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MULTICOHERENCE AND PRODUCTS 

Alejandro Illanes M. 

Introduction 

Let W be any space, we define b (W) = (number of 
o 

components of W) - 1 if this nUTIilier is finite and b (W)
o 

otherwise. W is insular when 6 (W) is finite. Let Z be o 

a connected space; the multicoherence degree, A(Z), of Z 

is defined by A(Z) = sup{b (A n B): A, B are closed con­
o 

neeted subs~ts of Z and Z = A U B}. Z is said to be 

unicoherent if Jt(Z) o. 

A region of Z is an open connected subset of Z. A 

map is a continuous function. vle will denote by R the real 

line; by S the unit circle in the complex plane; by SW the 

group of maps of W in S with the complex multiplication and 

bye: R ~ S the exponential map~ For f E SW, we write 

f ~ 1 if there exists a map g: W ~ R such that e 0 g = f 

and we write f ~ 1 if this is not true. If A c W, the 

restriction of f to A will be denoted by fiA. 

For two closed subsets A, B of Z, W4= denote by P(A,B) 

the subgroup of SZ which consist:s of all f E SZ such that 

flA ~ 1 and fiB ~ 1. And we define ~(A,B) maximum number 

of linearly independent elements of P(A,B) if this number 

is finite and 7'(A,B) = otherwise. A finite number of00 

elements f··· f of SZ is said to be linearly independent
l' 'n 

provided that flal· ••• ·fnan~l where al,···,a are integers
n 

is possible only when a = ... = an = O. Finally, we definel 

the analytic multicoherence degree, 7'(Z), of Z by 
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~(Z) = sup{P(A,B): A, B are closed subsets of Z and 

Z = A U B}. 

C. Kuratowsky (Fund. Math. 15 (1930) page 353) asked 

the following: Is the product of two unicoherent Peano 

continua unicoherent? In [1], K. Borsuk gave an affirmative 

answer to this question. S. Eilenberg [2] proved that the 

product of two connected, locally connected, unicoherent 

metric spaces is unicoherent. And T. Ganea [4] generalized 

these results proving that the product of an arbitrary 

family of connected, locally connected, unicoherent spaces 

is unicoherent. 

In [3], S. Eilenberg proved that if X, Yare connected, 

compact, metric spaces, then ~(X x Y) sup{~~X) ,~(Y)}. This 

equality was generalized to denumerable products by A. H. 

Stone [9] and he mentioned that is valid for arbitrary pro­

ducts of connected, compact, metric spaces. On the other 

hand, the equality ~(Z) = ~(Z) is proved by S. Eilenberg 

[3] when Z is a connected, locally connected, compact, 

metric space. In (8], A. H. Stone showed that this equality 

holds for all connected, locally connected, normal Tl-spaces. 

Using	 these results, we have that the equality: 

~(TIXa) = SUp{A(X ): a E J} (1)a 

holds if each space Xu is a connected, locally connected, 

compact,/metric space. In this paper, we prove that the 

equality (l) is true if each X is a connected, locallya 

pathwise connected, normal Tl-space. 

It is important to observe that, while normality is a 

standard assumption in this area, a product of normal 
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spaces need not be normal. This difficulty is handled by 

using regularity (instead of normality) for most of the 

arguments. 

1.	 Some Auxiliary Results 

Throughout this section X and Y will denote connected, 

locally connected, regular spaces. If vl is any space, we 

define (W) = {D: D is a component of W}. If m is a posi­

tive integer, we define ill = {1,2,··· ,m}.. We use the nota­

tion f ~ g to indicate that the maps f and g are homotopic. 

1.1 Lemma. Let B be a closed subset of X and let U be 

an open insular subset of X such that 6 (CI (U) n B) > ffi. 
o x 

Then	 there exists an open subset V of X such that U c V~ 

6 (CI (V) n B) ~m~ 6 (CI (V» = 6 (V) and 6 (U) ~ 6 (V).
0 X 0 x 0 0 o
 

Proof. Suppose that 6 (U) - 6 (C~{(U» > 0, then
 
o O.l 

there exists a point p E X and there exist two components 

of U	 such that each one of them has p in its closure. 

Since 6 (Clx(U) n B) > m, there exist nonernpty, pairwise
o -

disjoint closed subsets Bl,···,B + of X such that CIX(U) n m l
 

B = B U ••• U B + Since X is regular, we can take a

1

.
1 m 

region W of X such that pEW and Clx(W) intersects at 

most one of the Bi'S. Then VI U U W is an open subset of 

.X such that U c VI' 6 (Cl (V I ) n B) ~ m and 6 (V I ) < 6 (U).
0 x o 0 

Then V can be constructed repeating this argument when 

necessary. 

1.2 Lemma. Let B be a closed connected subset of X 

and let U be an open insular subset of X such that X = B U U 

and 6 (B n Clx(U» > ffi > 1. Then there exists a region W 
0 

of X	 such that U c Wand 6 (B n CIx(W» > m - 6 (Clx(U».
o	 - 0 
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Proof. We can suppose that m - bo(Clx(U» > O. It 

will be enough to prove that if U is not connected, then 

there exists an open subset WI of X such that bo(W ) <l 

bo(U), U C WI and bo(B n Clx(W1 » > m - 1. Suppose then 

that U is not connected. We take V as in Lemma 1.1. If 

CIX(V) is connected, then V is so. In this case we put 

WI = V. Suppose then that Clx(V) is not connected. We put 

Clx(V) = H U K where H, K are closed, nonempty disjoint 

subsets of x. 

Let Cl'···'C be closed, nonempty pairwise disjoints 

subsets of X such that s ~ m + 1, B n Clx(V) = C U ••• U Cl s 

and each C is contained in some component of Clx(V). Wei 

make I = {i E s: C. c H}, then I and s - I are nonempty.
1 

It is easy to prove that there exist i E I, j E s - I and 

D a component of X - Clx(V) such that Clx(D) n Ci ~ ¢ and 

Clx(D) n Cj ~ ¢. We choose points p E Clx(D) n C andi 

q E Clx(D) n C Let U U be regions of X such that
j

. l , 2 

p E Ul , q E u ' Clx(Ul ) n (U{Ck : k ~ i}) = ¢ and Cl (U ) n
2 x 2 

(U{Ck : k ~ j}) = ¢. Since D n Ul ~ ¢ and D n U ~ ¢, we2 

have that there exists a region E of X such that Clx(E) c D, 

1.3 Theorem. If ~(x) ~ rn ~ 1, then there exist 

regions U, V of X and there exists [c [(X - CIX(U» such 

that bo(H n K) > m and X = H U K where H = CIX(U) U (U{D: 

D E (}) and K = CIX(V). 

Proof. Let A, B be closed connected subsets of X such 

that X = A U Band b (A n B) > m. It is enough to prove
o 

that there exist a region U of X and 0 c [(X - B) such that 



TOPOLOGY PROCEEDINGS Volume 10 1985 87 

x CI (U) U (B U (U{D: D E j)}» and Do(Clx(U) n (B U (U{D:
X 

D ED}») > m. Let C ,···,C + be closed, nonempty, pair­
1 m 1 

wise disjoint subsets of X such that A n B = C
l

U ... U Cm+l· 

For J C m+l, we define C U{ C. : j E J} . We make
J J 

J = {J C m+l: J t ¢ and J t m+l} . Then if J E :J, we can 

choose D E C(X - B) such that Clx(DJ ) n CJ t ¢ andJ 

Clx(DJ ) n Cm+ l - J t ¢. We put D = ((X - B) - {D
J

: J E J}, 
U = U{D : J E J} and B = B U (U{ D: D E D}.

1 J l
 

It is not difficult to prove that Do(B n Clx(U l » ~
 l 

rn + Do(Clx(U l ». Then, by Lemma 1.2, there exists a region 

U of X such that U C U and Do(B n Clx(U» > m. This
l l 

completes the proof. 

We denote by R2 the Euclidean plane. For a positive 

integer n, we define L = {(u,v) E R2 : (u - (2i-l»2 + 
n 

v 2 = 1 for some i E ~} (L is a row of n unit circles each n 

touching the next one in a single point), L+ = {(u,v) E L : 
~ n n 

v > O} and L {(u,v) E L : v ~ OJ, we consider these 
n n 

spaces with the topology that they have as subspaces of 

R2 • For i E ~, we define £i: L ~ S by:
n 

(u - (2i-l) ,v) if lu - (2i-l)I < 1 

(-1,0) if u < 2i - 2 

(1,0) if u > 2i 

(£i is "essentially" the retraction of L in its i 
th 

circle)n 

1.4 Proposition. Suppose that X is locally pathwise 

connected anu that ~(X) > m > 1. Then there exist closed 

connected subsets A~ B of X; there exist closed 3 nonempty, 

pairwise disjoint subsets Cl,···,C + l of X and there exists m 



88 Illanes M. 

a map 0: 4n ~ x such that o(L+) c A., o(L~) c B., A n Bm 

C U U Cm and 0(2i-2,O) E C. for each i E m+l.l + l 1
 

Proof· Let U , V, C, Hand K as in Theorem 1.3.
 

Suppose that H n K = El U ••• U E + where El,···,E + are m l m l 

closed, nonemptYI pairwise disjoint subsets of X. From 

the connectedness of V it follows that E n Clx(U) n Clx(V)
i 

t ¢ for each i E m+l. We choose points PI E E n Clx(U),l 

···,Pm+l E Em+l n Clx(U) and we take regions Ul,···,Um+l 

of X such that PI E Ul,···,Pm+l E U +l and ClX(U i ) n (U{E j U m 

Clx(U j ): j t i}) = ¢. We define U = U U Ul U U U +o m l' 

Va = V U Ul U ••• U U ' A = H U Clx(U )' B K U Clx(V )m+l o o 

and Cl El U Clx(Ul),···,C +l = E + l U Clx(U +l ). Sincem m m

U and Va are regions of X, there exist maps 01: L+ 
~ U o m o 

and 02: L~ ~ Va such that 01(2i-2,O) = Pi = 02(2i-2,O) for 

i E m+l. Let 0: L ~ X be the map which extends 01 and 02. 
m 

From now on, the condition of regularity for X and Y 

will not be necessary. 

1.5 Proposition. Suppose that Yo E Y and f E SXxY are 

such that fiX x {Yo} ~ 1 and fl{x} x Y ~ 1 for each x E X. 

Then f ~ 1. 

Proof. Let h : X x {Yo} ~ R be a map 'such that o 

e 0 h = fix x {Yo}. For x E X, we take a map h : {x} x o x 

Y ~ R such that e 0 h = fl{x} x Y and hx(x,yo) = ho(x,yo).x 

We define h: X x Y ~ R by h(x,y) hx(x,y) · Then e 0 h = f. 

We will prove that h is continuous. 

We take (x,y) E X x Y. For v E Y, we choose regions 

U ofX and V of Y such that (x,v) E W U x V and the 
V v v v v 
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diameter of f(W ) is smaller than 1/4. Then there exists v 

a map gv: W ~ R such that gv(x,v) = h(x,v) and eO gv = flw . v v 

Then 9 [{x} x V = h I{x} x V. This implies that if w,v v x v 

v E Y, there exists a common extension of 9 and gw.v 

Let n be the minimum positive integer for which there 

exist vI'··· ,v E Y such that Yo V , Y E: V and V nEn vI v n vI 

V ~ cP ••• V n V ~ cP • Let U be a region of X such 
v ' 'v v2 n-l n 

that x E U c U n n u and let V V U U V vvI n vI v n 

Then (x,y) E U x V and there exists a map 9: U x V ~ R such 

that e 0 9 f and 9 extends each one of the maps 9 IU x
V. 

1 

V Take (u,v) E U x V. Since gl{x} x V h I {x} x V, we
V. x 

1 

have that g(x,yo) = ho(x,yo). This implies that glU x {Yo} 

holu x {Yo}' and so g(u,yo) hu(u,yo). It follows that 

gl{u} x V = h I{u} x V. In particular, g(u,v) = h(u,v).u 

Therefore hlU x V = g. This proves that h is continuous 

and completes the proof. 

As a consequence, we obtain the following particular 

cas~ of Lemma 5 of [8]. 

1.6 Corollary. If f E Sx~ then f ~ 1 if and only if 

f ~ 1 (the constant map 1). 

1.7 Proposition. Let {X : a E J} be a family of con­
a 

nected~ locally connected spaces. Fop p = (Pa) E nX and 
a 

S E J~ we define Y(p,S) = {(x ) E nx : x = P fop all a a a a 

a ~ S}. Suppose that f: nX ~ S is a map such that 
a 

f/Y(p,S) ~ 1 for each p E rrx and S E J. Then f ~ 1. 
a 
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Proof. Fix a point x = (x ) E X rrx. We choose 
a a 

t E R such that e(t) = f(x). If L is a subset of J, 

From Proposition 1.5 it follows that, for any 

finite F c J, there exists a map gF: Y ~ R such thatp 

e 0 gF flYF and gF(x) = t. 

Let U be the set of basic open subsets U = (U ••• u )
aI' , an 

of X where U ••• U are proper, nonempty regions of
aI' , an 

X ' .•• 'X respectively and the diameter of f(U) is smaller a a1 n 

than 1/4. If U E U, we define F = {al,···,a }, and n 

U U x ... x U x {x~} c U n YF · 
Since flu 'V 1 and 

0 a al n 

U is connected, there exists a map gU: U ~ R such that 
0 

0flu e gu and guluo = gF1uO· 

Let U = (U • •• U ) V = (V Q , ••• , VQ ) E U be such 
aI' , an ' ~l ~m 

that V c U. We are going to prove that gu 1v = gv. We put 

F = {al,···,a } and G = {Sl,···,Sm}' then F c G and n 

gF = gGIYF · We choose a point Y = (Y ) E Vi we define a 
cs x ••• x U x X x {x }, and we define the pointsG-a F G

n 

u = (u ) and Z = (za) by: Z = Y if a E F, Z = x if 
a a a a 0: 

ex ¢ F and u Y if Ci E G, u = x if a ¢ G. Then a a Ci a 

Z E U u E S n V s c U and S c Y so that gu (z)0' 0' G
, 

gF(Z) gG(z), therefore guts gGls. In particular, 

gu(u) gG(u). This implies that gulvo = gGlvo = gvlvo· 

Hence gu 1v = gV. 

From this it follows that if U~ W E U, then gulu n w 

gwlu n W. Hence f 'V 1. 
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1.8 Corollary. Let {Xo,: 0, E J} be a family of con­

nected3 locally pathwise connected spaces. Suppo.c;e that 

f: rrx + S is a map and that there exists a point
a 

x = (x ) E rrxo, such that fIY(x,B) ~ 1 for all S E J. a 

Then f ~ 1. 

Proof· Let p (Pa) E IlX be any point and let B E J. a 

Suppose that i: X + Y(x,S) and j : X +Y(p,S) are thes s 
inclusions. Since rr{x

a, 
: 0, :I S} is pathwise connected, we 

have that i and j are homotopic (as maps of X in rrx ) .s a 

This implies that fIY(p,S) ~ 1. Hence f ~ 1. 

1.9 Lemma. Let x be any point of x. Suppose that X 

is locally pathwise connected and that f E SX is such that 

f ~ 1. Then there exists a map 0: S + X such that 0(1) = x 

and f 0 rj 1.0 

Proof. Immediate from Theorem 6.1 of [5]. 

1.10 Proposition. Suppose that X and Yare locally 

pathwise connected. Let A3 B be closed subsets of X x Y 

and let f 3 g: X x y + S be maps such that X x Y = A U B, 

flA ~ 1 3 glA ~ 1, fiB ~ 1 and glB ~ 1. If there exists 

y E Y such that fix x {y} ~ 1 and glX x {y} ~ 1, then g ~1. 

Proof. By Proposition 1.5, it is enough to prove that 

gl{u} x Y ~ 1 for each u E X. Suppose that there exis±s 

x E X such that gl{x} x Y ~ 1. Let 0: S + X x {y} and 

~: S + {x} x Y be maps such that f 0 0 ~ 1, g 0 ~ ~ 1 and 

o(1) (x,y) ~(1). We define ~: S x S + X x Y by 

~(s,t) = (P (8(s», Py(~(t))) where P and Py are thex x 
projections of X x Y in X and Y respectively. Since 
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~(S x S) = 1 (Theorem 3, §4 of [3]), we have that there 

exist integers a, b with a -:f a or b f; a such that 

(f 1jJ)a(g 0 1jJ) b 'V 1. Then (fagb) 0 1jJ 0 i 'V 1 where 

i: S -+ S x { l} is the inclusion, so that (f 0 a)a(g 0 a )b tV 1. 

0Similarly, (f 0 A)a(g A)b 'V 1. Then (f 0 a)a tV 1, so 

that a = o. This implies that (g 0 A)b tV 1, so b = o. 

This contradiction ends the proof. 

2. Main Theorems 

2.1 Theopem. If {X : a E J} is a nonempty family of 
a 

connected~ locally pathwise connected nonempty spaces~ 

then ~(TIX ) = sup{~(X ): a E J}.
a a 

Ppoof. It is easy to prove that ~(TIX ) > sup{~(X ):
a - a 

a E J}. Suppose that p(ITX ) > m > sup{P(X ): a E J}. Then 
a - a 

there exist closed subsets A, B of X = TIX and there exist 
o a 

fl,···,f E SXo such that X = A U B, filA 'V 1, filB 'V 1 m o 

for all i E mand fl,···,f are linearly independent. We m 

choose a point x = (x ) E X . By Corollary 1.7, there 
a o 

exists S E J such that flly(x,S) ~ 1 where Y(x,S) = 

{(w ) E X : w = x for all a -:f S}. Since ~(y(x,S)) < m,
a o a a 

there exist integers al,···,a not all zero such that m 
a a 

f l· ••• ·f mly(x S) 'V 1. Applying Proposition 1.9 to X = X
1 m ' s 

a a 
and Y = TI{X : a -:f S}, we obtain that f 1 ••••• £ m 'V 1. This
aIm 

contradiction completes the proof. 

2.2 Theopem. If {X : a E J} is a nonempty family of 
a 

connected~ locally pathwise connected~ normal nonempty 

T1-spaces, then ~(TIX ) = sup{~(X ): a E J}.
a a 
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Proof. We put X = rrx • It is easy to prove that 
a 

~(X) > sup{~(X ): a E J}. Suppose that ~(X) > m > sup{~(X~): 
- a VI. 

a E J}. Let A, B, Cl ,··· ,C +l and 0: L + X be as in Propo­m m 

sition 1.4. We make L (Lm)J (the product of J copies of 

L ) and we define ~: L ~ X by ~«(sa» = (Pa(o(sa»)' wherem

Po.: X ~ X is the projection. For s ELm' we call y(s)
a 

the point of L which has all its coordinates equal to s. 

Then y: L ~ L is continuous. We make (x ) = x = ~(y(O,O» 
m a 

0(0,0) E C We can suppose that x is an interior point ofl . 

Given S E J, we put YS {(Yo.) E X: Yo. = x for all a 

a ~ S}, AS A n YS ' BS = B n YS and C~ = C1 n YS'···'C~+l 
S

C + l n YS. Since YS is normal, there exists a map f : Y s ~ L m m 

such that fS(A } c L:, fS(B } c L~ and fS(C~} c {(2i-2,O}}
S S

~~ Sfor each i E m+l. For i E m+l, we make f ii f : Y -+ S.i 0 
S 

We make T Q {(s) E L: s = (0,0) for all a ~ S}, then 
I-J a a 

~(TS) c Y
S 

• Define gS = fS ~ITS: T
S 

+ Lmo0 

Let T = (U{T : S E J}} U (~-l(Cl) U U ~-l(Cm+l»'
S

then T is closed in L. We define go: T ~ L by 9 (w) = gS(w)m 0 

if WETS and go{w) = (2i-2,O) if w E ~-l(Ci). Then go is 

continuous, go(T n AI} C L~ and go(T n B l ) C L~. SO that 

there exists a map g: L ~ Lm such that glT go' g(Al ) C L: 
0and g(B ) C L- For i E ro, we make g. R,.• g: L -+ S.l m· 1. 1. 

+Since y(L+) C Al and y (L~) c Bl , 'we have t~hat (g 0 y) (L ) c 
m m 

L+ and (g 0 y) (L~) c L-. Moreover y(2i-2) 2i-2 for9 0 

rn m 

i E m+l. This is enough to assert that i 0 goy, ••• ,1 

i 0 goy are linearly independent (Lemma 1.2 of [6]).m 

This implies that gl,···,gm are linearly independent. 
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By Corollary 1.8, there exists S E J such that 

gIlTs ~ 1. Since p(Y ) = A(YS) < m, we have thats
fS	 ••• f8 are linearly dependent. So there exist integers
l' 'm 

Q a. Q a 
a ,···,a not all zero such that (fr) 1 ••••• (f~) m 'V 1;

1 m 
a a 

then (R,/·····,Q,mm) 0 fB 0 (1jJIT 
B

) 'V 1, so that 

a a
 
(gll·····gmm) ITB 'V 1. Applying Proposition 1.10, we obtain
 

a 1 • • am 
that	 gl ••• gm 'V 1. This contradiction ends the proof. 
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