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MULTICOHERENCE AND PRODUCTS

Alejandro Illanes M.

Introduction
Let W be any space, we define 60(W) = (number of
components of W) - 1 if this number is finite and 60(W) = ®

otherwise. W is insular when 50(w) is finite. Let Z be
a connected space; the multicoherence degree, 2(Z), of Z
is defined by ~(Z) = sup{éa(A N B): A, B are closed con-
nected subsets of Z and Z = A U B}, 2Z is said to be
unicoherent if ~(Z) = 0.

A region of Z is an open connected subset of Z. A
map is a continuous function. We will denote by R the real
line; by S the unit circle in the complex plane; by SW the
group of maps of W in S with the complex multiplication and
by e: R + s the exponential map. For f € Sw, we write
f v~ 1 if there exists a map g: W ~ R such that e o g=1
and we write f ¥ 1 if this is not true. If A < W, the
restriction of £ to A will be denoted by f|A.

For two closed subsets A, B of Z, we denote by P(A,B)
the subgroup of SZ which consists of all f € SZ such that
f|la ~ 1 and £|B ~ 1. And we define P(A,B) = maximum number

of linearly independent elements of P(A,B) if this number

is finite and P(A,B) = = otherwise. A finite number of
elements fl,---,fn of sZ is said to be linearly independent
provided that flal'---'fnan’wl where a;,+++,a, are integers
is possible only when a; = *++ =a, = 0. Finally, we define

the analytic multicoherence degree, P(Z), of Z by
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P(z) = sup{P(A,B): A, B are closed subsets of Z and
Z = A U B}.

C. Kuratowsky (Fund. Math. 15 (1930) page 353) asked
the following: Is the product of two unicoherent Peano
continua unicoherent? In [1], K. Borsuk gave an affirmative
answer to this question. §. Eilenberg [2] proved that the
product of two connected, locally connected, unicoherent
metric spaces is unicoherent. And T. Ganea [4] generalized
these results proving that the product of an arbitrary
family of connected, locally connected, unicoherent spaces
is unicoherent.

In [3], S. Eilenberg proved that if X, Y are connected,
compact, metric spaces, then P(X x ¥Y) = sup{PX),P(¥)}. This
equality was generalized to denumerable products by A. H.
Stone [9] and he mentioned that is valid for arbitrary pro-
ducts of connected, compact, metric spaces. On the other
hand, the equality «(2) = P(Z) 1is proved by S. Eilenberg
[3] when Z is a connected, locally connected, compact,
metric space. In [8], A. H. Stone showed that this equality
holds for all connected, locally connected, normal Tl-spaces.

Using these results, we have that the equality:

A(HXa) = sup{n(Xa): o € J} (1)
holds if each space Xu is a connected, locally connected,
compact, metric space. In this paper, we prove that the
equality (1) is true if each Xa is a connected, locally
pathwise connected, normal Tl—space.

It is important to observe that, while normality is a

standard assumption in this area, a product of normal
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spaces need not be normal. This difficulty is handled by
using regularity (instead of normality) for most of the

arguments.

1. Some Auxiliary Results

Throughout this section X and Y will denote connected,

locally connected, regular spaces. If W is any space, we
define C(W) = {D: D is a component of W}. If m is a posi-
tive integer, we define m = {1,2,+++,m}. We use the nota-

tion £ » g to indicate that the maps f and g are homotopic.

1.1 Lemma. Let B be a closed subset of X and let U be
an open insular subset of X such that bo(Clx(U) N B) > m.
Then there exists an open subset V of X such that U c V,
b,(Cly(v) n B) > m, 6,(CLy(V)) = 6 (V) and 4 (U) > 6 (V).

Proof. Suppose that bo(U) - bo(ClX(U)) > 0, then
there exists a point p € X and there exist two components
of U such that each one of them has p in its closure.
Since bo(ClX(U) N B) > m, there exist nonempty, pairwise
disjoint closed subsets B

vee B of X such that ClX(U) n

lI

B = Bl U ==+ u Bm+l' Since X is regular, we can take a

m+1

region W of X such that p € W and ClX(W) intersects at

most one of the Bi's. Then Vl = U U W is an open subset of

X such that U c Vv bo(ClX(Vl) 0 B) > m and bo(Vl) < bo(U).

ll
Then V can be constructed repeating this argument when

necessary.

1.2 Lemma. Let B be a closed connected subset of X
and let U be an open insular subset of X such that X = B U U

and 60(B N Cly(U)) >m > 1. Then there exists a region W
of X such that U c© W and 60(3 n ch(w)) >m - 60(C1X(U)).
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Proof. We can suppose that m - } (ClX(U)) > 0. It
o
will be enough to prove that if U is not connected, then

there exists an open subset W, of X such that ba(w ) <

1
and ba(B n ClX(wl))

1
m - 1., Suppose then

| v

ba(U), UcwW

that U is not connected. We take V as in Lemma 1.l1. If
ClX(V) is connected, then V is so. 1In this case we put

W, = V. Suppose then that ClX(V) is not connected. We put

ClX(V) = H U K where H, K are closed, nonempty disjoint
subsets of X.

Let C --,Cs be closed, nonempty pairwise disjoint

1*°

subsets of X such that s > m + 1, B n ClX(V) = C ese Uy C

1Y S
and each Ci is contained in some component of ClX(V). We

make I = {i € s: C; < H}, then I and s - I are nonempty.

It is easy to prove that there exist i € I, § € s - I and

D a component of X - ClX(V) such that ClX(D) n Ci # ¢ and

ClX(D) n Cj # ¢. We choose points p € ClX(D) nc and

q € ClX(D) n Cj' Let U,, U, be regions of X such that
p € Ul’ g € UZ’ ClX(Ul) n (U{Ck: k # i}) = ¢ and ClX(UZ) n
(U{Ck: k #3}) = ¢. Since D n U} # ¢ and D n U, # ¢, we

have that there exists a region E of X such that ClX(E) < D,

EnN Ul # ¢ and E n U2 # ¢. We define wl =V U Ul U U2 U E.

1.3 Theorem. If a(X) > m > 1, then there exist
regions U, V of X and there exists ( < ((X = ClX(U)) such
that b (H N K) > mand X = H U K where H = C1,(U) u (u{D:

D€ (}) and XK = ClL, (V).
Proof. Let A, B be closed connected subsets of X such
that X = A U B and ba(A n B) >m. It is enough to prove

that there exist a region U of X and J < (((X - B) such that
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X =Cl (U) U (B U (u{D: D € J})) and bO(ClX(U) n (B u (u{D:

D e 0}))) >m. Let C,,+--,C be closed, nonempty, pair-

1 m+1
wise disjoint subsets of X such that A N B = o U oo U Coa1®
For J € m+l, we define CJ = U{Cj: j € J}. We make

J=1{0<cmfl: J# ¢ and J # m+l}. Then if J € g, we can

choose D. € C(X - B) such that ClX(DJ) n CJ # ¢ and

J
ClX(DJ) N Coq_; # ¢. We put 0=(Ex-3B) - {D;: J € .
U, = U{D;: J € J} and B) = B U (U{D: D € J}.

It is not difficult to prove that ba(B n ClX(Ul)) >

1
m + ba(ClX(Ul)). Then, by Lemma 1.2, there exists a region

U of X such that U, © U and ba(B n ClX(U)) > m. This

1

completes the proof.

1

We denote by R2 the Euclidean plane. For a positive
integer n, we define [n = {{(u,v) € RZ: (u - (2i—l))2 +
v2 = 1 for some i € n} ([n is a row of n unit circles each
touching the next one in a single point), [; = {(u,v) € [n:
v > 0} and [; = {(u,v) € [n: v < 0}, we consider these

spaces with the topology that they have as subspaces of

R%. For i € [, we define £, L ~ S by:

(u - (2i-1),v) if fu - (2i-1) | <1
Ri(u,v) = (-1,0) if u < 21 - 2
(1,0) if u > 2i

th

(li is "essentially" the retraction of [n in its i circle)

1.4 Proposition. Suppose that X is locally pathwise
connected anc that ~{(X) > m > 1. Then there exist closed
connected subsets A, B of X; there exist closed, nonempty,

pairwise disjoint subsets Cl""’cm+l of X and there exists
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a map O: [m + X such that o([;) c A, 0([;) cB, AnB-=

C, U s+ yC and ¢(2i-2,0) € Ci for each i € m+l.

1 m+1
Proof. Let U, V, C, H and K as in Theorem 1.3.
S th H K = U e e
uppose at n El V] U Em+l where El, 'Em+l are

closed, nonempty, pairwise disjoint subsets of X. From
the connectedness of V it follows that Ei n Clx(U) n Clx(V)

# ¢ for each i € m+l. We choose points 1] € E; N Clx(U),

*ttyPpel € Em+l n Clx(U) and we take regions Ul,-v-,Um+l

of X such that Py € Ul,---,pm+l € Um+l and ClX(Ui) n (U{Ej U
Cly(U): 3 # i}) = ¢. We define U = U U Up U - U U,
VO =V U Ul U eee U Um+l’ A =HU Clx(Uo), B=KU Clx(Vo)
and Cl = El U ClX(Ul),-”,Cm+l = Em+l u Clx(Um+l). Since

UO and VO are regions of X, there exist maps 0yt [; > Uo

and o,: L; > v, such that 0,(2i-2,0) = p, = 0,(2i-2,0) for

i € m¥l. Let o0: [m > X be the map which extends o, and o,.

From now on, the condition of regularity for X and Y

will not be necessary.

1.5 Proposition. Suppose that Y, €Y and £ € s¥Y gpe

such that f|X x {yo} v 1 and £|{x} x Y ~ 1 for each x € X.
Then £ ~ 1.

Proof. Let h_: X x {yo} + R be a map 'such that
e o h, = £]X x {yo}. For x € X, we take a map h_: {x} x
¥ > R such that e o h = f]{x} x ¥ and h_(x,y ) = h_(x,y.).
We define h: X x ¥ > R by h(x,y) = h_(x,y). Then e o h = f.
We will prove that h is continuous.

We take (x,y) € X x Y, For v € Y, we choose regions

U ofX and V. of Y such that (x,v) € W. = U_ x V. and the
v v v v v
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diameter of f(Wv) is smaller than 1/4. Then there exists
a map g_: Wv -> R such that gv(x,v) = h(x,v) and ee° 9, = f]Wv.
Then g_|{x} x v. = h_|{x} x v.. This implies that if w,
v v X v
v €Y, there exists a common extension of g, and 9+
Let n be the minimum positive integer for which there

exist VitV € Y such that Yo € VV , Y € VV and vV n

1 n 1
\Y # b, ,V nv # ¢. Let U be a region of X such
% v v
2 n-1 n
that x € U < Uv N «++n Uv and let V = Vv U s+ y VV .
1 n 1 n

Then (x,y) € U x V and there exists a map g: U x V > R such

that e o g = £ and g extends each one of the maps 9y |0 x
i

Vv . Take (u,v) € U x V. Since g|{x} x V = hx]{x} x V, we
i

have that g(x,yo) = ho(x,yo). This implies that g|U x {yo} =

hO[U x {yo}, and so g(u,yo) = hu(u,yo). It follows that

g|{u} x v = hul{u} x V. 1In particular, g(u,v) = h(u,v).
Therefore h|U x V = g. This proves that h is continuous

and completes the proof.

As a consequence, we obtain the following particular

case of Lemma 5 of [8].

1.6 Corollary. If f € Sx, then £ ~ 1 2f and only Z1f

f ~ 1 (the constant map 1).

1.7 Proposition. Let {Xa: o € J} be a family of con-
nected, locally comnected spaces. For p = (pa) € nxa and
B € J, we define Y(p,B) = {(xa) € HXQ: X, = P, for all

a # B}. Suppose that f: HXQ + 8 is a map such that

£]¥Y(p,B8) ~ 1 for each p € Hxa and B € J. Then f ~ 1.
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Proof. Fix a point x = (xa) € X = HXa. We choose
t € R such that e(t) = f(x). If L is a subset of J,
. _ . c = =
define XL = H{Xa. o € L}, X (Xa)aEL € XJ—L and YL XL x

{XE} c X. From Proposition 1.5 it follows that, for any

finite F ¢ J, there exists a map Ip* ¥ + R such that

r
e e gp = f|YF and gF(x) = t.
Let { be the set of basic open subsets U = (Ua ,o,U
1 “n
of X where Ud ,*°*,U are proper, nonempty regions of
1 %n

Xa o0, X respectively and the diameter of f(U) is smaller

1 %n
than 1/4. If U € {/, we define F = {al,---,an}, and

= LRI ] c 1
U, = UOtl x x U“n x {xg} < U n Y. Since £|U v 1 and

UO is connected, there exists a map Iy* U » R such that

flu = e o gy and gU|UO = gF|UO.

Let U = (U ,ess,U ), V = <vB ""’VB ) € {{ be such
% “n 1 m

that V €« U. We are going to prove that gU|V = 9y We put

F = {al,---,a } and G = {Bl,-°-,8m}, then F ¢ G and

n
9p = gG|YF. We choose a point y = (y ) € V; we define

S = Ual X eee X Uan * Xo_p ¥ {xg}, and we define the points
u = (ua) and z = (zd) by: z, =Y, if a € F, z, = X, if

a € F and u, =y, if o« € G, u, = x, if o ¢ G. Then

z € Uo' u € sSn VO, S ¢ U and S < YG’ so that gU(z) =

gp(z) = g,(z), therefore gU|S = gG|S. In particular,

gy () = g (u). This implies that gU‘Vo = gG|VO = gV|VO.

Hence gUlV = gy-

From this it follows that if U, W € {/, then gU|U nw=

gw|U N W. Hence £~ 1.



TOPOLOGY PROCEEDINGS Volume 10 1985 91

1.8 Corollary. Let {Xa: o € J} be a family of con-
nected, locally pathwise connected spaces. Suppose that
f: HXa >+ S is a map and that there exists a point
x = (x ) € X such that flY(x,8) v 1 for all § € J.
Then £ ~ 1.
Proof. Let p = (pa) € HXQ be any point and let 8 € J.

Suppose that i: X, + Y(x,B) and j: X, »Y(p,B) are the

B B
inclusions. Since H{X&: o # B} is pathwise connected, we
have that i and j are homotopic (as maps of XB in HXQ).

This implies that f|Y(p,B8) ~ 1. Hence f ~ 1.

1.9 Lemma. Let x be any point of X. Suppose that X
is locally pathwise connected and that £ € s¥ is such that
f % 1. Then there exists a map o: S8 » X such that o(l) = x
and £ o o ¥ 1.

Proof. Immediate from Theorem 6.1 of [5].

1.10 Proposition. Suppose that X and Y are locally
pathwise connected. Let A, B be closed subsets of X x Y
and let £, g: X x Y » S be maps such tkot X x Y = A U B,
£la ~ 1, gla~n 1, £|B~ 1 and g|B ~ 1. If there exists
y € Y such that £lX x {y} % 1 and g|X x {y} ~ 1, then g~1.

Proof. By Proposition 1.5, it is enough to prove that
gl{u} x ¥ v 1 for each u € X. Suppose that there exists
x € X such that g|{x} x Y % 1. Let 8: S » X x {y} and
X: 8 » {x} x Y be maps such that £ o ¢ ¥ 1, g o X ¥ 1 and
8§(1) = (x,y) = A(1l). We define ¢: S x S + X x Y by

yis,t) = (PX(S(S)), PY(A(t))) where P, and PY are the

X

projections of X x ¥ in X and Y respectively. Since
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P(s x 8) =1 (Theorem 3, §4 of [3]), we have that there

exist integers a, b with a # 0 or b # 0 such that

(£ 0 v)%g o yI®~ 1. Then (£36°) o y o i~ 1 where

i: §$ » S x {1} is the inclusion, so that (f o d)a(g o d)b vl
similarly, (£ o M)2(g o )P~ 1. Then (£ o 6)%n 1, so

that a = 0. This implies that (g o A)b v 1l, sob = 0.

This contradiction ends the proof.

2. Main Theorems

2.1 Theorem. If {Xa: a € J} s a nonempty family of
connected, locally pathwise connected nonempty spaces,
then ?(HXQ) = sup{?(xa): a € J}.

Proof. It is easy to prove that P(Hxa) > sup{?(xa):
a € J}. Suppose that P(Hxa) >m > sup{?(xa): a € J}. Then
there exist closed subsets A, B of Xo = HXa and there exist
Elovee f € s®o such that X,=AUB, £f.]Anv1, £[B 1

for all i € m and f f are linearly independent. We

100ty
choose a point x = (xa) € Xo. By Corollary 1.7, there
exists B € J such that fl|Y(x,B) % 1 where Y(x,B8) =
. - ; )

{(wa) € X: v, X for all o # R}. Since P(Y(x,B)) < m,
there exist integers aq, Ay not all zero such that

a1
1

il
Eo]

a
£ '...’fmm|y(x,3) ~ 1. Applying Proposition 1.9 to X

a
*eeo*f MW 1. This

and Y = H{Xa: o # B}, we obtain that fl o

contradiction completes the proof.

2.2 Theorem. If {Xa: o € J} is a nonempty family of
connected, locally pathwise connected, normal nonempty

T,-spaces, then (X ) = sup{a(Xa): a € Jh.

1
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Proof. We put X = Hxa' It is easy to prove that
2(X) > SuP{a(Xa): o € J}. Suppose that a(X) > m > sup{a(xa):

a € J}. Let A, B, C and o: Lm > X be as in Propo-

1777 Cmel
sition 1.4. We make [/ = (Lm)J (the product of J copies of
[m) and we define y: [ > X by w((sa)) = (Pa(O(sa)))’ where
Pa: X > Xa is the projection. For s € Lm, we call vy (s)

the point of / which has all its coordinates equal to s.

Then vy : Lm ~ [ is continuous. We make (Xa) =x = ¢(y(0,0)) =

g (0,0) € C,. We can suppose that x is an interior point of

_ -1 _.-1
Ci. Let Ay = (a) and By =y " (B).
Given B € J, we put YB = {(ya) € X: y, = x, for all
= = B R
a # B8}, A;g = AN Yo, B = BN Yy and C] = Cy 0 Y, Chsl =

, . . B.
Cm+l n YB. Since YB is normal, there exists a map f : YB >/

B + B
such that f (AB) c Lm, £P (B

m
) < L7 and £2(c%) < {(21-2,0))

B
for each 1 € m+l. For i € m+l, we make f? = Ri ° fB: YB -+ S.
We make TB = {(sa) € [: s, = (0,0) for all o # B}, then
. B _ B , .
w(TB) c YB. Define g" = f ¢|TB. Tg > A
= - _l LI _l
Let T = (u{Tg: B € J}) U (p 7(Cy) U Uy T(C )y

then T is closed in [/ We define 95¢ T -+ Lm by go(w) = gs(w)

if we T

and g (w) (2i-2,0) if w € w_l(ci). Then g is

8
. + -
continuous, go(T n Al) c Lm and go(T n Bl) c Lm' So that

+
g_, q(Al) c Lm

there exists a map g: [ ~» Lm such that g|T o

and g(B;) < [;. For i € m, we make g; = 4%; °g: [ > S.

i

Since y([;) < Ay and y([;) c B,, we have that (g o Y)([;) c
+ -— — . .

Lm and (g o Y)([m) c Lm' Moreover g °© y(2i-2) = 2i-2 for

i € mtl. This is enough to assert that ll o g o y,**",

Ln © 9 ° vy are linearly independent (Lemma 1.2 of [6]).

This implies that gqr®* .9y are linearly independent.



94 Illanes M.

By Corollary 1.8, there exists B € J such that

glITB % 1. Since P(YB) = a(YB) < m, we have that
B

fl,-'-,fﬁ are linearly dependent. So there exist integers

... By 3., . 2B %m
aj, »a not all zero such that (fl) (fm) vol;
a ®m B
then (2, '-.-'zm) o £f5 o (w[TB) ~ 1, so that
al %m
(g~ v+ "g, )]TB ~ 1. Applying Proposition 1.10, we obtain
21 2m
that 9; '---‘gm v 1. This contradiction ends the proof.
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