TOPOLOGY PROCEEDINGS Volume 10, 1985

Pages 151–158

http://topology.auburn.edu/tp/

A CHARACTERIZATION OF T_3 SPACES OF COUNTABLE TYPE

by

A. GARCIA-MÁYNEZ

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A CHARACTERIZATION OF T₃ SPACES OF COUNTABLE TYPE

A. Garcia-Maynez

1. Introduction

The class of p-spaces was introduced by A. V. Arhangel'skii in 1963 [1]. Metrizable and locally compact Hausdorff spaces are examples of p-spaces. Although in the original definition every p-space was supposed to be completely regular and ${\tt T}_1$ (in fact, that definition depends on the existence of the Stone-Cech compactification of the space), D. Burke [2] gave a characterization of p-spaces which allows to generalize the concept to T3-spaces. Under this new definition, Moore spaces are p-spaces (see [2; Thm. 2.1]). R. Hodel introduced the concept of pluming degree plX of a T3-space X [5]. According to his definition, a T₃-space is a p-space if and only if $plx \leq \aleph_0$. A remarkable property of p-spaces is countable typeness [1], i.e., every compact subset of a p-space is contained in a compact subset which has a countable local basis for its neighborhood system. Chaber, Coban and Nagami [3] introduced the class of monotonic p-spaces which lies between the class of p-spaces and the class of ${\rm T}_3\mbox{-spaces}$ of countable type. A common feature of these generalizations is their intrinsic character, i.e., the definitions concrete to the space in question.

In this paper we give an extrinsic characterization of p-spaces using the Wallman instead of the Stone-Cech compactification. In a natural way we give an equivalent formulation of the inequality $pIX \leq \lambda$, where λ is any infinite cardinal number. If we replace *countable typeness* by $\leq \lambda$ -typeness (a space X has $\leq \lambda$ -type if every compact subset lies in a compact set which has a local basis for its neighborhood system consisting of at most λ elements), it is natural to ask if $pIX \leq \lambda$ implies $\leq \lambda$ -typeness. This seems to be a difficult problem and a possible solution may depend on a characterization of T_3 -spaces of $\leq \lambda$ -type using their Wallman compactification. We content ourselves with a characterization of T_3 -space has countable type which makes trivial the statement that a p-space has countable type.

2. Definitions and Preliminary Results

If X is a T_1 -space, we denote by \mathcal{F}_X the family of all closed subsets of X. The collection wX of all ultrafilters in \mathcal{F}_X may be topologized as follows: for each A \subset X, A^{*} denotes { $\xi \in wX | F \subset A$ for some F $\in \xi$ }. The collection $\beta^* = \{U^* | U \subset X \text{ open}\}$ is closed under finite unions and finite intersections and it is obvious that $\phi^* = \phi$ and $X^* = wX$. Hence there is a topology τ of wX having β^* as a basis and the space (wX, τ) turns out to be compact and T_1 . If we identify each $x \in X$ with its fixed ultrafilter $\xi_X = \{F \in \mathcal{F}_X | x \in F\}$, we get an embedding of X into wX and hence wX is a T_1 -compactification of X, called the *Wallman* compactification of X associated to \mathcal{F}_X . In case X is a T_3 -space, wX is a nearly T_2 -extension of X, that is, if a,b are different points of wX and at least one of them belongs to X, then a and b have disjoint neighborhoods. We need the following properties of wX (the reader may easily provide the proofs):

2.1. Let $F_1, \dots, F_n \in \mathcal{J}_X$, where X is a T_1 -space. Then $Cl_{wX}(F_1 \cap \dots \cap F_n) = \bigcap_{i=1}^n Cl_{wX}F_i$.

2.2. Let X be a T_3 -space. If A and B are disjoint closed subsets of wX and $A \subset X$, then A and B have disjoint neighborhoods.

Let A be a subset of a space X. A family \mathcal{G} of subsets of X containing A is a *local net* of A in X if for every open $U \supset A$, there exists an element $G \in \mathcal{G}$ contained in U. A local net of A in X consisting of open sets is called a *local basis* of A in X.

A space X is of *point countable type* if each point of X lies in a compact set having a countable local basis in X.

X is of *countable type* if each compact set in X lies in a compact set having a countable local basis in X.

A family $\{\mathcal{G}_{\alpha} \mid \alpha \in J\}$ of open covers of a space X is a *pluming* of X if the following conditions are fulfilled:

1) If $G_{\alpha} \in \mathcal{G}_{\alpha}$, $\alpha \in J$ and $\bigcap_{\alpha \in J} G_{\alpha} \neq \Phi$, then $\bigcap_{\alpha \in J} G_{\alpha}^{-}$ is compact;

2) If $G_{\alpha} \in \mathcal{G}_{\alpha}$, $\alpha \in J$ and $\bigcap_{\alpha \in J} G_{\alpha} \neq \Phi$, then the family of finite intersections $\bigcap_{i=1}^{n} G_{\alpha_{i}}^{-}$, $n \in \mathbb{N}$, $\alpha_{1}, \cdots, \alpha_{n} \in J$ is a local net of $\bigcap_{\alpha \in J} G_{\alpha}^{-}$ in X.

Hodel proves in [5] that every ${\rm T}_3-{\rm space}$ has a pluming. The least infinite cardinal number λ such that X has a

pluming $\{\mathcal{G}_{\alpha} \mid \alpha \in J\}$ with $|J| \leq \lambda$ is called the *pluming degree* of X. A T₃-space X is a p-space if plX = \aleph_0 .

3. Main Results

For each space X, $\Delta(X)$ denotes its diagonal $\{(x,x) | x \in X\}$.

3.1. Let X be a T_3 -space and let λ be an infinite cardinal number. Then $plX \leq \lambda$ iff there exists a set $A \subset X \times wX$ such that $\Delta(X) \subset A \subset X \times X$ and such that A is the intersection of at most λ open subsets of X $\times wX$.

Proof (Necessity). Let $\{\mathcal{G}_{i} \mid i < \lambda\}$ be a pluming of X. For each open G in X, let G' = wX - $\operatorname{Cl}_{wX}(X - G)$. Define $U_{i} = U\{G \times G' \mid G \in \mathcal{G}_{i}\}$ and $A = \bigcap\{U_{i} \mid i < \lambda\}$. We have only to prove that $A \subset X \times X$. Assume, on the contrary, that there exists a point (x,z) $\in A \cap (X \times (wX - X))$. For each $i < \lambda$, obtain a set $G_{i} \in \mathcal{G}_{i}$ such that (x,z) $\in G_{i} \times G_{i}^{\prime}$. By the definition of pluming, $L = \bigcap\{\overline{G_{i}} \mid i < \lambda\}$ is compact and

$$\{G_{i_1} \cap \cdots \cap G_{i_k} | k \in \mathbb{N}, i_1, \cdots, i_k < \lambda\}$$

is a local net of L in X. By 2.2, there exists an open set T in wX such that

$$L \subset T \subset Cl_{wX}T \subset wX - \{z\}.$$

Hence there exist $i_1, \dots, i_k < \lambda$ such that

$$G_{i_1} \cap \cdots \cap G_{i_k} \subset T.$$

But by 2.1,

(Sufficiency). By hypothesis, there exist open sets $\{U_{i} | i < \lambda\}$ in X × wX such that A = $\bigcap\{U_{i} | i < \lambda\}$ lies between $\Delta(X)$ and X × X. For each i < λ , let

 $\begin{aligned} \mathcal{G}_{\mathbf{i}} &= \{ \mathsf{G} | \mathsf{G} \text{ open in } \mathsf{X}, \ \mathsf{G}^{-}\mathsf{X} \ \mathsf{Cl}_{\mathsf{W}\mathsf{X}}\mathsf{G} \subset \mathsf{U}_{\mathbf{i}} \} \\ \text{Clearly each } \mathcal{G}_{\mathbf{i}} \text{ is an open cover of } \mathsf{X}. \text{ To prove} \\ \{ \mathcal{G}_{\mathbf{i}} | \mathbf{i} < \lambda \} \text{ is a pluming of } \mathsf{X}, \text{ take } \mathsf{G}_{\mathbf{i}} \in \mathcal{G}_{\mathbf{i}} (\mathbf{i} < \lambda) \\ \text{and assume there is a point } \mathsf{x} \in \mathsf{n}\{\mathsf{G}_{\mathbf{i}} | \mathbf{i} < \lambda\}. \text{ We must} \\ \text{prove } \mathsf{L} = \mathsf{n}\{\mathsf{G}_{\mathbf{i}}^{-} | \mathbf{i} < \lambda\} \text{ is compact and} \end{aligned}$

$$\{G_{i_1}^{-} \cap \cdots \cap G_{i_k}^{-} | k \in \mathbb{N}, i_1, \cdots, i_k < \lambda\}$$

is a local net of L in X. Observe

 $\bigcap \{ Cl_{wX}G_i \mid i < \lambda \} \subset X:$

if $z \in n\{Cl_{wX}G_i | i < \lambda\}$ and $z \notin X$, then $(x,z) \notin A$ and hence $(x,z) \notin U_i$ for some $i < \lambda$. But $(x,z) \in G_i \times Cl_{wX}G_i \subset U_i$, a contradiction. Therefore, $L = n\{Cl_{wX}G_i | i < \lambda\}$ is a compact subset of X. Let $T \subset X$ be open and assume $L \subset T$. Let T' be any open set in wX such that $T = X \cap T'$. According to [4; 2.27], there exist $i_1, \dots, i_k < \lambda$ such that $n_{j=1}^k Cl_{wX}G_i \subset T'$. Therefore, $n_{j=1}^k G_{i_j} \subset T' \cap X = T$

and the proof is complete.

3.2. Lemma. Let Q be a compact subset of a T_3 -space X and let V_1, V_2, \cdots be open sets in X × wX such that $\Delta(Q) \subset A = \bigcap_{i=1}^{\infty} V_i \subset X \times X$. Then there exists a compact set $K \subset X$ such that K has a countable local basis in X and $Q \subset K \subset X$.

Proof. For each $i = 1, 2, \dots, let \mathcal{G}_i$ be the family of open non-empty subsets of X × wX which may be written in the

form $(V \cap X) \times V$, with V open in wX, and such that $\operatorname{Cl}_{WX}[(V \cap X) \times V] \subset V_i$. 2.2 implies that each \mathcal{G}_i is a cover of $\Delta(X)$. Let $\mathcal{U}_1 \subset \mathcal{G}_1$ be a finite subfamily such that \mathcal{U}_1 covers $\Delta(Q)$ irreducibly. Proceeding by induction, assume we have finite families $\mathcal{U}_1, \dots, \mathcal{U}_n$ such that $\mathcal{U}_i \subset \mathcal{G}_i, \mathcal{U}_i$ covers $\Delta(Q)$ irreducibly (i = 1,...,n) and such that $\{\operatorname{Cl}_{X \times WX} L | L \in \mathcal{U}_{i+1}\}$ refines \mathcal{U}_i for i < n. We find then a finite subfamily \mathcal{U}_{n+1} of \mathcal{G}_{n+1} such that \mathcal{U}_{n+1} covers $\Delta(Q)$ irreducibly and $\{\operatorname{Cl}_{X \times WX} L | L \in \mathcal{U}_{n+1}\}$ refines \mathcal{U}_n . Let $q \in Q$ be arbitrary. Let $(T \cap X) \times T$ be the intersection of members of \mathcal{U}_n containing (q,q) and let W_q be an open set in wX such that

By definition, $(W_q \cap X) \times W_q \subset \mathcal{G}_{n+1}$. Since $\Delta(Q)$ is compact, a finite subcollection \mathcal{U}_{n+1} of the family $\{(W_q \cap X) \times W_q\}$ q $\in Q\}$ covers $\Delta(Q)$ irreducibly and \mathcal{U}_{n+1} fulfills the required properties.

Define now $K = \bigcap_{n=1}^{\infty} S_n$, where $S_n = \bigcup \{V \mid (V \cap X) \times V \in U_n \}.$

By construction, $\operatorname{Cl}_{WX} \operatorname{S}_{n+1} \subset \operatorname{S}_n$ for each $n = 1, 2, \cdots$. Hence, K is a compact $\operatorname{G}_{\delta}$ in wX. To complete the proof, it will be enough to show that K \subset X. Assume, on the contrary, that there exists a point $z \in K - X$. For each $n = 1, 2, \cdots$, pick a sequence $\operatorname{W}_1^{(n)}, \operatorname{W}_2^{(n)}, \cdots, \operatorname{W}_n^{(n)}$ of open sets in wX such that $(\operatorname{W}_i^{(n)} \cap X) \times \operatorname{W}_i^{(n)} \in \mathcal{U}_i, z \in \operatorname{W}_i^{(n)}$ for each $i = 1, \cdots, n$ and such that $\operatorname{Cl}_{WX} \operatorname{W}_{i+1}^{(n)} \subset \operatorname{W}_i^{(n)}$ for $i = 1, \cdots, n-1$. Since the families $\mathcal{U}_1, \mathcal{U}_2, \cdots$ are finite, there exists indices $\begin{array}{l} \lambda_{1},\lambda_{2},\cdots \text{ such that } 1 \leq \lambda_{1} < \lambda_{2} < \cdots \text{ and } \operatorname{Cl}_{\mathsf{WX}} \overset{(\lambda_{n+1})}{\mathsf{m+1}} \subset \overset{(\lambda_{n})}{\mathsf{m}} \\ \text{for } n = 1,2,\cdots . \quad \text{For brevity, put } \mathsf{W}_{n} = \overset{(\lambda_{n})}{\mathsf{m}_{n}}. \quad \text{Therefore} \\ \operatorname{Cl}_{\mathsf{WX}} \overset{\mathsf{W}_{n+1}}{\mathsf{m+1}} \subset \mathsf{W}_{n} \text{ for } n = 1,2,\cdots . \quad \text{Select a point } \mathsf{q}^{\star} \in \mathbb{Q} \cap \\ \mathsf{n}_{n=1}^{\infty}(\mathsf{W}_{n} \cap \mathsf{X})^{\top}. \quad \text{Then } (\mathsf{q}^{\star},\mathsf{z}) \in \mathsf{n}_{n=1}^{\infty}[(\mathsf{W}_{n} \cap \mathsf{X}) \times \mathsf{W}_{n}] \subset \mathsf{A} \subset \mathsf{X} \times \mathsf{X}, \\ \mathsf{a contradiction.} \end{array}$

3.3. Theorem. Let X be a ${\tt T}_3\text{-space}$ and let G be the family of ${\tt G}_\delta$ subsets of X \times wX which are contained in X \times X. Then:

a) X is of point countable type iff every point of $\Delta(X)$ lies in an element of G.

b) X is of countable type iff every compact subset of $\Delta(X)$ lies in an element of \mathcal{G} .

c) X is a p-space iff $\triangle(X)$ lies in an element of \mathcal{G} .

Proof. Lemma 3.2 takes care of the sufficiency conditions. c) is a direct consequence of 3.1. The proof will be complete if we show that whenever K is a compact subset of X having a countable local basis in X, then $X \times K \in \mathcal{G}$. Let $V_1 \supset V_2 \supset \cdots$ be open sets in wX such that $V_1 \cap X$, $V_2 \cap X, \cdots$ is a local basis of K in X. Since X is dense in wX and wX is compact, $V_1 \supset V_2 \supset \cdots$ is a local basis of K in wX. Hence, $K = \bigcap_{n=1}^{\infty} V_n$ and K is a G_{δ} is wX. Clearly X × K is a G_{δ} in X × wX and X × K $\in X \times X$, that is X × K $\in \mathcal{G}$.

3.3.1. Corollary. Every p-space is of countable type.

Bibliography

[1] A. V. Arhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces, Soviet Math. Dokl. 4 (1963), 1051-1055. Amer. Math. Soc. Transl. 2 (1970), 1-39.

- [2] D. K. Burke, On p-spaces and w∆-spaces, Pacific J. Math. 35 (1970), 285-296.
- J. Chaber, M. M. Coban and K. Nagami, On monotonic generalizations of Moore spaces, Cech complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119.
- [4] A. García-Máynez, Introducción a la topología de conjuntos, México, Trillas, 1971.
- [5] R. E. Hodel, On the weight of a topological space, Proc. of the Amer. Math. Soc. 43 (1974), 470-474.

Instituto de Matemáticas de la UNAM Area de la Investigación Cientifica México 04510, D.F. Mexico