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OBSTRUCTING SETS FOR HYPERSPACE
CONTRACTION

C.dJ. Rhee

1. Introduction

Let X be a metric continuum. Denoted by 2X and C(X)
the hyperspaces of nonempty closed subsets and subcontinua
of X respectively and endow with the Hausdorff metric H.

In 1938 Wojkyslowski proved that 2X is contractible
if X is locally connected [1l1]. In 1942 Kelly [2] proved
that the contractibility of 2X is equivalent to the con-
tractibility of C(X). Furthermore, he introduced a suffi-
cient condition, namely property (3.2), for the contracti-
bility of the hyperspace of metric continua., In 1978
Nadler [3] called the Kelley's condition property K and
raised a question. Find a necessary and/or sufficient
condition in terms of X in order that 2X is contractible.
In [6] a necessary condition, call it admissible condition,
was given and introduced a notion of property C and proved
that a space X with property C has a contractible hyper-
space C(X) if and only if there is a continuous fiber map
o such that «(x) < ¢(x) for each x € X, where ¢ (x) is the
admissible fiber at x. Subsequently Curtis [l1] proved that
C(X) is contractible if and only if there exists a lower
semicontinuous set-valued map ¢: X - C2(X) such that for
each x € X, each element of $(x) is an ordered arc in C(X)
between {x} and X. The last two results do not fully

provide the topological characterization of the space X
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having contractible hyperspaces. The obstruction lies on
certain subsets of X, call it the fl-set of X, which is our
object to investigate and to prove a theorem characterizing
the contractibility of C(X) and a theorem on the hyperspace
contraction of the image of confluent maps.

Let p: C(X) - I = [0,1] be a Whitney map [10] such that
u(x) = 0 for each x € X, and u(X) = 1. For each x € X, we

define a total fiber map F: X =+ 2C(X)

(not necessarily
continuous) by F(x) = {A € C(X)|x € A}. An element A € F(x)
is admissible at x if, for each € > 0, there is § > 0 such
that each y in the d-neighborhood of x has an element

B € F(y) such that H(A,B) < €. For each x € X, the col-
lection a(x) = {A € F(x)|A is admissible at x} is called
the admissible fiber at x. We say that the space X is
admissible if at(x) = ag(x) n u_l(t) is nonempty for each
(x,t) € X x I. We define the /l-set of X to be the set

M= {x € X|F(x) # a(x)} and the points of X\M as K-points

of X. We state here some known results in [7] and [9].

Theorem 1.0. Let X be a metric continuum.

1. For each x € X, a(x) 2s closed in C(X), {x} € a(x),
and X € a(x).

2. If A€ a(g) and B € A(x) and £ € A n B then
A UBE a(x).

3. For each B € F(x), C = U{A € a(x)|A < B} € a(x).

Theorem 1.1. If h: X x I » C(X) Zs a continuous
ienreasing map such that {x} € h(x,0) then h(x,t) € a(x)
for (x,t) € X x I. Thus, if C(X) is contractible then X

is an admissible space.
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Theorem 1.2. For any metric continuum X, the follow-
ing statements are equivalent:

1. F(x) =alx),

2. X has property K at x,

3. F is continuous at X.

Theorem 1.3. Let X be any metric continuum. If X is

locally connected then X has property K at Xx.

2. MN_get

In this section, we investigate [l-sets of admissible

spaces.

Proposition 2.1. Let X be an admissible space. Then
the components of its M-set are nondegenerate.
Proof. This proposition follows easily from the next

proposition since p(A) > 0 if and only if A is nondegenerate.

Proposition 2.2. Let X be an admissible space and M
be its M-set. For each x € M, let mx = {A € a(x)|Aa c M}.
Then there is a positive number t(x) € I such that as(x) =
atx) n wlis) e for 0 < s < tx).

Proof. Let x € M. Since F(x) # a(x) there is
AO € F(x)\a(x). We show the nonexistence of t(x) implies
Aq € a(x). Suppose no such t(x) exists. Let € > 0. There
is ty 0 such that the diameter of A is less than e¢/2 for
all A € F(x) n p—l(t) with 0 < t < to. There is t with

0 < t < t0 and B € at(x) such that B\M # #. One easily

shows H(AO,A U B) < g/2. Let Xy € B\M. Then F(x3j) = a(xl).

0

Since A, U B is a continuum, A, U B € a(xl). There is

0 0

§. > 0 such that for each z with d(z,xl) < 61 there is

1
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C € F(z) such that H(A, U B,C) < ¢/2. Also, since B € a(x),

0
there is § > 0 such that for each y with d(x,y) < § there
is D € F(y) such that H(B,D) < min{ﬁl,e/Z}. Consequently,
let y be such that d(x,y) < § and D € F(y) such that

H(B,D) < min{ﬁl,e/z}. Then there is z € D such that
d(z,xl) < 61. Let C € F(z) be such that H(A0 U B,C) < g/2.
Since z € C N D, we have C U D € F(y). By Lemma 1.4 [7]

H(Ag U B, CUD) =H((B, UB) UB, CUD) < max{H(A; U B, C),

0
H(B,D)} < €/2. Therefore H(AO, cCuD < H(AO, AO U B) +

H(A0 UB, CUD) < €. We conclude that A, € a(x), a con-

0
tradiction. Hence a positive number exists and the proposi-

tion is proved.

Corollary 2.3. For each x € M, let Nl = {a € a(x)]|
A c M}. Then there is a positive number t(X) such that

a (x) =M for 0 < s < t(x).

Proof. Choose t(x) with 0 < T(x) < t(x).

We remark that since F(x) # a(x) for x € M any increas-
ing contraction h of X in C(X), if it exists, must take
admissible elements as its values, the above propositions
and corollary provide some insight into the behavior of such

map h.

3. T-admissibility

We introduce another condition on admissible fiber of
X to give a characterization of contractibility of C(X) and
a theorem on the contractibility of C(ﬁ) when X is a con-

fluent image of a T-admissible space X.
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Definition 3.1, A metric continuum X is said to be
top-admissible (abbreviated T-admissible) if, for each
(x,s) € X X I the following condition is true:

For each A € aS(x) and t € [s,l], there is an element

B € g, (x) such that A c B.

t

Since g,(x) = {x} for each x € X, we have that

0
T-admissibility implies admissibility of a space X. We
make a further remark that the contractibility of C(X)

implies T-admissibility of X.

Proposition 3.2. Let X be T-admissible. Suppose Ma
18 a component of the Ml-set M of X. Then, for each x € Ma
and each t € [O’U(Ma)]’ there 1s an element A € at(x) such
that A c M _.
o
t(X) 3 Ac MOL}.
Obviously 0 € S. Since a¢(x) 1is a compact set in C(X) by

Proof. Let S = {t € [O,u(ﬁa)]jaA €0

Theorem 1.0 and 1 is continuous we have that S is closed.
Suppose [O,u(ﬁ&)]\s # #. Then there are tg,t; such that

ty €5, 0 <ty <t <u(M) and (ty,t;) NS =g. Let

0 0 1
t € (to,t and AO € a

1

l) t0(x) with Ay < Ma' Then there is a

B € F(x) such that A, < B c Ma and p(B) = t. Since

0
t € [0,u(ﬁ&)]\s, we conclude that B ¢ at(x). By T-admissi-
bility, there is for each positive integer n an element

An € ¢(x) such that AO c An, t_ < u(An) < tl and

0
lim p(An) = to. Then, the sequence An converges to AO in
nro
C(X). Since u(An) € (to,tl) we have An\Ma # §. Conse-

quently An\M # @ because Ma is a component of M. Let

x € A \M. Then F(x)) = a(xn), A UBE a(Xn) and
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x €A € g (x). By Theorem 1.0 A uUB-= (An U B)wu A € a(x).
Since An U B converges to Ao Yy B =B in C(X), we have by the
compactness of ¢(x) that B € ¢(x). Since u(B) = t and
B c ﬁ&, we have t € S, a contradiction. We conclude that
S = [O,U(HA)] and the proposition is proved.

We remark that there is an example of a T-admissible
space X having contractible hyperspace C(X) and connected

M-set M in which there is an element A € g(x) for some

x € M such that 0 < p(A) < u(M) and A\M # 4.

Proposgition 3.3. Let X be T-admissible. Suppose Ma
18 a component of the M-set M of X. Then for each x € Ma
and B € F(x) such that Ma < B we have B € ag(x).

Proof. The proof is similar to that of Proposition 3.2.
Let S = {t € [u(ﬁa),lllB € F (x) and B> M= B € a(x)}.
Since B € C(X), B2 M , u(B) = u(ﬁ&) imply B = M&, Proposi-
tion 3.2 yields u(ﬁa) € S. Moreover, 1 = p(X) implies 1 € S.
Once S is proved to be closed, the connectedness of S is
proved with an argument similar to that found in Proposi-
tion 3.2. We prove the closedness of S and leave the con-
nectedness of S to the reader.

Let t be a limit point of S and let t, €85 such that
tn -+~ t as n » », We may suppose t > u(ﬁ&). Let B € F(x),
H(B) = t and B o M, - If u(Ha) <t < t, there is A € C(X)
such that Ha cA < B and u(An) = tn' Since tn € S and
Ma c An we have An € g(x). If t < tn’ there is An € C(X)
such that B = A/ and u(An) =t . Since t, € S and Ma c Al
we have An € a(x). Because u(An) + u(B) as n » « and

either B < A or An < B, we have An converging to B in C(X).
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Since ¢ (x) is compact in C(X) we have B € g(X). S is now

proved to be closed.

Definition 3.4. Let N and Z be subcontinua of X such
that N < Z.

A set-valued function a: N » C(Z) is a fiber function
if, for each x € N, (1) a(x) < a(x), (2) {{x},2} c a(x),
and (3) a(x) is path-connected. a is monotone-connected
(4) if there is a path in a(x) n C(A) between {x} and A for
each A € a(x). A monotone-connected, lower semicontinuous

fiber function a: X » C(X) is called a c~-function for X.

We rephrase Curtis' result [l] here in terms of
c-function to prove the next theorem. C{(X) is contractible

if and only if there is a c-function a: X > C(X).

Theorem 3.5. Let X be a T-admissible space with its
Ml-set M. Then C(X) is contractible if and only if there
exists a subcontinuum Z of X containing M and a monotone-
connected lower semicontinuous fiber function a': M » C(2).

Proof. Suppose C{X) is contractible. Let h: X x I »
C(X) be an increasing contraction map [7]. Then h{(x,t) €
a{x) for each x € X and the set-valued function g defined
by a{x) = {h{x,t)|t € I} is a c-function for X. The
restriction of a on M is a monotone-connected continuous
fiber map on M into C(X). For the converse, we let § be
a monotone segment from Z to X which is provided by ([2].
Since X is T-admissible and M < Z, by Proposition 3.3,
each element of § is admissible at each point of M. If

x € M\M, then such a point is a K-point, thus, element of
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S containing x is admissible at x. Define a set-valued

function a: X -+ C(X) by

al(x), X € X\M
ax) = { _
a'(x) v S, X €E M.
Let X € X\M. Then x is a K-point and hence a{(x) = F(x).

The total fiber F(x) is always path-connected and monotone-
connected by [2]. If x € M then a'(x) is monotone-connected
and A € Z for all A € a'(x) and § is a monotone segment
from Z to X. Thus a'(x) U § is monotone-connected.

To prove the lower semicontinuity of a, let x € X\M.
Then x is a K-point and a(x) = a(x) = F(x). Therefore o is
continuous at x by [9].

Suppose x € M, A, € a'(x) U S, and € > 0. Suppose

0
AO € a'(x). Since a' is lower semicontinucus at x in M,
there exists él > 0 such that each point y in the dl—neigh-
borhood of x in M has an element B € a'(y) such that
H(AO,B) < ¢. Also, since AO € a(x), there is 62 > 0 such
that each point y in the 62-neighborhood of x in X has an
element B € F(y), F(y) = a(x) if y € X\M, such that

H(AO,B) < g¢. Combining the above two statements for

§ = min{cSl §,}, each point y in the &§-neighborhood of x in

2
’

X has an element B € oa(y) such that H(AO,B) < £. Thus we
conclude that o is a c-function for X. Hence by [1],

C(X) is contractible.

Since it is rather easier to obtain a monotone-connected
fiber function a: M + C(M) and in view of Proposition 2.2

and Corollary 2.3, we state the following corollaries.
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Corollary 3.6. Suppose X is a T-admissible space with
a locally connected and connected subspace M as its [l-set
such that each element A € F(x) N C(M) is admissible at x
in X for x € M. Then C(X) is contractible.

Proof. Let A € F{(x) n C(M), x € M, and € > 0. Then
there is an arbitrarily small connected neighborhood N of
%x in M such that H(A, A U N) < ¢ and the element A U N €
F(x) n C(M).

Define o: M +» C(M) by a(x) = F(x) n C(M). Then o is

a monotone-connected fiber function.

Corollary 3.7. Suppose the fil-set M of a T-admissible
space X is the unton of two components M and M, with
Ml n MZ = @. If there is a lower semi-continuous monotone-

connected fiber function ui: Mi > C(Hi), i=1,2. Then

C(X) is contractible.

In [4], we introduced a notion of a space X being
contractible im kleinen at a closed set K and proved that
if C(X) is contractible and X is contractible im kleinen at
K then the hyperspace C(X/K) is contractible. In this line,
we use the T-admissiblity condition on admissible fiber of
X to investigate certain confluent maps associated with the
M-set of X and the contractibility of the hyperspace of the
quotient space X/M.

We recall the definition of a confluent map. Let X and
i be continua. A map f: X - g is called confluent if f is
a continuous surjection such that for each component B of
f_l(g) of each subcontinuum g of § it is true that f(B) = g.

Clearly, continuous monotone surjections are confluent.
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Lemma 3.8. Let f: X »~ X be a confluent map and M be
the M-set of X. Suppose M N f_l(;) = @g. Then ; is a
K-point of %.

Proof. Let ﬁ denote the Hausdorff metric on C(i) and
f*: C(X) ~» C(%) be the map induced by f. Then f* is uni-
formly continuous. Let € > 0. There is 61 > 0 such that
H(A,B) < 61, A,B € C(X) imply ﬁ(f(A), f(B)) < . Let

~

f_l(x). Suppose A € C(X) such that x € A and denote

X €
by A the component of f_l(A) containing x. Since x is a
K-point of X there is Ny > 0 such that for each y in the

nx-neighborhood of x there is B € F(y) such that H(A,B) < 61.
By the confluency of f we have H(A, f£(B)) = H(f(a), £(B)) < €.
The compactness of f-l(x) implies there is n > 0 such that

1

for each y in the n-neighborhood V of £~ (x) there is

B € F(y) such that H(A, £(B)) < €. There is § > 0 such
that the §-neighborhood W of x in X has £ W) < v. For
each y in the §-neighborhood of x we have f_l(y) c V. Let
1~

y € £ “(y). Then there is B € F(y) such that H(A, £(B)) < €.

~ ~

Since y = f(y) € £(B), we have x is a K-point of X.

The above lemma includes a result of [9] where the

M-set is assumed to be empty.

Lemma 3.9. Let f: X ~» i be a confluent map and M be
the M-set of X. Suppose X is T-admissible and X €X is
such that, for each component Ma of M, either Ma n f_l(;) =g
or f_l(;) = Ma‘ Then ; is a K-point of i.

Proof. The proof is similar to that of the previous

lemma. Let x € M N f_l(x) and denote by M the component
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of M containing x. Then Ma < f_l(;). As before, let

A € C(§) such that ; € ; and denote by A the component of
f_l(g) containing xX. Then Ma < A and hence A € ¢(x) by
Proposition 3.3. Conseguently, there is n > 0 such that
each y in the nx—neighborhood of x has an element B € F(y)

such that H(A,B) < 61. The proof is completed just as in

Lemma 3.8.
Immediate consequences are following.

Theorem 3.10. Let X be T-admissible and f: X > X be
confluent. If, for each component Ma of the [j-set of X and

1

each x € X, either Ma n f_l(x) = g or Ma c £ 7 (x), then X

has property K and hence C(X) is contractible.

Corollary 3.11. Let X be T-admissible. If the [l-set
M of X is connected then the quotient space X/M has property

X and hence C(X/M) is contractible.

4. Obstructing Sets

In [5], we introduced the notion of S-point and proved
that any space having an S-point does not have contractible
hyperspaces. 1In this section, we generalize this notion.
Let X be a nonvoid metric continuum. By Theorem 1.0,
each admissible fiber o¢(x) is nonempty. However, if X is

not an admissible space, there is an element (x,t) € X x I

such that at(x) = ag(x) N u_l(t) = . This occurs at some
point x of thu fl-set of X.
Proposition 4.1. Suppose at(x) = g for some (X,t) €

X x I. Let 8 = {t € I]at(x) = g}. Then S 18 nonempty open
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subset of the reals R contained in 1. Moreover, if

t. € I\S such that t0 = glb S', for some nonempty subset

'« 8, then a, (x) = /l_ = {A €a
0 X

N (x)|A c M}. In particu-

o
lar, i1f Sy = glb S, then as(x) c mx for all 0 < s < Sqy-
Proof. ©Let s be a limit point of S. For each posi-

tive integer n there is s, € I\S such that (sn - 5| < I
Let A € a(x) n u_l(sn). Since a(x) is compact in C(X),

we may assume that the sequence An converges to A, € g(x).

0

Because p is continuous we have A € ag(xX) n u_l(s). Hence

0
s € I\S and S is open in I. Since 0 ¢ S, 1 € S we have §
is open in R.

The proof of the second assertion is similar to that
0’ sO = glb S. We
suppose there is B € as(x) such that B\M # g. Let £ € B\M.

of the last assertion. Let 0 < s < s

Then F(£) = g(£). There is a monotone segment 5§ from B to

X in C(X) by [3]. Since u(§) = [s,1], there is an element

A € 5 such that p(A) € S and A2 o B. This means that A is
not admissible at x. On the other hand, we have A € ¢ (&),

B € g(x) and £ € A n B. So by Theorem 1.0, A = A U B € a(x),
a contradiction. Hence as(x) c mx for 0 < s < Sg- The pro-

position is now proved.

If s; = 0 then o (x) = {x}. 1In this case x is an
0

S-point as defined in [5]. It is clear that the concept

of S-point is independent of the choice of the Whitney

function u. By Theorem 1.1, an increasing continuous map

h: X x I » C(X) with h(x,0) = {x} must have h(x,t) € a(x)

for all (x,t) € X x I. We have by Proposition 4.1 that such

an h must stabilize in a subcontinuum (element) of a. (x) .
0
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Let us call element of @ (x) S-set.
0

Proposition 4.2. If a metric continuum X contains an

S-set then C(X) 1s mot contractible.

5. Examples

We will give three examples to illustrate Theorem 3.5
and Corollary 3.6 and an example of a space which contains

an S-set.

Example 5.1. In the plane, let Pn and qpr be points

. _ 1 B -1 ~
defined by Pn = (O’H)' q, = (l'iT)’ for n =1,2,3, and

Py = (0,0}, 9y = (1,0). Let ano and anO be segments

joining Pn to d, and 9, to P, respectively for n = 1,2,+-.

0
and Poqo = M. Let X = Un=l(anO J anO) U M. Then it is
easy to check that X is T-admissible and M is the fj-set of
X. For each x € M, every element A € F(x) n C(M) is
admissible at x in X. Therefore by Corollary 3.6, C(X) is

contractible.

Example 5.2. Let X, be the closure of the graph of

1
Sin L 0 < x < 1 and X, th raph of i Sin % -1 <« x < 0
<’ = ' 2 e g P 2 x’ = ’
. -1 .
and X = Xl U X2. Let Pi = (0,1}, q; = (O’TT)’ i = %1. Let
M be the line segment joining Pl to P r and N the line

segment joining qq to Ly Since the first coordinates of
points of M are all 0, we will use the following notations.
Denote the point (0,z) by 2z in M, and [z,w] denotes the
closed segment in M joining the point (0,z) and (0,w),z < w.
Since X is locally connected at each point z € X\M,
each element of F(z) is admissible at z. If z € M, there

are elements in F(z) which are not admissible at z. Thus M
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is the /l-set of X. Let a: M >~ C{(M) be a set-valued func-
tion defined as follows:
(F(z) ncm) U {[-e,elfz<e<ll, zeN

{[z,e]l]z < e < =z} U {lz-g,z+e] |0 < e < |1l+2z]},

a'(z) = z € M\N,-1 < z < %,
{le,2]]-2 < € < 2} U {[-z-e,z+e] |0 < & < |1l-z]|},
% <z <1

One can easily check that X is T-admissible and o'
monotone-connected connected fiber function. Thus by

Corollary 3.6, X admits a c-function.

Example 5.3. Let Xn be the closure in the plane of the

set {(x,y+4n)]y = sin %, 0 <X<1l}, n=20,1,2,--- and let
n=0Xn'
be the point at «, g = (0,-1) and let Mn be the line seg-

X be the one-point compactification of U Let P € X

ment joining the points (0,4n-1) and (0,4n+l), and Z the
segment joining P and g, and let M/ = MO\{q}. Then
M!, M , n=1,2,-++, are the components of the /I-set

0 n

M= (U0 ) U M! of X, and B = u~ We note that P and

nlen 0 n=0Mn'
q are K-points. To check the T-admissibility of X, it suf-
fices to check ¢(xX), when x € Mn' Since each element of
F(x) n C(Mn) is admissible at x, and every subcontinuum of
X containing Mn is admissible at X, it is clear that ¢ (x)
satisfies the T-admissibility condition. We define

a: M » C(2) by, for x € M

a(x) = (F(x) nCcM)) u {A€F(x)n c(Z)[Mrl < A}.

Then o is a monotone-connected lower semicontinuous fiber

function. Hence by Theorem 3.5, C(X) is contractible.
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Example 5.4. Let X = X1 U X5, where Xy is the closure

60 <x <1, and X2 is the closure of

~

of the graph of Sin %

bl Rl

the graph of % + Sin

joining the points (0,1) and (O,—%J is the S-set of X.

, =1 < x < 0. Then the line segment
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