TOPOLOGY PROCEEDINGS

Volume 10, 1985

Pages 159-173

http://topology.auburn.edu/tp/

OBSTRUCTING SETS FOR HYPERSPACE CONTRACTION

by

C. J. Rhee

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

OBSTRUCTING SETS FOR HYPERSPACE CONTRACTION

C. J. Rhee

1. Introduction

Let X be a metric continuum. Denoted by 2^{X} and C(X) the hyperspaces of nonempty closed subsets and subcontinua of X respectively and endow with the Hausdorff metric H.

In 1938 Wojkyslowski proved that 2^{X} is contractible if X is locally connected [11]. In 1942 Kelly [2] proved that the contractibility of 2^X is equivalent to the contractibility of C(X). Furthermore, he introduced a sufficient condition, namely property (3.2), for the contractibility of the hyperspace of metric continua. In 1978 Nadler [3] called the Kelley's condition property K and raised a question. Find a necessary and/or sufficient condition in terms of X in order that 2^X is contractible. In [6] a necessary condition, call it admissible condition, was given and introduced a notion of property C and proved that a space X with property C has a contractible hyperspace C(X) if and only if there is a continuous fiber map α such that $\alpha(x) \subset \alpha(x)$ for each $x \in X$, where $\alpha(x)$ is the admissible fiber at x. Subsequently Curtis [1] proved that C(X) is contractible if and only if there exists a lower semicontinuous set-valued map $\Phi: X \to C^2(X)$ such that for each $x \in X$, each element of $\Phi(x)$ is an ordered arc in C(X)between {x} and X. The last two results do not fully provide the topological characterization of the space X

having contractible hyperspaces. The obstruction lies on certain subsets of X, call it the M-set of X, which is our object to investigate and to prove a theorem characterizing the contractibility of C(X) and a theorem on the hyperspace contraction of the image of confluent maps.

Let $\mu\colon C(X) \to I = [0,1]$ be a Whitney map [10] such that $\mu(x) = 0$ for each $x \in X$, and $\mu(X) = 1$. For each $x \in X$, we define a total fiber map $F\colon X \to 2^{C(X)}$ (not necessarily continuous) by $F(x) = \{A \in C(X) \mid x \in A\}$. An element $A \in F(x)$ is admissible at x if, for each $\varepsilon > 0$, there is $\delta > 0$ such that each y in the δ -neighborhood of x has an element $B \in F(y)$ such that $H(A,B) < \varepsilon$. For each $x \in X$, the collection $a(x) = \{A \in F(x) \mid A \text{ is admissible at } x\}$ is called the admissible fiber at x. We say that the space X is admissible if $a_t(x) = a(x) \cap \mu^{-1}(t)$ is nonempty for each $(x,t) \in X \times I$. We define the M-set of X to be the set $M = \{x \in X \mid F(x) \neq a(x)\}$ and the points of $X \setminus M$ as X-points of X. We state here some known results in [7] and [9].

Theorem 1.0. Let X be a metric continuum.

- 1. For each $x \in X$, a(x) is closed in C(X), $\{x\} \in a(x)$, and $X \in a(x)$.
- 2. If $A \in \sigma(\xi)$ and $B \in A(x)$ and $\xi \in A \cap B$ then $A \cup B \in \sigma(x)$.
 - 3. For each B \in F(x), C = U{A \in a(x) | A \subset B} \in a(x).

Theorem 1.1. If h: $X \times I \to C(X)$ is a continuous icnreasing map such that $\{x\} \in h(x,0)$ then $h(x,t) \in a(x)$ for $(x,t) \in X \times I$. Thus, if C(X) is contractible then X is an admissible space.

Theorem 1.2. For any metric continuum X, the following statements are equivalent:

- 1. F(x) = a(x),
- 2. X has property K at x,
- 3. F is continuous at x.

Theorem 1.3. Let X be any metric continuum. If X is locally connected then X has property K at X.

2. M-set

In this section, we investigate $\emph{M}\text{-sets}$ of admissible spaces.

Proposition 2.1. Let X be an admissible space. Then the components of its M-set are nondegenerate.

Proof. This proposition follows easily from the next proposition since $\mu(A) > 0$ if and only if A is nondegenerate.

Proposition 2.2. Let X be an admissible space and M be its M-set. For each $x \in M$, let $M_x = \{A \in \sigma(x) \mid A \subset M\}$. Then there is a positive number $t(x) \in I$ such that $\sigma_S(x) = \sigma(x) \cap \mu^{-1}(s) \subset M_x$ for $0 \le s < t(x)$.

Proof. Let $x \in M$. Since $F(x) \neq a(x)$ there is $A_0 \in F(x) \setminus a(x)$. We show the nonexistence of f(x) implies $A_0 \in a(x)$. Suppose no such f(x) exists. Let $f(x) \in a(x)$. There is $f(x) \in a(x)$ of such that the diameter of $f(x) \in a(x)$ is less than $f(x) \in a(x)$ for all $f(x) \in a(x)$ is $f(x) \in a(x)$. There is $f(x) \in a(x)$ such that $f(x) \in a(x)$. One easily shows $f(x) \in a(x)$ is a continuum, $f(x) \in a(x)$. There is $f(x) \in a(x)$ is a continuum, $f(x) \in a(x)$. There is $f(x) \in a(x)$ is a continuum, $f(x) \in a(x)$. There is

C \in F(z) such that H(A $_0$ U B,C) < ε /2. Also, since B \in a(x), there is δ > 0 such that for each y with d(x,y) < δ there is D \in F(y) such that H(B,D) < min{ δ_1, ε /2}. Consequently, let y be such that d(x,y) < δ and D \in F(y) such that H(B,D) < min{ δ_1, ε /2}. Then there is z \in D such that d(z,x $_1$) < δ_1 . Let C \in F(z) be such that H(A $_0$ U B,C) < ε /2. Since z \in C \cap D, we have C U D \in F(y). By Lemma 1.4 [7] H(A $_0$ U B, C U D) = H((A $_0$ U B) U B, C U D) \leq max{H(A $_0$ U B, C), H(B,D)} < ε /2. Therefore H(A $_0$, C U D) \leq H(A $_0$, A $_0$ U B) + H(A $_0$ U B, C U D) < ε . We conclude that A $_0$ \in a(x), a contradiction. Hence a positive number exists and the proposition is proved.

Corollary 2.3. For each $x \in M$, let $\widetilde{\mathbb{M}}_{x} = \{A \in a(x) \mid A \subset \overline{M}\}$. Then there is a positive number $\overline{t}(x)$ such that $a_{s}(x) \subset \widetilde{\mathbb{M}}_{x}$ for $0 \le s \le \overline{t}(x)$.

Proof. Choose $\overline{t}(x)$ with $0 < \overline{t}(x) < t(x)$.

We remark that since $F(x) \neq a(x)$ for $x \in M$ any increasing contraction h of X in C(X), if it exists, must take admissible elements as its values, the above propositions and corollary provide some insight into the behavior of such map h.

3. T-admissibility

We introduce another condition on admissible fiber of X to give a characterization of contractibility of $C(\hat{X})$ and a theorem on the contractibility of $C(\hat{X})$ when \hat{X} is a confluent image of a T-admissible space X.

Definition 3.1. A metric continuum X is said to be top-admissible (abbreviated T-admissible) if, for each $(x,s) \in X \times I$ the following condition is true:

For each A \in $a_{_{\rm S}}({\rm x})$ and t \in [s,1], there is an element B \in $a_{_{\rm T}}({\rm x})$ such that A \subset B.

Since $a_0(x) = \{x\}$ for each $x \in X$, we have that T-admissibility implies admissibility of a space X. We make a further remark that the contractibility of C(X) implies T-admissibility of X.

Proposition 3.2. Let X be T-admissible. Suppose M_{α} is a component of the M-set M of X. Then, for each $x \in M_{\alpha}$ and each $t \in [0,\mu(\overline{M}_{\alpha})]$, there is an element $A \in a_{t}(x)$ such that $A \subset \overline{M}_{\alpha}$.

Proof. Let $S = \{t \in [0, \mu(\overline{M}_{\alpha})] \mid \exists A \in \sigma_{t}(x) \ni A \subset \overline{M}_{\alpha} \}$. Obviously $0 \in S$. Since $\sigma(x)$ is a compact set in C(X) by Theorem 1.0 and μ is continuous we have that S is closed. Suppose $[0, \mu(\overline{M}_{\alpha})] \setminus S \neq \emptyset$. Then there are t_{0}, t_{1} such that $t_{0} \in S$, $0 < t_{0} < t_{1} \leq \mu(\overline{M}_{\alpha})$ and $(t_{0}, t_{1}) \cap S = \emptyset$. Let $t \in (t_{0}, t_{1})$ and $A_{0} \in \sigma_{t_{0}}(x)$ with $A_{0} \subset \overline{M}_{\alpha}$. Then there is a $B \in F(x)$ such that $A_{0} \subset B \subset \overline{M}_{\alpha}$ and $\mu(B) = t$. Since $t \in [0, \mu(\overline{M}_{\alpha})] \setminus S$, we conclude that $B \notin \sigma_{t}(x)$. By T-admissibility, there is for each positive integer n an element $A_{n} \in \sigma(x)$ such that $A_{0} \subset A_{n}$, $t_{0} < \mu(A_{n}) < t_{1}$ and . If $\mu(A_{n}) = t_{0}$. Then, the sequence A_{n} converges to A_{0} in $n \mapsto \infty$ C(X). Since $\mu(A_{n}) \in (t_{0}, t_{1})$ we have $A_{n} \setminus \overline{M}_{\alpha} \neq \emptyset$. Consequently $A_{n} \setminus M \neq \emptyset$ because M_{α} is a component of M. Let $x_{n} \in A_{n} \setminus M$. Then $F(x_{n}) = \sigma(x_{n})$, $A_{n} \cup B \in \sigma(x_{n})$ and

 $\mathbf{x}_{\mathbf{n}} \in \mathbf{A}_{\mathbf{n}} \in \sigma(\mathbf{x})$. By Theorem 1.0 $\mathbf{A}_{\mathbf{n}} \cup \mathbf{B} = (\mathbf{A}_{\mathbf{n}} \cup \mathbf{B}) \cup \mathbf{A}_{\mathbf{n}} \in \sigma(\mathbf{x})$. Since $\mathbf{A}_{\mathbf{n}} \cup \mathbf{B}$ converges to $\mathbf{A}_{\mathbf{0}} \cup \mathbf{B} = \mathbf{B}$ in $\mathbf{C}(\mathbf{X})$, we have by the compactness of $\sigma(\mathbf{x})$ that $\mathbf{B} \in \sigma(\mathbf{x})$. Since $\mu(\mathbf{B}) = \mathbf{t}$ and $\mathbf{B} \subset \overline{\mathbf{M}}_{\alpha}$, we have $\mathbf{t} \in \mathbf{S}$, a contradiction. We conclude that $\mathbf{S} = [0, \mu(\overline{\mathbf{M}}_{\alpha})]$ and the proposition is proved.

We remark that there is an example of a T-admissible space X having contractible hyperspace C(X) and connected M-set M in which there is an element $A \in a(X)$ for some $x \in M$ such that $0 < \mu(A) < \mu(\overline{M})$ and $A \setminus \overline{M} \neq \emptyset$.

Proposition 3.3. Let X be T-admissible. Suppose M_{α} is a component of the M-set M of X. Then for each $x\in M_{\alpha}$ and $B\in F(x)$ such that $M_{\alpha}\subset B$ we have $B\in a(x)$.

Proof. The proof is similar to that of Proposition 3.2. Let $S = \{t \in [\mu(\overline{M}_{\alpha}), 1] | B \in F_{t}(x) \text{ and } B \supset M \Rightarrow B \in a(x) \}$. Since $B \in C(X)$, $B \supset M_{\alpha}$, $\mu(B) = \mu(\overline{M}_{\alpha})$ imply $B = \overline{M}_{\alpha}$, Proposition 3.2 yields $\mu(\overline{M}_{\alpha}) \in S$. Moreover, $1 = \mu(X)$ implies $1 \in S$. Once S is proved to be closed, the connectedness of S is proved with an argument similar to that found in Proposition 3.2. We prove the closedness of S and leave the connectedness of S to the reader.

Let t be a limit point of S and let $t_n \in S$ such that $t_n \to t$ as $n \to \infty$. We may suppose $t > \mu(\overline{M}_\alpha)$. Let $B \in F(x)$, $\mu(B) = t$ and $B \supset M_\alpha$. If $\mu(\overline{M}_\alpha) \le t_n < t$, there is $A_n \in C(X)$ such that $\overline{M}_\alpha \subset A_n \subset B$ and $\mu(A_n) = t_n$. Since $t_n \in S$ and $M_\alpha \subset A_n$ we have $A_n \in a(x)$. If $t < t_n$, there is $A_n \in C(X)$ such that $B \subset A_n$ and $\mu(A_n) = t_n$. Since $t_n \in S$ and $M_\alpha \subset A_n$ we have $A_n \in a(x)$. Because $\mu(A_n) \to \mu(B)$ as $n \to \infty$ and either $B \subset A_n$ or $A_n \subset B$, we have A_n converging to B in C(X).

Since a(x) is compact in C(X) we have $B \in a(x)$. S is now proved to be closed.

 $\textit{Definition 3.4.} \quad \text{Let N and Z be subcontinua of X such}$ that N \subset Z.

A set-valued function $\alpha \colon N \to C(Z)$ is a fiber function if, for each $x \in N$, (1) $\alpha(x) \subset a(x)$, (2) $\{\{x\},Z\} \subset \alpha(x)$, and (3) $\alpha(x)$ is path-connected. α is monotone-connected (4) if there is a path in $\alpha(x) \cap C(A)$ between $\{x\}$ and A for each $A \in \alpha(x)$. A monotone-connected, lower semicontinuous fiber function $\alpha \colon X \to C(X)$ is called a c-function for X.

We rephrase Curtis' result [1] here in terms of c-function to prove the next theorem. C(X) is contractible if and only if there is a c-function $\alpha\colon X\to C(X)$.

Theorem 3.5. Let X be a T-admissible space with its M-set M. Then C(X) is contractible if and only if there exists a subcontinuum Z of X containing M and a monotone-connected lower semicontinuous fiber function $\alpha' \colon \overline{M} \to C(Z)$.

Proof. Suppose C(X) is contractible. Let h: X × I \rightarrow C(X) be an increasing contraction map [7]. Then h(x,t) \in a(x) for each $x \in X$ and the set-valued function α defined by $\alpha(x) = \{h(x,t) \mid t \in I\}$ is a c-function for X. The restriction of α on \overline{M} is a monotone-connected continuous fiber map on \overline{M} into C(X). For the converse, we let S be a monotone segment from Z to X which is provided by [2]. Since X is T-admissible and $M \subset Z$, by Proposition 3.3, each element of S is admissible at each point of M. If $X \in \overline{M} \setminus M$, then such a point is a K-point, thus, element of

 $\mathcal S$ containing x is admissible at x. Define a set-valued function $\alpha\colon X\to C(X)$ by

$$\alpha(\mathbf{x}) \; = \; \begin{cases} \alpha(\mathbf{x}) \;, & \mathbf{x} \; \in \; \mathbf{X} \backslash \overline{\mathbf{M}} \\ \\ \alpha'(\mathbf{x}) \; \cup \; \mathcal{S} \;, & \mathbf{x} \; \in \; \overline{\mathbf{M}} \;\;. \end{cases}$$

Let $x \in X \setminus \overline{M}$. Then x is a K-point and hence a(x) = F(x). The total fiber F(x) is always path-connected and monotone-connected by [2]. If $x \in \overline{M}$ then $\alpha'(x)$ is monotone-connected and $A \subset Z$ for all $A \in \alpha'(x)$ and S is a monotone segment from Z to X. Thus $\alpha'(x) \cup S$ is monotone-connected.

To prove the lower semicontinuity of α , let $x \in X \setminus \overline{M}$. Then x is a K-point and $\alpha(x) = \sigma(x) = F(x)$. Therefore α is continuous at x by [9].

Suppose $x \in \overline{M}$, $A_0 \in \alpha'(x) \cup \mathcal{S}$, and $\varepsilon > 0$. Suppose $A_0 \in \alpha'(x)$. Since α' is lower semicontinuous at x in \overline{M} , there exists $\delta_1 > 0$ such that each point y in the δ_1 -neighborhood of x in \overline{M} has an element $B \in \alpha'(y)$ such that $H(A_0,B) < \varepsilon$. Also, since $A_0 \in a(x)$, there is $\delta_2 > 0$ such that each point y in the δ_2 -neighborhood of x in X has an element $B \in F(y)$, F(y) = a(x) if $y \in X \setminus M$, such that $H(A_0,B) < \varepsilon$. Combining the above two statements for $\delta = \min\{\delta_1,\delta_2\}$, each point y in the δ -neighborhood of x in X has an element $B \in \alpha(y)$ such that $H(A_0,B) < \varepsilon$. Thus we conclude that α is a c-function for X. Hence by [1], C(X) is contractible.

Since it is rather easier to obtain a monotone-connected fiber function $\alpha \colon \overline{M} \to C(\overline{M})$ and in view of Proposition 2.2 and Corollary 2.3, we state the following corollaries.

Corollary 3.6. Suppose X is a T-admissible space with a locally connected and connected subspace M as its M-set such that each element $A \in F(x) \cap C(\overline{M})$ is admissible at x in X for $x \in \overline{M}$. Then C(X) is contractible.

Proof. Let $A \in F(x) \cap C(\overline{M})$, $x \in M$, and $\epsilon > 0$. Then there is an arbitrarily small connected neighborhood N of x in M such that $H(A, A \cup \overline{N}) < \epsilon$ and the element $A \cup \overline{N} \in F(x) \cap C(\overline{M})$.

Define $\alpha \colon \widetilde{M} \to C(\widetilde{M})$ by $\alpha(x) = F(x) \cap C(\widetilde{M})$. Then α is a monotone-connected fiber function.

Corollary 3.7. Suppose the M-set M of a T-admissible space X is the union of two components M_1 and M_2 with $\overline{M}_1 \cap \overline{M}_2 = \emptyset$. If there is a lower semi-continuous monotone-connected fiber function $\alpha_1^i \colon \overline{M}_1 \to C(\overline{M}_1)$, i=1,2. Then C(X) is contractible.

In [4], we introduced a notion of a space X being contractible im kleinen at a closed set K and proved that if C(X) is contractible and X is contractible im kleinen at K then the hyperspace C(X/K) is contractible. In this line, we use the T-admissiblity condition on admissible fiber of X to investigate certain confluent maps associated with the M-set of X and the contractibility of the hyperspace of the quotient space X/M.

We recall the definition of a confluent map. Let X and \hat{X} be continua. A map $f\colon X\to \hat{X}$ is called confluent if f is a continuous surjection such that for each component B of $f^{-1}(\hat{B})$ of each subcontinuum \hat{B} of \hat{X} it is true that $f(B)=\hat{B}$. Clearly, continuous monotone surjections are confluent.

Lemma 3.8. Let $f: X \to \hat{X}$ be a confluent map and M be the M-set of X. Suppose M \cap $f^{-1}(\hat{x}) = \emptyset$. Then \hat{x} is a K-point of \hat{X} .

Proof. Let \hat{H} denote the Hausdorff metric on $C(\hat{X})$ and $f^*: C(X) \to C(X)$ be the map induced by f. Then f^* is uniformly continuous. Let $\varepsilon > 0$. There is $\delta_1 > 0$ such that $H(A,B) < \delta_1$, $A,B \in C(X)$ imply $\hat{H}(f(A), f(B)) < \epsilon$. Let $x \in f^{-1}(\hat{x})$. Suppose $\hat{A} \in C(\hat{X})$ such that $\hat{x} \in \hat{A}$ and denote by A the component of $f^{-1}(\hat{A})$ containing x. Since x is a K-point of X there is $\eta_{\mathbf{v}} > 0$ such that for each y in the η,-neighborhood of x there is B \in F(y) such that H(A,B) < δ ₁. By the confluency of f we have $\hat{H}(\hat{A}, f(B)) = \hat{H}(f(A), f(B)) < \varepsilon$. The compactness of $f^{-1}(x)$ implies there is $\eta > 0$ such that for each y in the η -neighborhood V of $f^{-1}(x)$ there is B \in F(y) such that $\hat{H}(\hat{A}, f(B)) < \varepsilon$. There is $\delta > 0$ such that the δ -neighborhood W of \hat{x} in \hat{X} has $f^{-1}(W) \subset V$. For each \hat{y} in the δ -neighborhood of \hat{x} we have $f^{-1}(\hat{y}) \subset V$. Let $y \in f^{-1}(\hat{y})$. Then there is $B \in F(y)$ such that $\hat{H}(\hat{A}, f(B)) < \epsilon$. Since $\hat{y} = f(y) \in f(B)$, we have \hat{x} is a K-point of \hat{X} .

The above lemma includes a result of [9] where the $\ensuremath{\mathit{M}\text{--}}\text{set}$ is assumed to be empty.

Lemma 3.9. Let $f: X \to \hat{X}$ be a confluent map and M be the M-set of X. Suppose X is T-admissible and $\hat{x} \in \hat{X}$ is such that, for each component M_{α} of M, either $M_{\alpha} \cap f^{-1}(\hat{x}) = \emptyset$ or $f^{-1}(\hat{x}) \ni M_{\alpha}$. Then \hat{x} is a K-point of \hat{X} .

Proof. The proof is similar to that of the previous lemma. Let x \in M \cap f⁻¹(x) and denote by M $_{\alpha}$ the component

of M containing x. Then $M_{\alpha} \subset f^{-1}(\hat{x})$. As before, let $\hat{A} \in C(\hat{X})$ such that $\hat{x} \in \hat{A}$ and denote by A the component of $f^{-1}(\hat{A})$ containing x. Then $M_{\alpha} \subset A$ and hence $A \in a(x)$ by Proposition 3.3. Consequently, there is $n_{x} > 0$ such that each y in the n_{x} -neighborhood of x has an element $B \in F(y)$ such that $H(A,B) < \delta_{1}$. The proof is completed just as in Lemma 3.8.

Immediate consequences are following.

Theorem 3.10. Let X be T-admissible and f: $X \to \hat{X}$ be confluent. If, for each component M_{α} of the M-set of X and each $\hat{x} \in \hat{X}$, either $M_{\alpha} \cap f^{-1}(\hat{x}) = \emptyset$ or $M_{\alpha} \subset f^{-1}(\hat{x})$, then \hat{X} has property K and hence $C(\hat{X})$ is contractible.

Corollary 3.11. Let X be T-admissible. If the M-set M of X is connected then the quotient space X/\overline{M} has property K and hence $C(X/\overline{M})$ is contractible.

4. Obstructing Sets

In [5], we introduced the notion of S-point and proved that any space having an S-point does not have contractible hyperspaces. In this section, we generalize this notion. Let X be a nonvoid metric continuum. By Theorem 1.0, each admissible fiber $\sigma(\mathbf{x})$ is nonempty. However, if X is not an admissible space, there is an element $(\mathbf{x},\mathbf{t}) \in \mathbf{X} \times \mathbf{I}$ such that $\sigma_{\mathbf{t}}(\mathbf{x}) = \sigma(\mathbf{x}) \cap \mu^{-1}(\mathbf{t}) = \emptyset$. This occurs at some point x of the M-set of X.

Proposition 4.1. Suppose $\sigma_{\mathsf{t}}(\mathsf{x}) = \emptyset$ for some $(\mathsf{x},\mathsf{t}) \in \mathsf{X} \times \mathsf{I}$. Let $\mathsf{S} = \{\mathsf{t} \in \mathsf{I} | \sigma_{\mathsf{t}}(\mathsf{x}) = \emptyset\}$. Then S is nonempty open

subset of the reals R contained in I. Moreover, if $t_0 \in I \backslash S \text{ such that } t_0 = \text{glb S', for some nonempty subset}$ $S' \subset S, \text{ then } a_{t_0}(x) \subset \mathcal{M}_x = \{A \in a_{t_0}(x) \mid A \subset M\}. \text{ In particular, if } s_0 = \text{glb S, then } a_{s}(x) \subset \mathcal{M}_x \text{ for all } 0 \leq s \leq s_0.$

Proof. Let s be a limit point of S. For each positive integer n there is $s_n\in I\setminus S$ such that $|s_n-s|<\frac{1}{n}.$ Let $A_n\in \sigma(x)\cap \mu^{-1}(s_n)$. Since $\sigma(x)$ is compact in C(x), we may assume that the sequence A_n converges to $A_0\in \sigma(x)$. Because μ is continuous we have $A_0\in \sigma(x)\cap \mu^{-1}(s)$. Hence $s\in I\setminus S$ and S is open in I. Since 0 $\not\in S$, 1 $\not\in S$ we have S is open in R.

The proof of the second assertion is similar to that of the last assertion. Let $0 \le s \le s_0$, $s_0 = \text{glb } S$. We suppose there is $B \in a_s(x)$ such that $B \setminus M \ne \emptyset$. Let $\xi \in B \setminus M$. Then $F(\xi) = a(\xi)$. There is a monotone segment S from S to S in S in S in S ince S ince

If $s_0 = 0$ then $a_{s_0}(x) = \{x\}$. In this case x is an S-point as defined in [5]. It is clear that the concept of S-point is independent of the choice of the Whitney function μ . By Theorem 1.1, an increasing continuous map h: $X \times I \to C(X)$ with $h(x,0) = \{x\}$ must have $h(x,t) \in a(X)$ for all $(x,t) \in X \times I$. We have by Proposition 4.1 that such an h must stabilize in a subcontinuum (element) of $a_{t_0}(x)$.

Let us call element of $a_{t_0}(x)$ S-set.

Proposition 4.2. If a metric continuum X contains an S-set then C(X) is not contractible.

5. Examples

We will give three examples to illustrate Theorem 3.5 and Corollary 3.6 and an example of a space which contains an S-set.

Example 5.1. In the plane, let P_n and q_n , be points defined by $P_n = (0, \frac{1}{n})$, $q_n = (1, \frac{-1}{n})$, for $n = 1, 2, 3, \cdots$ and $P_0 = (0, 0)$, $q_0 = (1, 0)$. Let $\overline{P_n q_0}$ and $\overline{q_n P_0}$ be segments joining P_n to q_0 and q_n to P_0 respectively for $n = 1, 2, \cdots$ and $\overline{P_0 q_0} = M$. Let $X = \bigcup_{n=1}^{\infty} (\overline{P_n q_0} \cup \overline{q_n P_0}) \cup M$. Then it is easy to check that X is T-admissible and M is the M-set of X. For each $X \in M$, every element $A \in F(X) \cap C(M)$ is admissible at $X \in M$. Therefore by Corollary 3.6, C(X) is contractible.

Example 5.2. Let X_1 be the closure of the graph of $\sin\frac{1}{x}$, $0 < x \le 1$, and X_2 the graph of $\frac{1}{2}\sin\frac{1}{x}$, $-1 \le x < 0$, and $X = X_1 \cup X_2$. Let $P_i = (0,i)$, $q_i = (0,\frac{-i}{2})$, $i = \pm 1$. Let M be the line segment joining P_1 to P_{-1} , and N the line segment joining q_1 to q_{-1} . Since the first coordinates of points of M are all 0, we will use the following notations. Denote the point (0,z) by z in M, and [z,w] denotes the closed segment in M joining the point (0,z) and (0,w), z < w.

Since X is locally connected at each point $z \in X \setminus M$, each element of F(z) is admissible at z. If $z \in M$, there are elements in F(z) which are not admissible at z. Thus M

is the $\mathcal{M}\text{-set}$ of X. Let $\alpha\colon M\to C(M)$ be a set-valued function defined as follows:

$$\alpha'(z) = \begin{cases} (F(z) \cap C(M)) & U \mid \{[-\epsilon, \epsilon] \mid \frac{1}{2} \le \epsilon \le 1\}, z \in \mathbb{N} \\ \{[z, \epsilon] \mid z \le \epsilon \le -z\} & U \mid \{[z-\epsilon, z+\epsilon] \mid 0 \le \epsilon \le |1+z|\}, \\ & z \in M \setminus \mathbb{N}, -1 \le z \le \frac{1}{2}, \\ \{[\epsilon, z] \mid -z \le \epsilon \le z\} & U \mid \{[-z-\epsilon, z+\epsilon] \mid 0 \le \epsilon \le |1-z|\}, \\ & \frac{1}{2} \le z \le 1 \end{cases}$$

One can easily check that X is T-admissible and α 'monotone-connected connected fiber function. Thus by Corollary 3.6, X admits a c-function.

Example 5.3. Let X_n be the closure in the plane of the set $\{(x,y+4n) \mid y=\sin\frac{1}{x},\ 0< X\le 1\}$, $n=0,1,2,\cdots$ and let X be the one-point compactification of $U_{n=0}^{\infty}X_n$. Let $P\in X$ be the point at ∞ , q=(0,-1) and let M_n be the line segment joining the points (0,4n-1) and (0,4n+1), and Z the segment joining P and Q, and let $M_0'=M_0\setminus \{q\}$. Then M_0' , M_n , $n=1,2,\cdots$, are the components of the M-set $M=(U_{n=1}^{\infty}M_n)$ U M_0' of X, and $\overline{M}=U_{n=0}^{\infty}M_n$. We note that P and Q are Q-points. To check the Q-admissibility of Q-action Q-acti

 $\alpha(x) \,=\, (F(x) \,\,\cap\, C(M_n^{})\,) \,\,\cup\, \{A\,\in\, F(x)\,\,\cap\, C(Z)\,\big|\, M_n^{}\,\subset\, A\}\,.$ Then α is a monotone-connected lower semicontinuous fiber function. Hence by Theorem 3.5, C(X) is contractible.

Example 5.4. Let $X = X_1 \cup X_2$, where X_1 is the closure of the graph of $\sin \frac{1}{x}$, $0 < x \le 1$, and X_2 is the closure of the graph of $\frac{1}{2} + \sin \frac{1}{x}$, $-1 \le x < 0$. Then the line segment joining the points (0,1) and $(0,-\frac{1}{2})$ is the S-set of X.

References

- D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Can. J. Math. 37 (1985), 747-759.
- 2. J. L. Kelley, Hyperspaces of a metric continua, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, Inc., 1978.
- 4. T. Nishiura and C. J. Rhee, Cut points of X and hyperspace of subcontinua, Pro. Amer. Math. Soc. 82 (1982), 149-154.
- 5. _____, Contractibility of hyperspace of subcontinua, Houston J. Math. 8 (1982), 119-127.
- 6. C. J. Rhee, On a contractible hyperspace condition, Top. Proc. 7 (1982), 147-155.
- 7. _____ and T. Nishiura, An admissible condition for contractible hyperspaces, Top. Proc. 8 (1983), 303-314.
- 8. _____, Contractible hyperspace of subcontinua, Kyungpook Math. J. 24 (1984), 143-154.
- R. W. Wardle, On a property of J. L. Kelley, Houston J. Math. 3 (1977), 291-299.
- 10. H. Whitney, Regular families of curves, Annals Math. 34 (1933), 244-270.
- 11. M. Wojdyslawski, Sur la contractilité des hyperspaces des confinas localement connexes, Fund. Math. 30 (1938), 247-252.

Wayne State University
Detroit, Michigan 48202