TOPOLOGY PROCEEDINGS

Volume 10, 1985
Pages 83-94
http://topology.auburn.edu/tp/

MULTICOHERENCE AND PRODUCTS

by
Alejandro Illanes

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

MULTICOHERENCE AND PRODUCTS

Alejandro Illanes M.

Introduction

Let W be any space, we define $b_{o}(W)=$ (number of
components of W) - lif this number is finite and $b_{o}(W)=\infty$ otherwise. W is insular when $b_{0}(W)$ is finite. Let z be a connected space; the multicoherence degree, $r(Z)$, of Z is defined by $r(Z)=\sup \left\{b_{o}(A \cap B): A, B\right.$ are closed connected subsets of Z and $Z=A \cup B\} . Z$ is said to be unicoherent if $n(\mathrm{Z})=0$.

A region of Z is an open connected subset of Z. A map is a continuous function. We will denote by \mathbb{R} the real line; by S the unit circle in the complex plane; by S^{W} the group of maps of W in S with the complex multiplication and by $e: R \rightarrow S$ the exponential map. For $f \in S^{W}$, we write $\mathrm{f} \sim \mathrm{l}$ if there exists a map $\mathrm{g}: \mathrm{W} \rightarrow \mathrm{R}$ such that $\mathrm{e} \circ \mathrm{g}=\mathrm{f}$ and we write $f x$ l if this is not true. If $A \subset W$, the restriction of f to A will be denoted by $f \mid A$.

For two closed subsets A, E of Z, we denote by $P(A, B)$ the subgroup of S^{Z} which consists of all $f \in S^{Z}$ such that $f \mid A \sim 1$ and $f \mid B \sim 1$. And we define $P(A, B)=$ maximum number of linearly independent elements of $P(A, B)$ if this number is finite and $\mathcal{P}(A, B)=\infty$ otherwise. A finite number of elements f_{1}, \cdots, f_{n} of S^{Z} is said to be linearly independent provided that $f_{l} a_{l} \cdot \ldots \cdot f_{n} a_{n} \sim_{l}$ where a_{1}, \cdots, a_{n} are integers is possible only when $a_{1}=\cdots=a_{n}=0$. Finally, we define the analytic multicoherence degree, $P(2)$, of Z by

```
\(P(Z)=\sup \{P(A, B): A, B\) are closed subsets of \(Z\) and
\(Z=A \cup B\}\).
C. Kuratowsky (Fund. Math. 15 (1930) page 353) asked
``` the following: Is the product of two unicoherent Peano continua unicoherent? In [l], \(K\). Borsuk gave an affirmative answer to this question. S. Eilenberg [2] proved that the product of two connected, locally connected, unicoherent metric spaces is unicoherent. And T. Ganea [4] generalized these results proving that the product of an arbitrary family of connected, locally connected, unicoherent spaces is unicoherent.

In [3], S. Eilenberg proved that if \(X, Y\) are connected, compact, metric spaces, then \(\mathcal{P}(\mathrm{X} \times \mathrm{Y})=\sup \{\mathcal{P}(\mathrm{X}), \mathcal{P}(\mathrm{Y})\}\). This equality was generalized to denumerable products by A. H. Stone [9] and he mentioned that is valid for arbitrary products of connected, compact, metric spaces. On the other hand, the equality \(r(Z)=P(Z)\) is proved by S. Eilenberg [3] when \(Z\) is a connected, locally connected, compact, metric space. In [8], A. H. Stone showed that this equality holds for all connected, locally connected, normal \(\mathrm{T}_{1}\)-spaces.

Using these results, we have that the equality:
\[
\begin{equation*}
r\left(\Pi x_{\alpha}\right)=\sup \left\{r\left(X_{\alpha}\right): \alpha \in J\right\} \tag{1}
\end{equation*}
\]
holds if each space \(X_{\alpha}\) is a connected, locally connected, compact, metric space. In this paper, we prove that the equality (1) is true if each \(X_{\alpha}\) is a connected, locally pathwise connected, normal \(T_{1}\)-space.

It is important to observe that, while normality is a standard assumption in this area, a product of normal
spaces need not be normal. This difficulty is handled by using regularity (instead of normality) for most of the arguments.

\section*{1. Some Auxiliary Results}

Throughout this section X and Y will denote connected, locally connected, regular spaces. If \(W\) is any space, we define \(C(W)=\{D: D\) is a component of \(W\}\). If \(m\) is a positive integer, we define \(\bar{m}=\{1,2, \cdots, m\}\). We use the notation \(f \approx g\) to indicate that the maps \(f\) and \(g\) are homotopic.
1.1 Lemma. Let \(B\) be a closed subset of X and let U be an open insurar subset of X such that \(b_{o}\left(\mathrm{Cl}_{\mathrm{X}}(\mathrm{U}) \cap \mathrm{B}\right) \geq \mathrm{m}\). Then there exists an open subset \(V\) of X such that \(\mathrm{U} \subset \mathrm{V}\), \(b_{o}\left(\mathrm{Cl}_{X}(\mathrm{~V}) \cap \mathrm{B}\right) \geq \mathrm{m}, b_{o}\left(\mathrm{Cl} \mathrm{X}_{\mathrm{X}}(\mathrm{V})\right)=b_{o}(\mathrm{~V})\) and \(b_{o}(\mathrm{U}) \geq b_{o}(\mathrm{~V})\).

Proof. Suppose that \(b_{0}(U)-b_{0}\left(\mathrm{Cl}_{\mathrm{X}}(\mathrm{U})\right)>0\), then there exists a point \(p \in x\) and there exist two components of \(U\) such that each one of them has \(p\) in its closure. Since \(b_{o}\left(\mathrm{Cl}_{\mathrm{X}}(\mathrm{U}) \mathrm{n} \mathrm{B}\right) \geq \mathrm{m}\), there exist nonempty, pairwise disjoint closed subsets \(B_{1}, \cdots, B_{m+1}\) of \(x\) such that \(C 1_{X}(U) \cap\) \(B=B_{1} \cup \cdots \cup B_{m+1}\). Since \(x\) is regular, we can take \(a\) region \(W\) of \(X\) such that \(p \in W\) and \(C l_{X}(W)\) intersects at most one of the \(B_{i}\) 's. Then \(V_{1}=U U W\) is an open subset of \(X\) such that \(U \subset V_{1}, b_{0}\left(C l_{X}\left(V_{1}\right) \cap B\right) \geq m\) and \(b_{o}\left(V_{1}\right)<b_{0}(U)\). Then \(V\) can be constructed repeating this argument when necessary.
1.2 Lemma. Let B be a closed connected subset of X and let U be an open insular subset of X such that \(\mathrm{X}=\mathrm{B} U \mathrm{U}\) and \(b_{o}\left(\mathrm{~B} \cap \mathrm{Cl}_{\mathrm{X}}(\mathrm{U})\right) \geq \mathrm{m} \geq 1\). Then there exists a region W of \(X\) such that \(U \subset W\) and \(b_{0}\left(B \cap C l_{X}(W)\right) \geq m-b_{0}\left(C l_{X}(U)\right)\).

Proof. We can suppose that \(m-b_{o}\left(\mathrm{Cl}_{\mathrm{X}}(\mathrm{U})\right)>0\). It will be enough to prove that if \(U\) is not connected, then there exists an open subset \(W_{1}\) of \(X\) such that \(b_{o}\left(W_{1}\right)<\) \(b_{o}(U), U \subset W_{1}\) and \(b_{0}\left(B \cap C l_{X}\left(W_{1}\right)\right) \geq m-1\). Suppose then that \(U\) is not connected. We take \(V\) as in Iemma l.l. If \(C l_{X}(V)\) is connected, then \(V\) is so. In this case we put \(W_{1}=V\). Suppose then that \(C l_{X}(V)\) is not connected. We put \(\mathrm{Cl}_{\mathrm{X}}(\mathrm{V})=\mathrm{H} U \mathrm{~K}\) where \(\mathrm{H}, \mathrm{K}\) are closed, nonempty disjoint subsets of \(X\).

Let \(C_{1}, \ldots, C_{s}\) be closed, nonempty pairwise disjoint subsets of \(X\) such that \(s \geq m+1, B \cap C l_{X}(V)=C_{I} \cup \cdots U C_{s}\) and each \(C_{i}\) is contained in some component of \(C l_{X}(V)\). We make \(I=\left\{i \in \bar{s}: C_{i} \subset H\right\}\), then \(I\) and \(\bar{s}-I\) are nonempty. It is easy to prove that there exist \(i \in I, j \in \bar{s}-I\) and \(D\) a component of \(X-C l_{X}(V)\) such that \(C l_{X}(D) \cap C_{i} \neq \phi\) and \(C l_{X}(D) \cap C_{j} \neq \phi\). We choose points \(p \in C l_{X}(D) \cap C_{i}\) and \(q \in C l_{X}(D) \cap C_{j}\). Let \(U_{1}, U_{2}\) be regions of \(X\) such that \(p \in U_{1}, q \in U_{2}, C l_{X}\left(U_{1}\right) \cap\left(U\left\{C_{k}: k \neq i\right\}\right)=\phi\) and \(C l_{X}\left(U_{2}\right) \cap\) \(\left(U\left\{C_{k}: k \neq j\right\}\right)=\phi\). Since \(D \cap U_{1} \neq \phi\) and \(D \cap U_{2} \neq \phi\), we have that there exists a region \(E\) of \(X\) such that \(C l_{X}(E) \subset D\), \(\mathrm{E} \cap \mathrm{U}_{1} \neq \phi\) and \(\mathrm{E} \cap \mathrm{U}_{2} \neq \phi\). We define \(\mathrm{W}_{1}=\mathrm{V} \cup \mathrm{U}_{1} \cup \mathrm{U}_{2} \cup \mathrm{E}\).
1.3 Theorem. If \(r(\mathrm{X}) \geq \mathrm{m} \geq 1\), then there exist regions \(U, V\) of \(X\) and there exists \(C \subset\left(\left(X-C l_{X}(U)\right)\right.\) such that \(b_{0}(H \cap K) \geq m\) and \(X=H U K\) where \(H=C l_{X}(U) U(U\{D:\) \(D \in(\})\) and \(K=C I_{X}(V)\).

Proof. Let \(A, B\) be closed connected subsets of \(X\) such that \(X=A \cup B\) and \(b_{0}(A \cap B) \geq m\). It is enough to prove that there exist a region \(U\) of \(X\) and \(D \subset C(X-B)\) such that
\(X=C l_{X}(U) \cup(B \cup(U\{D: D \in D\}))\) and \(b_{o}(C]_{X}(U) \cap(B \cup(U\{D:\) \(D \in D\})) \geq m\). Let \(C_{1}, \cdots, C_{m+1}\) be closed, nonempty, pairwise disjoint subsets of \(x\) such that \(A \cap B=C_{1} \cup \cdots \cup C_{m+1}\). For \(J \subset \overline{m+1}\), we define \(C_{J}=U\left\{C_{j}: j \in J\right\}\). We make \(\mathcal{I}=\{J \subset \bar{m}+1: J \neq \phi\) and \(J \neq \bar{m}+1\}\). Then if \(J \in \mathcal{g}\), we can choose \(D_{J} \in\left((X-B)\right.\) such that \(C l_{X}\left(D_{J}\right) \cap C_{J} \neq \phi\) and \(C l_{X}\left(D_{J}\right) \cap C_{\bar{m}+1-J} \neq \phi\). We put \(D=\left((X-B)-\left\{D_{J}: J \in \mathcal{g}\right\}\right.\), \(U_{1}=U\left\{D_{J}: J \in \mathcal{G}\right.\) and \(B_{1}=B U(U\{D: D \in D\}\).

It is not difficult to prove that \(b_{o}\left(\mathrm{~B}_{1} \cap \mathrm{Cl} \mathrm{X}_{\mathrm{X}}\left(\mathrm{U}_{1}\right)\right) \geq\) \(m+b_{o}\left(\mathrm{Cl}_{\mathrm{X}}\left(\mathrm{U}_{1}\right)\right)\). Then, by Lemma l.2, there exists a region \(U\) of \(X\) such that \(U_{1} \subset U\) and \(b_{o}\left(B_{1} \cap C l_{X}(U)\right) \geq m\). This completes the proof.

We denote by \(R^{2}\) the Euclidean plane. For a positive integer \(n\), we define \(L_{n}=\left\{(u, v) \in R^{2}:(u-(2 i-1))^{2}+\right.\) \(v^{2}=l\) for some \(\left.i \in \bar{n}\right\}\left(L_{n}\right.\) is a row of \(n\) unit circles each touching the next one in a single point), \(L_{n}^{+}=\left\{(u, v) \in L_{n}\right.\) : \(\mathrm{v} \geq 0\}\) and \(L_{\mathrm{n}}^{-}=\left\{(\mathrm{u}, \mathrm{v}) \in L_{\mathrm{n}}: \mathrm{v} \leq 0\right\}\), we consider these spaces with the topology that they have as subspaces of \(R^{2}\). For \(i \in \bar{n}\), we define \(\ell_{i}: L_{n} \rightarrow\) Sy:
\[
\ell_{i}(u, v)=\left\{\begin{array}{lll}
(u-(2 i-1), v) & \text { if } & |u-(2 i-1)| \leq 1 \\
(-1,0) & \text { if } \quad u \leq 2 i-2 \\
(1,0) & \text { if } u \geq 2 i
\end{array}\right.
\]
(\(\ell_{i}\) is "essentially" the retraction of \(L_{n}\) in its \(i^{\text {th }}\) circle)
1.4 Proposition. Suppose that X is locally pathwise connected ana that \(n(X) \geq m \geq 1\). Then there exist alosed connected subsets \(A, B\) of \(X\); there exist closed, nonemptu, pairwise disjoint subsets \(\mathrm{C}_{1}, \cdots, \mathrm{C}_{\mathrm{m}+1}\) of X and there exists
a map \(\sigma: L_{\mathrm{m}} \rightarrow \mathrm{X}\) such that \(\sigma\left(L_{\mathrm{m}}^{+}\right) \subset \mathrm{A}, \sigma\left(L_{\mathrm{m}}^{-}\right) \subset \mathrm{B}, \mathrm{A} \cap \mathrm{B}=\) \(C_{1} \cup \cdots \cup C_{m+1}\) and \(\sigma(2 i-2,0) \in C_{i}\) for each \(i \in \overline{m+1}\).

Proof. Let \(U, V, C, H\) and \(K\) as in Theorem 1.3.
Suppose that \(H \cap K=E_{1} \cup \cdots \cup E_{m+1}\) where \(E_{1}, \cdots, E_{m+1}\) are closed, nonempty, pairwise disjoint subsets of X. From the connectedness of \(V\) it follows that \(E_{i} \cap C l_{X}(U) \cap C l_{X}(V)\) \(\neq \phi\) for each \(i \in \overline{m+1}\). We choose points \(p_{1} \in E_{1} \cap C l_{X}(U)\), \(\cdots, p_{m+1} \in E_{m+1} \cap \mathrm{Cl}_{\mathrm{X}}(\mathrm{U})\) and we take regions \(\mathrm{U}_{1}, \cdots, \mathrm{U}_{\mathrm{m}+1}\) of \(X\) such that \(p_{1} \in U_{1}, \cdots, p_{m+1} \in U_{m+1}\) and \(C l_{X}\left(U_{i}\right) \cap\left(U\left\{E_{j} U\right.\right.\) \(\left.\left.C l_{X}\left(U_{j}\right): j \neq i\right\}\right)=\phi\). We define \(U_{o}=U U U_{1} \cup \cdots U U_{m+1}\), \(V_{0}=V U U_{1} \cup \cdots U U_{m+1}, A=H \cup C l_{X}\left(U_{0}\right), B=K U C l_{X}\left(V_{0}\right)\) and \(C_{1}=E_{1} \cup C l_{X}\left(U_{1}\right), \cdots, C_{m+1}=E_{m+1} \cup C l_{X}\left(U_{m+1}\right)\). Since \(U_{O}\) and \(V_{O}\) are regions of \(X\), there exist maps \(\sigma_{1}: L_{m}^{+} \rightarrow U_{O}\) and \(\sigma_{2}: L_{m}^{-} \rightarrow V_{o}\) such that \(\sigma_{1}(2 i-2,0)=p_{i}=\sigma_{2}(2 i-2,0)\) for \(i \in \overline{m+1}\). Let \(\sigma: L_{m} \rightarrow X\) be the map which extends \(\sigma_{1}\) and \(\sigma_{2}\).

From now on, the condition of regularity for \(X\) and \(Y\) will not be necessary.
1.5 Proposition. Suppose that \(Y_{O} \in Y\) and \(f \in S^{X \times Y}\) are such that \(\mathrm{f} \mid \mathrm{X} \times\left\{\mathrm{y}_{\mathrm{O}}\right\} \sim \mathrm{l}\) and \(\mathrm{f} \mid\{\mathrm{x}\} \times \mathrm{Y} \sim \mathrm{l}\) for each \(\mathrm{x} \in \mathrm{X}\). Then f \(\sim 1\).

Proof. Let \(h_{0}: X \times\left\{y_{0}\right\} \rightarrow R\) be a map such that \(e \circ h_{0}=f \mid x \times\left\{y_{0}\right\}\). For \(x \in X\), we take \(a \operatorname{map} h_{x}:\{x\} \times\) \(y \rightarrow R\) such that \(e \circ h_{x}=f \mid\{x\} x Y\) and \(h_{x}\left(x, y_{0}\right)=h_{0}\left(x, y_{0}\right)\). We define \(h: X \times Y \rightarrow R\) by \(h(x, y)=h_{x}(x, y)\). Then \(e \circ h=f\). We will prove that \(h\) is continuous.

We take \((x, y) \in X \times Y\). For \(v \in Y\), we choose regions \(U_{V}\) of \(X\) and \(V_{v}\) of \(Y\) such that \((x, v) \in W_{V}=U_{V} \times V_{v}\) and the
diameter of \(f\left(W_{v}\right)\) is smaller than \(1 / 4\). Then there exists a map \(g_{v}: W_{v} \rightarrow R\) such that \(g_{V}(x, v)=h(x, v)\) and \(e^{\circ} g_{v}=f \mid W_{v}\). Then \(g_{v}\left|\{x\} \times v_{v}=h_{x}\right|\{x\} \times v_{v}\). This implies that if \(w\), \(v \in Y\), there exists a common extension of \(g_{v}\) and \(g_{w}\).

Let n be the minimum positive integer for which there exist \(v_{1}, \cdots, v_{n} \in Y\) such that \(y_{o} \in V_{v_{1}}, Y \in V_{v_{n}}\) and \(v_{v_{1}} \cap\) \(v_{v_{2}} \neq \phi, \cdots, v_{v_{n-1}} \cap v_{v_{n}} \neq \phi\). Let \(U\) be a region of \(x\) such that \(x \in U \subset U_{v_{l}} \cap \cdots \cap U_{v_{n}}\) and let \(v=v_{v_{l}} u \cdots u v_{v_{n}}\). Then \((x, y) \in U \times V\) and there exists a map \(g: U \times V \rightarrow R\) such that \(e \circ g=f\) and \(g\) extends each one of the maps \(g_{v_{i}} \mid U \times\) \(\mathrm{V}_{\mathrm{v}_{\mathrm{i}}}\). Take \((\mathrm{u}, \mathrm{v}) \in \mathrm{U} \times \mathrm{v}\). Since \(\mathrm{g}\left|\{\mathrm{x}\} \times \mathrm{V}=\mathrm{h}_{\mathrm{x}}\right|\{\mathrm{x}\} \times \mathrm{V}\), we have that \(g\left(x, y_{o}\right)=h_{o}\left(x, y_{o}\right)\). This implies that \(g \mid U \times\left\{y_{o}\right\}=\) \(h_{0} \mid u \times\left\{y_{0}\right\}\), and so \(g\left(u, y_{0}\right)=h_{u}\left(u, y_{0}\right)\). It follows that \(g\left|\{u\} \times v=h_{u}\right|\{u\} \times v\). In particular, \(g(u, v)=h(u, v)\). Therefore \(h \mid U \times V=g\). This proves that \(h\) is continuous and completes the proof.

As a consequence, we obtain the following particular case of Lemma 5 of [8].
1.6 corolzary. If \(f \in S^{x}\), then \(f \sim 1\) if and only if \(\mathrm{f} \approx \mathrm{l}\) (the constant map 1).
1.7 Proposition. Let \(\left\{\mathrm{X}_{\alpha}: \alpha \in \mathrm{J}\right\}\) be a family of connected, locally connected spaces. For \(p=\left(p_{\alpha}\right) \in \Pi X_{\alpha}\) and \(\beta \in J\), we define \(Y(p, \beta)=\left\{\left(x_{\alpha}\right) \in \Pi X_{\alpha}: X_{\alpha}=p_{\alpha}\right.\) for all \(\alpha \neq \beta\}\). Suppose that \(f: \Pi X_{\alpha} \rightarrow S\) is a map such that \(f \mid Y(p, \beta) \sim 1\) for each \(p \in \Pi X_{\alpha}\) and \(\beta \in J\). Then \(f \sim 1\).

Proof. Fix a point \(x=\left(x_{\alpha}\right) \in X=\Pi X_{\alpha}\). We choose \(t \in R\) such that \(e(t)=f(x)\). If \(L\) is a subset of \(J\), define \(X_{L}=\Pi\left\{X_{\alpha}: \alpha \in L\right\}, x_{L}^{c}=\left(x_{\alpha}\right)_{\alpha \not \subset L} \in X_{J-L}\) and \(Y_{L}=X_{L} \times\) \(\left\{x_{L}^{C}\right\} \subset X\). From Proposition 1.5 it follows that, for any finite \(F \subset J\), there exists a map \(g_{F}: Y_{F} \rightarrow R\) such that e \(\circ g_{F}=f \mid Y_{F}\) and \(g_{F}(x)=t\).

Let \(U\) be the set of basic open subsets \(U=\left\langle U_{\alpha_{1}}, \cdots, U_{\alpha_{n}}\right\rangle\) of X where \(\mathrm{U}_{\alpha_{1}}, \cdots, \mathrm{U}_{\alpha_{n}}\) are proper, nonempty regions of \(X_{\alpha_{1}}, \cdots, x_{\alpha_{n}}\) respectively and the diameter of \(f(U)\) is smaller than \(1 / 4\). If \(U \in U\), we define \(F=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}\), and \(U_{0}=U_{\alpha_{1}} \times \cdots \times U_{\alpha_{n}} \times\left\{x_{F}^{C}\right\} \subset U \cap Y_{F} . \quad\) Since \(f \mid U \sim 1\) and \(U_{O}\) is connected, there exists a map \(g_{U}: U \rightarrow R\) such that \(\mathrm{f} \mid \mathrm{U}=e \quad \circ \mathrm{~g}_{\mathrm{U}}\) and \(\mathrm{g}_{\mathrm{U}}\left|\mathrm{U}_{\mathrm{O}}=\mathrm{g}_{\mathrm{F}}\right| \mathrm{U}_{\mathrm{O}}\).

Let \(u=\left\langle U_{\alpha_{1}}, \cdots, U_{\alpha_{n}}\right\rangle, V=\left\langle v_{\beta_{1}}, \cdots, v_{\beta_{m}}\right\rangle \in U\) be such that \(V \subset U\). We are going to prove that \(g_{U} \mid V=g_{V}\). We put \(F=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}\) and \(G=\left\{\beta_{1}, \cdots, \beta_{m}\right\}\), then \(F \subset G\) and \(g_{F}=g_{G} \mid Y_{F}\). We choose a point \(y=\left(y_{\alpha}\right) \in V\); we define \(S=U_{\alpha_{1}} \times \cdots \times U_{\alpha_{n}} \times X_{G-F} \times\left\{x_{G}^{C}\right\}\), and we define the points \(u=\left(u_{\alpha}\right)\) and \(z=\left(z_{\alpha}\right)\) by: \(z_{\alpha}=y_{\alpha}\) if \(\alpha \in F, z_{\alpha}=x_{\alpha}\) if \(\alpha \notin F\) and \(u_{\alpha}=Y_{\alpha}\) if \(\alpha \in G, u_{\alpha}=x_{\alpha}\) if \(\alpha \notin G\). Then \(z \in U_{O}, u \in S \cap V_{O^{\prime}} S \subset U\) and \(S \subset Y_{G^{\prime}}\) so that \(g_{U}(z)=\) \(g_{F}(z)=g_{G}(z)\), therefore \(g_{U}\left|S=g_{G}\right| S\). In particular, \(g_{U}(u)=g_{G}(u)\). This implies that \(g_{U}\left|V_{o}=g_{G}\right| V_{O}=g_{V} \mid V_{o}\). Hence \(g_{U} \mid V=g_{V}\).

From this it follows that if \(U, W \in U\), then \(g_{U} \mid U \cap W=\) \(g_{W} \mid \cup \cap W . \quad\) Hence \(f \sim 1\).
1.8 Corollary. Let \(\left\{X_{\alpha}: \alpha \in J\right\}\) be a family of connected, locally pathwise connected spaces. Suppose that \(\mathrm{f}: ~ \Pi \mathrm{X}_{\alpha} \rightarrow \mathrm{S}\) is a map and that there exists a point \(\mathbf{x}=\left(\mathrm{X}_{\alpha}\right) \in \Pi \mathrm{X}_{\alpha}\) such that \(\mathrm{f} \mid \mathbf{Y}(\mathrm{x}, \beta) \sim 1\) for \(\alpha\) all \(\beta \in \mathrm{J}\). Then \(\mathrm{f} \sim 1\).

Proof. Let \(p=\left(p_{\alpha}\right) \in \Pi X_{\alpha}\) be any point and let \(\beta \in J\). Suppose that i: \(X_{\beta} \rightarrow Y(X, \beta)\) and \(j: X_{\beta} \rightarrow Y(p, \beta)\) are the inclusions. Since \(\Pi\left\{X_{\alpha}: \alpha \neq \beta\right\}\) is pathwise connected, we have that \(i\) and \(j\) are homotopic (as maps of \(X_{\beta}\) in \(\Pi x_{\alpha}\)). This implies that \(f \mid Y(p, \beta) \sim 1\). Hence \(f \sim 1\).
1.9 Lemma. Let x be any point of x . Suppose that x is locally pathwise connected and that \(f \in S^{X}\) is such that \(\mathrm{f} x\) 1. Then there exists a map \(\sigma: \mathrm{S} \rightarrow \mathrm{X}\) such that \(\sigma(\mathrm{I})=\mathrm{x}\) and \(\mathrm{f} \circ \sigma \not x \mathrm{l}\).

Proof. Immediate from Theorem 6.l of [5].
1.10 Proposition. Suppose that X and Y are locally pathwise connected. Let A, B be closed subsets of X \(\times \mathrm{Y}\) and let \(\mathrm{f}, \mathrm{g}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{S}\) be maps such that \(\mathrm{X} \times \mathrm{Y}=\mathrm{A} \cup \mathrm{B}\), \(\mathrm{f}|\mathrm{A} \sim 1, \mathrm{~g}| \mathrm{A} \sim 1, \mathrm{f} \mid \mathrm{B} \sim 1\) and \(\mathrm{g} \mid \mathrm{B} \sim \mathrm{l}\). If there exists \(\mathrm{y} \in \mathrm{Y}\) such that \(\mathrm{f} \mid \mathrm{X} \times\{\mathrm{y}\} \mathcal{X} \mathrm{l}\) and \(\mathrm{g} \mid \mathrm{X} \times\{\mathrm{y}\} \sim 1\), then \(\mathrm{g} \sim \mathrm{l}\).

Proof. By Proposition 1.5, it is enough to prove that \(g \mid\{u\} \times y \sim 1\) for each \(u \in X\). Suppose that there exis.ts \(x \in X\) such that \(g \mid\{x\} \times Y \not x\) l. Let \(\delta: S \rightarrow X \times\{y\}\) and \(\lambda: S \rightarrow\{x\} \times Y\) be maps such that \(f \circ \delta \not x l, g \circ \lambda \not x l\) and \(\delta(1)=(x, y)=\lambda(1)\). We define \(\psi: S \times S \rightarrow X \times Y\) by \(\psi(s, t)=\left(P_{X}(\delta(s)), P_{Y}(\lambda(t))\right)\) where \(P_{X}\) and \(P_{Y}\) are the projections of \(X \times Y\) in \(X\) and \(Y\) respectively. Since
\(P(S \times S)=1\) (Theorem 3, §4 of [3]), we have that there exist integers \(a, b\) with \(a \neq 0\) or \(b \neq 0\) such that \((f \circ \psi)^{a}(g \circ \psi)^{b} \sim 1\). Then \(\left(f^{a} g^{b}\right) \circ \psi \circ i \sim 1\) where i: \(S \rightarrow S \times\{1\}\) is the inclusion, so that \((f \circ \delta)^{a}(g \circ \delta)^{b} \sim 1\). Similarly, \((f \circ \lambda)^{a}(g \circ \lambda)^{b} \sim 1\). Then \((f \circ \delta)^{a} \sim 1\), so that \(\mathrm{a}=0\). This implies that \((\mathrm{g} \circ \lambda)^{\mathrm{b}} \sim 1\), so \(\mathrm{b}=0\). This contradiction ends the proof.

\section*{2. Main Theorems}
2.1 Theorem. If \(\left\{\mathrm{X}_{\alpha}: \alpha \in \mathrm{J}\right\}\) is a nonempty family of connected, locally pathwise connected nonempty spaces, then \(P\left(\Pi X_{\alpha}\right)=\sup \left\{P\left(X_{\alpha}\right): \alpha \in J\right\}\).

Proof. It is easy to prove that \(\mathcal{P}\left(\pi x_{\alpha}\right) \geq \sup \left\{\mathcal{P}\left(\mathrm{x}_{\alpha}\right):\right.\) \(\alpha \in J\}\). Suppose that \(\mathcal{P}\left(\Pi X_{\alpha}\right) \geq m>\sup \left\{\mathcal{P}\left(X_{\alpha}\right): \alpha \in J\right\}\). Then there exist closed subsets \(A, B\) of \(X_{o}=\pi X_{\alpha}\) and there exist \(f_{1}, \cdots, f_{m} \in S^{X_{O}}\) such that \(X_{o}=A \cup B, f_{i}\left|A \sim 1, f_{i}\right| B \sim 1\) for all \(i \in \bar{m}\) and \(f_{1}, \cdots, f_{m}\) are linearly independent. We choose a point \(\mathrm{x}=\left(\mathrm{x}_{\alpha}\right) \in \mathrm{X}_{0}\). By Corollary 1.7, there exists \(\beta \in J\) such that \(f_{1} \mid Y(x, \beta) \notin 1\) where \(Y(x, \beta)=\) \(\left\{\left(w_{\alpha}\right) \in X_{o}: w_{\alpha}=x_{\alpha}\right.\) for all \(\left.\alpha \neq \beta\right\}\). Since \(\mathcal{P}(Y(x, \beta))<m\), there exist integers \(a_{1}, \cdots, a_{m}\) not all zero such that \(f_{1}{ }_{1} \cdot \ldots \cdot f_{m}^{a}{ }_{m} \mid Y(x, \beta) \sim\) 1. Applying Proposition 1.9 to \(X=X_{\beta}\) and \(Y=\pi\left\{X_{\alpha}: \alpha \neq \beta\right\}\), we obtain that \(f_{1}^{a} 1 \cdot \ldots \cdot f_{m}^{a} \sim 1\). This contradiction completes the proof.
2.2 Theorem. If \(\left\{\mathrm{X}_{\alpha}: \alpha \in J\right\}\) is a nonempty family of connected, locally pathwise connected, normal nonempty \(\mathrm{T}_{1}\)-spaces, then \(r\left(\Pi \mathrm{X}_{\alpha}\right)=\sup \left\{r\left(\mathrm{X}_{\alpha}\right): \alpha \in \mathrm{J}\right\}\).

Proof. We put \(\mathrm{X}=\pi \mathrm{X}_{\alpha}\). It is easy to prove that \(r(X) \geq \sup \left\{r\left(X_{\alpha}\right): \alpha \in J\right\}\). Suppose that \(r(X) \geq m>\sup \left\{r\left(X_{\alpha}\right):\right.\) \(\alpha \in J\}\). Let \(A, B, C_{1}, \cdots, C_{m+1}\) and \(\sigma: L_{m} \rightarrow X\) be as in Proposition 1.4. We make \(L=\left(L_{m}\right)^{J}\) (the product of \(J\) copies of \(\left.L_{m}\right)\) and we define \(\psi: L \rightarrow x\) by \(\psi\left(\left(s_{\alpha}\right)\right)=\left(P_{\alpha}\left(\sigma\left(s_{\alpha}\right)\right)\right)\), where \(P_{\alpha}: X \rightarrow X_{\alpha}\) is the projection. For \(s \in L_{m}\), we call \(\gamma(s)\) the point of \(L\) which has all its coordinates equal to \(s\). Then \(\gamma: L_{m} \rightarrow L\) is continuous. We make \(\left(x_{\alpha}\right)=x=\psi(\gamma(0,0))=\) \(\sigma(0,0) \in C_{1}\). We can suppose that \(x\) is an interior point of \(C_{1}\). Let \(A_{1}=\psi^{-1}(A)\) and \(B_{1}=\psi^{-1}(B)\).

Given \(\beta \in J\), we put \(Y_{\beta}=\left\{\left(y_{\alpha}\right) \in X: y_{\alpha}=x_{\alpha}\right.\) for all \(\alpha \neq \beta\}, A_{B}=A \cap Y_{B}, B_{B}=B \cap Y_{B}\) and \(C_{1}^{\beta}=C_{1} \cap Y_{\beta}, \cdots, C_{m+1}^{\beta}=\) \(C_{m+1} \cap Y_{\beta}\). Since \(Y_{B}\) is normal, there exists a map \(f^{\beta}: Y_{\beta} \rightarrow L_{m}\) such that \(f^{\beta}\left(A_{\beta}\right) \subset L_{m}^{+}, f^{\beta}\left(B_{\beta}\right) \subset L_{m}^{-}\)and \(f^{\beta}\left(C_{i}^{\beta}\right) \subset\{(2 i-2,0)\}\) for each \(i \in \overline{m+1}\). For \(i \in \overline{m+1}\), we make \(f_{i}^{\beta}=\ell_{i} \circ f^{\beta}: Y_{\beta} \rightarrow S\). We make \(T_{\beta}=\left\{\left(s_{\alpha}\right) \in L: s_{\alpha}=(0,0)\right.\) for all \(\left.\alpha \neq \beta\right\}\), then \(\psi\left(T_{\beta}\right) \subset Y_{\beta}\). Define \(g^{\beta}=f^{\beta} 。 \psi \mid T_{\beta}: T_{\beta} \rightarrow L_{m}\).

Let \(T=\left(u\left\{T_{\beta}: \beta \in J\right\}\right) \cup\left(\psi^{-1}\left(C_{1}\right) \cup \cdots u \psi^{-1}\left(C_{m+1}\right)\right)\),
then \(T\) is closed in \(L\). We define \(g_{O}: T \rightarrow L_{m}\) by \(g_{o}(w)=g^{\beta}(w)\) if \(w \in T_{\beta}\) and \(g_{O}(w)=(2 i-2,0)\) if \(w \in \psi^{-1}\left(C_{i}\right)\). Then \(g_{O}\) is continuous, \(g_{O}\left(T \cap A_{1}\right) \subset L_{m}^{+}\)and \(g_{o}\left(T \cap B_{1}\right) \subset L_{m}^{-}\). So that there exists a map \(g: L \rightarrow L_{m}\) such that \(g \mid T=g_{o}, g\left(A_{1}\right) \subset L_{m}^{+}\) and \(g\left(B_{1}\right) \subset L_{m}^{-}\). For \(i \in \bar{m}\), we make \(g_{i}=\ell_{i} \circ g: L \rightarrow S\). Since \(\gamma\left(L_{m}^{+}\right) \subset A_{1}\) and \(\gamma\left(L_{m}^{-}\right) \subset B_{1}\), we have that \((g \circ \gamma)\left(L_{m}^{+}\right) \subset\) \(L_{m}^{+}\)and \((g \circ \gamma)\left(L_{m}^{-}\right) \subset L_{m}^{-}\). Moreover \(g \circ \gamma(2 i-2)=2 i-2\) for \(i \in \overline{m+1}\). This is enough to assert that \(\ell_{1} \circ g \circ \gamma, \cdots\), \(\ell_{m} \circ g \circ \gamma\) are linearly independent (Lemma 1.2 of [6]). This implies that \(g_{1}, \cdots, g_{m}\) are linearly independent.

By Corollary l.8, there exists \(\beta \in J\) such that \(g_{1} \mid T_{\beta} \nsim 1\). Since \(P\left(Y_{\beta}\right)=\Omega\left(Y_{\beta}\right)<m\), we have that \(f_{1}^{\beta}, \cdots, f_{m}^{\beta}\) are linearly dependent. So there exist integers \(a_{1}, \cdots, a_{m}\) not all zero such that \(\left(f_{1}^{\beta}\right)^{a_{i}} \ldots\left(f_{m}^{\beta}\right)^{a_{m}} \sim 1\); then \(\left(\ell_{1}^{a} 1 . \ldots \cdot \ell_{m}^{a_{m}}\right) \circ f^{\beta} \circ\left(\psi \mid T_{\beta}\right) \sim 1\), so that \(\left(g_{1}{ }^{\mathrm{a}} \cdot \ldots \cdot{ }_{\mathrm{g}}{ }^{\mathrm{a}}{ }^{\mathrm{m}}\right) \mid \mathrm{T}_{\beta} \sim 1\). Applying Proposition 1.10, we obtain that \(g_{1}{ }^{a} \cdot \ldots \cdot g_{m}{ }^{a} \sim 1\). This contradiction ends the proof.

\section*{Bibliography}
[l] K. Borsuk, Quelques theorémès sur les ensembles unicoherent, Fund. Math. 18 (1931), l71-209.
[2] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 6l-ll2.
[3] \(\qquad\) , Sur Zes espaces multicohérents I, Fund. Math. 27 (1936), 153-190.
[4] T. Ganea, Covering spaces and cartesian products, Ann. Soc. Polon. Math. 25 (1952), 30-42.
[5] M. J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., Massachusetts (1967).
[6] A. Illanes, Multicoherence of spaces of the form X/M (preprint).
[7] \(\qquad\) , Multicoherence of symmetric products, An.
Inst. Mat. Univ. Nac. Autónoma México (to appear).
[8] S. Mardešić, Equivalence of singular and Čech homology for ANR's. Application to unicoherence, Fund. Math. 46 (1958), 29-45.
[9] A. H. Stone, Incidence relations in multicoherent spaces II, Canadian J. Math. 2 (1950), 461-480.
\(\qquad\) , On infinitely multicoherent spaces, Quart. J. Math. Oxford 3 (1952), 298-306.

Instituto de Matemáticas
Universidad Nacional A. de México
04510 , México, D. F. Mexico```

