf{m}+1} \ \mathsf{be} \ \mathsf{closed}, \ \mathsf{nonempty}, \ \mathsf{pair-wise} \ \mathsf{disjoint} \ \mathsf{subsets} \ \mathsf{of} \ \mathbf{X} \ \mathsf{such} \ \mathsf{that} \ \mathbf{A} \ \cap \ \mathbf{B} = \mathbf{C}_{1} \ \cup \ \cdots \ \cup \ \mathbf{C}_{\mathsf{m}+1}. \\ \mathsf{For} \ \mathbf{J} \subset \overline{\mathsf{m}+1}, \ \mathsf{we} \ \mathsf{define} \ \mathbf{C}_{J} = \cup\{\mathbf{C}_{j}: \ \mathsf{j} \in J\}. \ \mathsf{We} \ \mathsf{make} \\ \mathcal{J} = \{\mathbf{J} \subset \overline{\mathsf{m}+1}: \ \mathbf{J} \neq \phi \ \mathsf{and} \ \mathbf{J} \neq \overline{\mathsf{m}+1}\}. \ \mathsf{Then} \ \mathsf{if} \ \mathbf{J} \in \ \mathcal{J}, \ \mathsf{we} \ \mathsf{can} \\ \mathsf{choose} \ \mathsf{D}_{J} \in \ (\mathsf{X} - \mathsf{B}) \ \mathsf{such} \ \mathsf{that} \ \mathsf{Cl}_{\mathbf{X}}(\mathsf{D}_{J}) \ \cap \ \mathsf{C}_{J} \neq \phi \ \mathsf{and} \\ \mathsf{cl}_{\mathbf{X}}(\mathsf{D}_{J}) \ \cap \ \mathsf{C}_{\overline{\mathsf{m}+1}-J} \neq \phi. \ \mathsf{We} \ \mathsf{put} \ \mathcal{D} = (\mathsf{(X} - \mathsf{B}) - \{\mathsf{D}_{J}: \ \mathbf{J} \in \ \mathcal{J}\}, \\ \mathsf{U}_{1} = \cup\{\mathsf{D}_{J}: \ \mathbf{J} \in \ \mathcal{J}\} \ \mathsf{and} \ \mathsf{B}_{1} = \mathsf{B} \ \cup \ (\cup\{\mathsf{D}: \ \mathsf{D} \in \ \mathcal{D}\}. \end{split}$$

It is not difficult to prove that $\delta_o(B_1 \cap Cl_X(U_1)) \ge m + \delta_o(Cl_X(U_1))$. Then, by Lemma 1.2, there exists a region U of X such that $U_1 \subset U$ and $\delta_o(B_1 \cap Cl_X(U)) \ge m$. This completes the proof.

We denote by \mathbf{R}^2 the Euclidean plane. For a positive integer n, we define $\ell_n = \{(u,v) \in \mathbf{R}^2: (u - (2i-1))^2 + v^2 = 1 \text{ for some i } \in \overline{n}\} \ (\ell_n \text{ is a row of n unit circles each touching the next one in a single point), <math>\ell_n^+ = \{(u,v) \in \ell_n: v \ge 0\}$ and $\ell_n^- = \{(u,v) \in \ell_n: v \le 0\}$, we consider these spaces with the topology that they have as subspaces of \mathbf{R}^2 . For $i \in \overline{n}$, we define $\ell_i: \ell_n \to S$ by:

$$\ell_{i}(u,v) = \begin{cases} (u - (2i-1), v) & \text{if } |u - (2i-1)| \leq 1 \\ (-1,0) & \text{if } u \leq 2i - 2 \\ (1,0) & \text{if } u \geq 2i \end{cases}$$

(ℓ_i is "essentially" the retraction of ℓ_n in its ith circle)

1.4 Proposition. Suppose that X is locally pathwise connected and that $n(X) \ge m \ge 1$. Then there exist closed connected subsets A, B of X; there exist closed, nonempty, pairwise disjoint subsets C_1, \dots, C_{m+1} of X and there exists

a map $\sigma: \mathcal{L}_{m} \to X$ such that $\sigma(\mathcal{L}_{m}^{+}) \subset A$, $\sigma(\mathcal{L}_{m}^{-}) \subset B$, $A \cap B = C_{1} \cup \cdots \cup C_{m+1}$ and $\sigma(2i-2,0) \in C_{i}$ for each $i \in \overline{m+1}$.

Proof. Let U, V, (, H and K as in Theorem 1.3. Suppose that H \cap K = $E_1 \cup \cdots \cup E_{m+1}$ where E_1, \cdots, E_{m+1} are closed, nonempty, pairwise disjoint subsets of X. From the connectedness of V it follows that $E_i \cap Cl_X(U) \cap Cl_X(V)$ $\neq \phi$ for each $i \in \overline{m+1}$. We choose points $p_1 \in E_1 \cap Cl_X(U)$, $\cdots, p_{m+1} \in E_{m+1} \cap Cl_X(U)$ and we take regions U_1, \cdots, U_{m+1} of X such that $p_1 \in U_1, \cdots, p_{m+1} \in U_{m+1}$ and $Cl_X(U_i) \cap (U \{ E_j \cup Cl_X(U_j): j \neq i \}) = \phi$. We define $U_0 = U \cup U_1 \cup \cdots \cup U_{m+1}$, $V_0 = V \cup U_1 \cup \cdots \cup U_{m+1}$, $A = H \cup Cl_X(U_0)$, $B = K \cup Cl_X(V_0)$ and $C_1 = E_1 \cup Cl_X(U_1), \cdots, C_{m+1} = E_{m+1} \cup Cl_X(U_{m+1})$. Since U_0 and V_0 are regions of X, there exist maps $\sigma_1: \ell_m^+ \to U_0$ and $\sigma_2: \ell_m^- \to V_0$ such that $\sigma_1(2i-2,0) = p_i = \sigma_2(2i-2,0)$ for $i \in \overline{m+1}$. Let $\sigma: \ell_m \to X$ be the map which extends σ_1 and σ_2 .

From now on, the condition of regularity for X and Y will not be necessary.

1.5 Proposition. Suppose that $y_0 \in Y$ and $f \in S^{X \times Y}$ are such that $f | X \times \{y_0\} \sim 1$ and $f | \{x\} \times Y \sim 1$ for each $x \in X$. Then $f \sim 1$.

Proof. Let $h_0: X \times \{y_0\} \rightarrow \mathbf{R}$ be a map such that $e \circ h_0 = f | X \times \{y_0\}$. For $x \in X$, we take a map $h_x: \{x\} \times Y \rightarrow \mathbf{R}$ such that $e \circ h_x = f | \{x\} \times Y$ and $h_x(x,y_0) = h_0(x,y_0)$. We define $h: X \times Y \rightarrow \mathbf{R}$ by $h(x,y) = h_x(x,y)$. Then $e \circ h = f$. We will prove that h is continuous.

We take $(x,y) \in X \times Y$. For $v \in Y$, we choose regions U_v of X and V_v of Y such that $(x,v) \in W_v = U_v \times V_v$ and the diameter of $f(W_v)$ is smaller than 1/4. Then there exists a map $g_v: W_v \rightarrow \mathbf{R}$ such that $g_v(x,v) = h(x,v)$ and $e \circ g_v = f|W_v$. Then $g_v|\{x\} \times V_v = h_x|\{x\} \times V_v$. This implies that if w, $v \in Y$, there exists a common extension of g_v and g_v .

Let n be the minimum positive integer for which there exist $v_1, \dots, v_n \in Y$ such that $y_0 \in V_{v_1}$, $y \in V_{v_n}$ and $V_{v_1} \cap V_{v_2} \neq \phi, \dots, V_{v_{n-1}} \cap V_{v_n} \neq \phi$. Let U be a region of X such that $x \in U \subset U_{v_1} \cap \dots \cap U_{v_n}$ and let $V = V_{v_1} \cup \dots \cup V_{v_n}$. Then $(x, y) \in U \times V$ and there exists a map g: $U \times V \neq \mathbf{R}$ such that $e \circ g = f$ and g extends each one of the maps $g_{v_1} \mid U \times V_{v_1}$. V_{v_1} . Take $(u, v) \in U \times V$. Since $g \mid \{x\} \times V = h_x \mid \{x\} \times V$, we have that $g(x, y_0) = h_0(x, y_0)$. This implies that $g \mid U \times \{y_0\} = h_0 \mid U \times \{y_0\}$, and so $g(u, y_0) = h_u(u, y_0)$. It follows that $g \mid \{u\} \times V = h_u \mid \{u\} \times V$. In particular, g(u, v) = h(u, v). Therefore $h \mid U \times V = g$. This proves that h is continuous and completes the proof.

As a consequence, we obtain the following particular case of Lemma 5 of [8].

1.6 Corollary. If $f \in S^X$, then $f \sim 1$ if and only if $f \approx 1$ (the constant map 1).

1.7 Proposition. Let $\{X_{\alpha}: \alpha \in J\}$ be a family of connected, locally connected spaces. For $p = (p_{\alpha}) \in \Pi X_{\alpha}$ and $\beta \in J$, we define $Y(p,\beta) = \{(x_{\alpha}) \in \Pi X_{\alpha}: x_{\alpha} = p_{\alpha} \text{ for all } \alpha \neq \beta\}$. Suppose that $f: \Pi X_{\alpha} \neq S$ is a map such that $f|Y(p,\beta) \sim 1$ for each $p \in \Pi X_{\alpha}$ and $\beta \in J$. Then $f \sim 1$.

Proof. Fix a point $x = (x_{\alpha}) \in X = \Pi X_{\alpha}$. We choose t $\in \mathbf{R}$ such that e(t) = f(x). If L is a subset of J, define $X_{L} = \Pi \{ X_{\alpha} : \alpha \in L \}$, $x_{L}^{C} = (x_{\alpha})_{\alpha \notin L} \in X_{J-L}$ and $Y_{L} = X_{L} \times \{ x_{L}^{C} \} \subset X$. From Proposition 1.5 it follows that, for any finite $F \subset J$, there exists a map $g_{F} : Y_{F} \to \mathbf{R}$ such that $e \circ g_{F} = f | Y_{F}$ and $g_{F}(x) = t$.

Let \mathcal{U} be the set of basic open subsets $U = \langle U_{\alpha_1}, \cdots, U_{\alpha_n} \rangle$ of X where $U_{\alpha_1}, \cdots, U_{\alpha_n}$ are proper, nonempty regions of $X_{\alpha_1}, \cdots, X_{\alpha_n}$ respectively and the diameter of f(U) is smaller than 1/4. If $U \in \mathcal{U}$, we define $F = \{\alpha_1, \cdots, \alpha_n\}$, and $U_o = U_{\alpha_1} \times \cdots \times U_{\alpha_n} \times \{x_F^c\} \subset U \cap Y_F$. Since $f | U \sim 1$ and U_o is connected, there exists a map $g_U \colon U \neq R$ such that $f | U = e \circ g_U$ and $g_U | U_o = g_F | U_o$.

Let $U = \langle U_{\alpha_1}, \dots, U_{\alpha_n} \rangle$, $V = \langle V_{\beta_1}, \dots, V_{\beta_m} \rangle \in \mathcal{U}$ be such that $V \subset U$. We are going to prove that $g_U | V = g_V$. We put $F = \{\alpha_1, \dots, \alpha_n\}$ and $G = \{\beta_1, \dots, \beta_m\}$, then $F \subset G$ and $g_F = g_G | Y_F$. We choose a point $y = (y_\alpha) \in V$; we define $S = U_{\alpha_1} \times \dots \times U_{\alpha_n} \times X_{G-F} \times \{x_G^C\}$, and we define the points $u = (u_\alpha)$ and $z = (z_\alpha)$ by: $z_\alpha = y_\alpha$ if $\alpha \in F$, $z_\alpha = x_\alpha$ if $\alpha \notin F$ and $u_\alpha = y_\alpha$ if $\alpha \in G$, $u_\alpha = x_\alpha$ if $\alpha \notin G$. Then $z \in U_O$, $u \in S \cap V_O$, $S \subset U$ and $S \subset Y_G$, so that $g_U(z) = g_F(z) = g_G(z)$, therefore $g_U | S = g_G | S$. In particular, $g_U(u) = g_G(u)$. This implies that $g_U | V_O = g_G | V_O = g_V | V_O$.

From this it follows that if U, W \in (/, then $g_U^{}|U \cap W = g_W^{}|U \cap W$. Hence f \sim 1.

1.8 Corollary. Let $\{X_{\alpha}: \alpha \in J\}$ be a family of connected, locally pathwise connected spaces. Suppose that f: $\Pi X_{\alpha} \neq S$ is a map and that there exists a point $\mathbf{x} = (\mathbf{x}_{\alpha}) \in \Pi X_{\alpha}$ such that $f | \mathbf{Y}(\mathbf{x}, \beta) \sim 1$ for all $\beta \in J$. Then $f \sim 1$.

Proof. Let $p = (p_{\alpha}) \in \Pi X_{\alpha}$ be any point and let $\beta \in J$. Suppose that i: $X_{\beta} \neq Y(x,\beta)$ and j: $X_{\beta} \neq Y(p,\beta)$ are the inclusions. Since $\Pi \{X_{\alpha} : \alpha \neq \beta\}$ is pathwise connected, we have that i and j are homotopic (as maps of X_{β} in ΠX_{α}). This implies that $f | Y(p,\beta) \sim 1$. Hence $f \sim 1$.

1.9 Lemma. Let x be any point of X. Suppose that X is locally pathwise connected and that $f \in S^X$ is such that $f \not\sim 1$. Then there exists a map $\sigma: S \rightarrow X$ such that $\sigma(1) = x$ and $f \circ \sigma \not\sim 1$.

Proof. Immediate from Theorem 6.1 of [5].

1.10 Proposition. Suppose that X and Y are locally pathwise connected. Let A, B be closed subsets of $X \times Y$ and let f, g: $X \times Y \neq S$ be maps such that $X \times Y = A \cup B$, $f|A \sim 1$, $g|A \sim 1$, $f|B \sim 1$ and $g|B \sim 1$. If there exists $y \in Y$ such that $f|X \times \{y\} \not\approx 1$ and $g|X \times \{y\} \sim 1$, then $g \sim 1$.

Proof. By Proposition 1.5, it is enough to prove that $g|\{u\} \times Y \sim 1$ for each $u \in X$. Suppose that there exists $x \in X$ such that $g|\{x\} \times Y \not\approx 1$. Let $\delta: S \rightarrow X \times \{y\}$ and $\lambda: S \rightarrow \{x\} \times Y$ be maps such that $f \circ \delta \not\approx 1$, $g \circ \lambda \not\approx 1$ and $\delta(1) = (x, y) = \lambda(1)$. We define $\psi: S \times S \rightarrow X \times Y$ by $\psi(s, t) = (P_X(\delta(s)), P_Y(\lambda(t)))$ where P_X and P_Y are the projections of $X \times Y$ in X and Y respectively. Since $\hat{\mathcal{P}}(S \times S) = 1$ (Theorem 3, §4 of [3]), we have that there exist integers a, b with $a \neq 0$ or $b \neq 0$ such that $(f \circ \psi)^{a}(g \circ \psi)^{b} \sim 1$. Then $(f^{a}g^{b}) \circ \psi \circ i \sim 1$ where i: $S \rightarrow S \times \{1\}$ is the inclusion, so that $(f \circ \delta)^{a}(g \circ \delta)^{b} \sim 1$. Similarly, $(f \circ \lambda)^{a}(g \circ \lambda)^{b} \sim 1$. Then $(f \circ \delta)^{a} \sim 1$, so that a = 0. This implies that $(g \circ \lambda)^{b} \sim 1$, so b = 0. This contradiction ends the proof.

2. Main Theorems

2.1 Theorem. If $\{X_{\alpha} : \alpha \in J\}$ is a nonempty family of connected, locally pathwise connected nonempty spaces, then $\mathcal{P}(\Pi X_{\alpha}) = \sup\{\mathcal{P}(X_{\alpha}) : \alpha \in J\}.$

Proof. It is easy to prove that $\hat{P}(\Pi X_{\alpha}) \geq \sup\{\hat{P}(X_{\alpha}): \alpha \in J\}$. Suppose that $\hat{P}(\Pi X_{\alpha}) \geq m > \sup\{\hat{P}(X_{\alpha}): \alpha \in J\}$. Then there exist closed subsets A, B of $X_{o} = \Pi X_{\alpha}$ and there exist $f_{1}, \dots, f_{m} \in S^{X_{O}}$ such that $X_{o} = A \cup B$, $f_{1} | A \vee 1$, $f_{1} | B \vee 1$ for all $i \in \overline{m}$ and f_{1}, \dots, f_{m} are linearly independent. We choose a point $x = (x_{\alpha}) \in X_{o}$. By Corollary 1.7, there exists $\beta \in J$ such that $f_{1} | Y(x, \beta) \not\simeq 1$ where $Y(x, \beta) = \{(w_{\alpha}) \in X_{o}: w_{\alpha} = x_{\alpha} \text{ for all } \alpha \neq \beta\}$. Since $\hat{P}(Y(x, \beta)) < m$, there exist integers a_{1}, \dots, a_{m} not all zero such that $f_{1}^{a_{1}} \dots f_{m}^{a_{m}} | Y(x, \beta) \sim 1$. Applying Proposition 1.9 to $X = X_{\beta}$ and $Y = \Pi\{X_{\alpha}: \alpha \neq \beta\}$, we obtain that $f_{1}^{a_{1}} \dots f_{m}^{a_{m}} \sim 1$. This contradiction completes the proof.

2.2 Theorem. If $\{X_{\alpha} : \alpha \in J\}$ is a nonempty family of connected, locally pathwise connected, normal nonempty T_1 -spaces, then $n(\Pi X_{\alpha}) = \sup\{n(X_{\alpha}) : \alpha \in J\}.$

Proof. We put $X = \pi X_{\alpha}$. It is easy to prove that $\pi(X) \geq \sup\{\pi(X_{\alpha}): \alpha \in J\}$. Suppose that $\pi(X) \geq m > \sup\{\pi(X_{\alpha}): \alpha \in J\}$. Let A, B, C_1, \dots, C_{m+1} and $\sigma: \ell_m \neq X$ be as in Proposition 1.4. We make $\ell = (\ell_m)^J$ (the product of J copies of ℓ_m) and we define $\psi: \ell \neq X$ by $\psi((s_{\alpha})) = (P_{\alpha}(\sigma(s_{\alpha})))$, where $P_{\alpha}: X \neq X_{\alpha}$ is the projection. For $s \in \ell_m$, we call $\gamma(s)$ the point of ℓ which has all its coordinates equal to s. Then $\gamma: \ell_m \neq \ell$ is continuous. We make $(x_{\alpha}) = x = \psi(\gamma(0,0)) = \sigma(0,0) \in C_1$. We can suppose that x is an interior point of C_1 . Let $A_1 = \psi^{-1}(A)$ and $B_1 = \psi^{-1}(B)$.

Given $\beta \in J$, we put $Y_{\beta} = \{(Y_{\alpha}) \in X: Y_{\alpha} = x_{\alpha} \text{ for all}$ $\alpha \neq \beta\}$, $A_{\beta} = A \cap Y_{\beta}$, $B_{\beta} = B \cap Y_{\beta}$ and $C_{1}^{\beta} = C_{1} \cap Y_{\beta}, \dots, C_{m+1}^{\beta} = C_{m+1} \cap Y_{\beta}$. Since Y_{β} is normal, there exists a map $f^{\beta}: Y_{\beta} \neq \ell_{m}$ such that $f^{\beta}(A_{\beta}) \subset \ell_{m}^{+}$, $f^{\beta}(B_{\beta}) \subset \ell_{m}^{-}$ and $f^{\beta}(C_{1}^{\beta}) \subset \{(2i-2,0)\}$ for each $i \in \overline{m+1}$. For $i \in \overline{m+1}$, we make $f_{1}^{\beta} = \ell_{1} \circ f^{\beta}: Y_{\beta} \neq S$. We make $T_{\beta} = \{(s_{\alpha}) \in \ell: s_{\alpha} = (0,0) \text{ for all } \alpha \neq \beta\}$, then $\psi(T_{\beta}) \subset Y_{\beta}$. Define $g^{\beta} = f^{\beta} \circ \psi | T_{\beta}: T_{\beta} \neq \ell_{m}$.

Let $T = (\bigcup\{T_{\beta}: \beta \in J\}) \cup (\psi^{-1}(C_{1}) \cup \cdots \cup \psi^{-1}(C_{m+1})),$ then T is closed in \angle . We define $g_{0}: T + \angle_{m}$ by $g_{0}(w) = g^{\beta}(w)$ if $w \in T_{\beta}$ and $g_{0}(w) = (2i-2,0)$ if $w \in \psi^{-1}(C_{1})$. Then g_{0} is continuous, $g_{0}(T \cap A_{1}) \subset \angle_{m}^{+}$ and $g_{0}(T \cap B_{1}) \subset \angle_{m}^{-}$. So that there exists a map $g: \angle + \angle_{m}$ such that $g|T = g_{0}, g(A_{1}) \subset \angle_{m}^{+}$ and $g(B_{1}) \subset \angle_{m}^{-}$. For $i \in \overline{m}$, we make $g_{1} = \ell_{1} \circ g: \angle + S$. Since $\gamma(\angle_{m}^{+}) \subset A_{1}$ and $\gamma(\angle_{m}^{-}) \subset B_{1}$, we have that $(g \circ \gamma)(\angle_{m}^{+}) \subset \angle_{m}^{+}$ and $(g \circ \gamma)(\angle_{m}^{-}) \subset \angle_{m}^{-}$. Moreover $g \circ \gamma(2i-2) = 2i-2$ for $i \in \overline{m+1}$. This is enough to assert that $\ell_{1} \circ g \circ \gamma, \cdots,$ $\ell_{m} \circ g \circ \gamma$ are linearly independent (Lemma 1.2 of [6]). This implies that g_{1}, \cdots, g_{m} are linearly independent. By Corollary 1.8, there exists $\beta \in J$ such that $g_1|_{\Gamma_{\beta}} \not\approx 1$. Since $\mathcal{P}(Y_{\beta}) = \pi(Y_{\beta}) < m$, we have that $f_1^{\beta}, \dots, f_m^{\beta}$ are linearly dependent. So there exist integers a_1, \dots, a_m not all zero such that $(f_1^{\beta})^{a_1} \dots (f_m^{\beta})^{a_m} \sim 1$; then $(\chi_1^{a_1} \dots \chi_m^{a_m}) \circ f^{\beta} \circ (\psi|_{\Gamma_{\beta}}) \sim 1$, so that $(g_1^{a_1} \dots g_m^{a_m})|_{T_{\beta}} \sim 1$. Applying Proposition 1.10, we obtain that $g_1^{a_1} \dots g_m^{a_m} \sim 1$. This contradiction ends the proof.

Bibliography

- K. Borsuk, Quelques theorémès sur les ensembles unicoherent, Fund. Math. 18 (1931), 171-209.
- [2] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61-112.
- [3] _____, Sur les espaces multicohérents I, Fund. Math.
 27 (1936), 153-190.
- [4] T. Ganea, Covering spaces and cartesian products, Ann. Soc. Polon. Math. 25 (1952), 30-42.
- [5] M. J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., Massachusetts (1967).
- [6] A. Illanes, Multicoherence of spaces of the form X/M (preprint).
- [7] _____, Multicoherence of symmetric products, An. Inst. Mat. Univ. Nac. Autónoma México (to appear).
- [8] S. Mardešić, Equivalence of singular and Čech homology for ANR's. Application to unicoherence, Fund. Math.
 46 (1958), 29-45.
- [9] A. H. Stone, Incidence relations in multicoherent spaces II, Canadian J. Math. 2 (1950), 461-480.
- [10] ____, On infinitely multicoherent spaces, Quart. J. Math. Oxford 3 (1952), 298-306.

Instituto de Matemáticas

Universidad Nacional A. de México

04510, México, D. F. Mexico