TOPOLOGY PROCEEDINGS Volume 10, 1985

Pages 95–102

http://topology.auburn.edu/tp/

COMPACT AND REALCOMPACT κ -METRIZABLE EXTENSIONS

by

TAKESI ISIWATA

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

COMPACT AND REALCOMPACT ***-METRIZABLE EXTENSIONS**

Takesi Isiwata

Shchepin [4,5] introduced the notions of κ -metrizability and capacity as a generalization of metric spaces and locally compact groups, and proved that the κ -metrizability is productive [6]. Bennett, Lewis and Luksic [1] showed that κ -metrizability is equivalent to faithful capacity and, that κ -metrizability is not closed-hereditary. In §2, we give a characterization of a κ -metric space with a compact κ -metrizable extension and, a characterization of when βX is a κ -metrizable extension of a κ -metric space X. Next we give a characterization for a space Y (especially, νX) containing a κ -metric space X as a dense subset to be κ -metrizable extension of X, and prove that if a subspace X of the product L of realcompact κ -metric spaces is either dense or open, then $\nu X \subset L$.

In the following, we mean by a space a Tychonoff space and by a κ -metric space a normed κ -metric space (see 1.1 below) and assume familiarity with [2], whose terminology will be used throughout. We denote by C(X) (B(X)) the set of (bounded) real-valued continuous functions defined on X, by R the set of real numbers, by RC(X) the set of regular closed subsets of X, by ℓ' (or ℓ) a free ultrafilter in RC(X), by $\beta X(\upsilon X)$ the Stone-Čech compactification (the realcompactification) of X, by $\beta f(\upsilon f)$ the Stone-extension (the Hewitt-extension) of f \in B(X) (f \in C(X)) and by fad f that 96

 $\{f_a; f_a \in C(X)\}\$ is a decreasing sequence converging to for pointwise.

1. Definitions and Preliminaries

Definition 1.1. A κ -metric d(x,C) on X is a mapping d: X × RC(X) + R satisfying the following (K1) ~ (K4): (K1) d(x,C) = 0 \Leftrightarrow x \in C. (K2) C \subset D \Rightarrow d(x,C) \geq d(x,D) for every x \in X. (K3) d(x,C) is continuous in x for every C. (K4) f_a f for every increasing transfinite sequence {C_a} where f_a(x) = d(x,C_a), f(x) = d(x,D) and D = cl(UC_a).

Now we consider the following condition such that in

(K4) { f_a } converges to f uniformly, briefly (UK4) $f_a \downarrow f(unif.)$.

A κ -metric d is said to be normed if $d(x,\emptyset) \leq 1$ for every $x \in X$. If d is a κ -metric, then d(x,C)/(1 + d(x,C))is always normed ([5], p.]79), and hence, in the following, we mean by a κ -metric space a normed κ -metric space, and by k(X) the set { $f_C(x)$; $f_C(x) = d(x,C)$, $C \in RC(X)$ }. C and D are f-separated [3] if $cl_R f(C) \cap cl_R f(D) = \emptyset$ where C, D $\in RC(X)$ and f $\in C(X)$. D is said to be f_C -separated (f_C -unseparated) if inf $f_C(D) > 0$ (= 0) where $f_C \in k(X)$ and D $\in RC(X)$. The following lemma are well known or easily verified.

Lemma 1.2. (1) If L is a κ -metric space with a κ -metric d and X \subset L, then X is κ -metrizable in each of the following cases [5]: (i) X is dense (put $d_X(x,C) = d(x,Cl_L^C)$). (ii) X is regular closed (put $d_X(x,C) = d(x,C)$). (iii) X is open (by (i) and (ii)). (2) Let X be dense in L, $f_a = g_a | X \text{ and } f = g | X \text{ where}$ $g_a, g \in C(L)$. Then we have (i) $C \in RC(L) \Rightarrow X \cap C \in RC(X)$. (ii) $D \in RC(X) \Rightarrow cl_L D \in RC(L)$. (iii) $f_a \downarrow f$ (unif.) iff $g_a \downarrow g$ (unif). (iv) If L is compact, then $g_a \downarrow g \Rightarrow g_a \downarrow g$ (unif.)).

Definition 1.3. Let X be a κ -metric space. We consider the following (RC)- and (SRC)-conditions:

(RC) Let $C \cap D = \emptyset$, C, $D \in RC(X)$. If there exists $\mathcal{U} \ni D$ such that every $E \in \mathcal{U}$ is f_C -unseparated, then there exists $\mathcal{V} \ni C$ such that E and F are f_B -unseparated for $E \in \mathcal{U}$, $F \in \mathcal{V}$ and $f_B \in k(X)$.

(SRC) C \cap D = Ø, C,D \in RC(X) \Rightarrow D is f_C-separated.

The following is easily verified.

Lemma 1.4. (1) If X is a κ -metric space, (SRC) \Rightarrow (RC). (2) If X is pseudocompact, then Z(f) \cap D = Ø implies inf|f(D)| > 0 where Z(f) $\neq \emptyset$, f \in C(X) and RC(X) \ni D $\neq \emptyset$.

(3) If X is pseudocompact and κ -metrizable, then X satisfies (SRC).

(4) Let X be dense in L, $g \in B(L)$ and f = g|X. Then we have

(i) If inf|f(D)| > 0 for every $D \in RC(X)$ with $Z(f) \cap D = \emptyset$, then $Z(g) = cl_L Z(f)$.

(ii) If X is a κ -metric dense subspace satisfying (SRC) of L and f $\in k(X)$, then $Z(g) = cl_L Z(f)$.

2. Compact and Realcompact r-Metrizable Extensions

Definition 2.1. A space L is said to be a κ -metrizable extension of a κ -metric space X with a κ -metric d if X

is dense in L and there exists a κ -metric d_L on L such that d_L(x,D) = d(x, X \cap D) for x \in X, D \in RC(L) (briefly d_L | X = d), and it is easily verified that d_L(x,D) | X = d(x,C) for every x \in X implies D = cl_LC.

Theorem 2.2. Let X be a k-metric space. Then there exists a compact k-metrizable extension L of X iff X satisfies (UK4) and (RC).

Proof. →). It suffices to show by 1.2(2) that X satisfies (RC). Let C ∩ D = Ø, D ∈ U and every E ∈ U is f_C -unseparated. L being compact, there exists a point p ∈ L - X with U + p. Now suppose $f_C^*(p) = 2h > 0$ where $f_C^*(z) = d_L(z, cl_LC), z \in L, d_L | X = d$. Then there exists E ∈ U such that p ∈ cl_LE and $f_C^*(E) > h$, which is impossible because E is f_C -unseparated, and hence $f_C^*(p) = 0$. Take V such that C ∈ V and V + p. For $f_B \in k(X), E \in U, F \in V$, we have $cl_Rf_B(E) \cap cl_Rf_B(F) \ni f_B^*(p)$, which shows that X satisfies (RC).

←). Let $a(C) = \sup\{f_C(x); x \in X\}$ and $put I_C = [0, a(C)]$. Then $M = \prod_C I_C$ is a compact κ -metric space [6, Th. 2] and $\phi: X \to M$ is a homeomorphism of X to $\phi(X)$ where $\phi(x) = (f_C(x))$, $x \in X$. We shall show that $L = cl_M \phi(X)$ is a κ -metrizable extension of X. For $y = (Y_C) \in L$, put $f_C^*(y) = Y_C$. Obviously f_C^* is continuous. To show $Z(f_C^*) = cl_L C$, it suffices to prove that $f_C^*(p) = 0$ implies $p \in cl_L C$. Suppose that $p \notin cl_L C$. Then there exists $D \in RC(X)$ such that $p \in \ell$ int_L $cl_L D$ and $cl_L D \cap cl_L C = \ell$. Take ℓ such that $D \in \ell$ and $\ell' \to p$. Since $f_C^*(p) = 0$, it is easy to see that every $E \in \ell'$ is f_C -unseparated. By (RC), there exists $\ell' \ni C$ such that E and F are f_B -unseparated for $E \in U$, $F \in V$ and $f_B \in \dot{k}(X)$. Let $V \rightarrow q$. Let $f_B \in k(X)$ and $F \in V$. $U \rightarrow p$ implies $n\{cl_R f_B(E); E \in U\} = f_B^*(p) = p_B$. On the other hand, $A(F) = \{cl_R f_B(E) \cap cl_R f_B(F); E \in U\}$ is a collection of non-empty closed sets in [0,1] with the finite intersection property. Thus $nA(F) = f_B^*(p)$. Since F is an arbitrary element of U, we have $n\{A(F); F \in V\} = f_B^*(p)$. Since $n\{cl_R f_B(E); E \in V\} = f_B^*(q)$, we have $f_B^*(p) = f_B^*(q)$, i.e., $p_B = q_B$ for every $f_B \in k(X)$, and hence p = q, a contradiction. Thus we have $Z(f_C^*) = cl_L C$ for $C \in RC(X)$. From this fact and (UK4), it is easily verified that the function d_L defined by $d_L(z,D) = f_C^*(z)$ with $cl_L C = D$ is κ -metric on L and $d_L | X = d$, and hence L is a κ -metrizable extension of X.

Lemma 2.3. Let X be dense in a K-metric space L, and Y a space containing X as a dense subset such that every $f_C \in k(X)$ has the continuous extension f_C^* on Y with $cl_YC = Z(f_C^*)$ where $f_C(x) = d_L(x, cl_LC)$ (see 1.2(1(i)). Then a continuous mapping ϕ from Y onto L that leaves X pointwise fixed is a homeomorphism, so Y is a K-metrizable extension of X.

Proof. Let p, q $\in Y - X$, $p \neq q$ and $\phi(p) = \phi(q) = r \in L - X$. Then there exist C, D $\in RC(X)$ such that $cl_YC \cap cl_YD = \emptyset$, $p \in int_Ycl_YC$, $q \in int_Ycl_YD$, $f_C^*(p) = 0$ and $f_C^*(q) = 2h > 0$. Thus we have $r \in \phi(cl_YC) \subset cl_L\phi(C) = cl_LC$ and $d_L(r, cl_LC) = 0$. Similarly, $r \in cl_LD$ and we may assume $d_L(r, cl_LD) > h$, a contradiction, i.e., ϕ is 1-1. By the same method, we obtain the closedness of ϕ , so ϕ is homeomorphic. 100

As a space Y in Lemma 2.3, we can take the following: $Y = X \cup (\beta X - \cup \{Z(\beta f_C) - cl_{\beta X}C; C \in RC(X)\})$. $Z(\cup f) = cl_{\cup X}Z(f)$ for $f \in C(X)$ [2] implies $\cup X \subset Y$.

Theorem 2.4. If X is a K-metric space, then we have (1) βX is a K-metrizable extension of X iff X satisfies (SRC) and (UK4).

(2) If X is pseudocompact, then βX is a κ -metrizable extension of X iff X satisfies (UK4).

Proof. (1) \Rightarrow) If Z(f) \cap Z(g) = Ø, f,g \in B(X), then $cl_{\beta X}Z(f) \cap cl_{\beta X}Z(g) = Ø[2]$, and hence X satisfies (SRC) because βX is a κ -metrizable extension of X. On the other hand, X satisfies (UK4) by 2.2.

↔) Since there exists a compact κ -metrizable extension L of X by 2.2, and X satisfies (SRC), it is easily verified that we can take β X as a space Y in 2.3. On the other hand, there exists a continuous mapping from β X onto L that leaves X pointwise fixed, and hence β X is a κ -metrizable extension of X by 2.3.

(2) From (1) and 1.4(3).

Theorem 2.5. If a subspace X of the product L of realcompact κ -metric spaces {X_a; $a \in A$ } is either dense or open, then we have

(1) $\cup X$ is a κ -metrizable extension of X and $\cup X \subset L$.

(2) If X is pseudocompact, then X is C*-embedded in L and $\beta X \subset L$, especially, if X is dense, $\beta X = L$.

Proof. (1) (i) X is dense. Since L is κ -metrizable [6] and realcompact [2], X is a κ -metric space by 1.2(1),

and hence there is a mapping ϕ of $\cup X$ to L that leaves X pointwise fixed [2]. $X \subset \phi(\cup X) \subset L$, so $\phi(\cup X)$ is K-metrizable by 1.2(1), and hence $\cup X$ is homeomorphic to $\phi(\cup X)$ by 2.3. (ii) X *is open*. Apply a similar argument above. (2) follows from the fact that the pseudocompactness of X implies $\beta X = \cup X$.

Lemma 2.6. Let X be dense in L, g_a , $g \in C(L)$ and $f_a | f where f_a = g_a | X and f = g | X$. Then $g_a | g iff X satisfies$ the following:

(L-K4) for each $p \in L - X$ and each $f_a \in C(X)$ with $f_a \downarrow f \in C(X)$, there exists $U \in RC(X)$ such that $p \in int_L cl_L U$ and $f_a \downarrow f$ (unif. on U).

Proof. Since the implication \Leftarrow) follows from 1.2, we shall show \Rightarrow). Let $p \in L - X$ and take $V \in RC(X)$ with $p \in int_Lcl_LV$. Let us put $F_a = \{x \in V; f_a(x) - f(x) \ge \varepsilon\}$ for every a. Obviously $a > b \Rightarrow F_b \supset F_a$.

Case 1). $F_a = \emptyset$ for some a. Put U = V. Thus we have $F_a \neq \emptyset$ for every a.

Case 2). $p \notin cl_L F_a$ for some a. Then there exists W $\in RC(X)$ such that $p \in int_L cl_L W$ and $cl_L W \cap cl_L F_a = \emptyset$. Put U = V $\cap W$.

Case 3). $p \in cl_{L}F_{a}$ for every a. Since $g_{a}(x) - g(x) = f_{a}(x) - f(x) \ge \varepsilon$ for every $x \in F_{a}$, and $p \in cl_{L}F_{a}$, we have $g_{a}(p) - g(p) \ge \varepsilon$, a contradiction.

Using 2.6, the following two theorems are easily verified.

Theorem 2.7. A space L is a κ -metrizable extension of a κ -metric space X iff X satisfies (L-K4) and every $f_{C} \in k(X)$ has the continuous extension g over L with $Z(g) = cl_{L}C$.

Theorem 2.8. Let X be a κ -metrizable space. Then the following are equivalent:

- (1) X satisfies (UX-K4).
- (2) UX is a κ -metrizable extension of X.
- (3) There exists a real compact κ -metrizable extension of X.

Quite recently, we proved the following: (1) If βX is κ -metrizable, then X is pseudocompact. (2) If X is locally compact and $\beta X - X$ is κ -metrizable, then X is pseudocompact. (3) If X is a pseudocompact κ -metric space, and Y is a compact κ -metrizable extension of X, then $\beta X = Y$.

References

- [1] H. R. Bennett, W. Lewis and M. Luksic, *Capacity spaces*, Top. Proc. 8 (1983), 29-36.
- [2] L. Gillman and M. Jerison, *Rings of continuous func*tions, Van Nostrand, Princeton, NJ (1960).
- [3] E. V. Shchepin, Real functions and near-normal spaces, Siberian Math. J. 13 (1972), 820-830.
- [4] _____, On topological products, groups and a new class of spaces more general than metric spaces, Sov. Math. Dokl. 17 (1976), 152-155.
- [5] _____, Topology of limit spaces of uncountable inverse spectra, Russian Math. Surveys 31 (1976), 155-191.
- [6] _____, On K-metrizable spaces, Math. USSR Izvestija 14 (1980), 407-440.

Tokyo Gakugei University

(184) 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo, Japan