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THE BANASCHEWSKI-FOMIN-SHANIN 

EXTENSION J.lX 

Mohan L. Tikoo1 

1. Preliminaries 

All spaces considered in this paper are assumed to be 

Hausdorff. If A is a subset of a space X, then clXA 

(resp. intxA, bdxA) will denote the closure (resp. interior 

boundary) of A in X. For a space X, X will denote the 
s 

semi-regularization of X (see [16], page 212), T(X) will 

denote the topology on X and Ixl denotes the cardinal 

number of X. Also, RO(X) (resp. R(X)) denotes the complete 

Boolean algebra of regular open (resp. regular closed) sub­

sets of X, and CO(X) will denote the algebra of clopen 

(= closed and open) subsets of X. An open filter on X is 

a filter in the lattice T(X), and an open ultrafilter on X 

is a maximal (with respect to set inclusion) open filter. 

If J is a filter on X then adx(J) =,n{clxF: F E J} denotes 

the adherence of J in X. A filter J on X is called free 

if adx(J) = ~; otherwise, J is called fixed. If A is any 

nonempty family of subsets of X with the finite intersection 

property, then ( A) will denote the fil ter on X generated by 

A. For an open filter J on X, we shall denote by J the s 

open filter on X generated by the filterbase {intxclxA: 

A E J}. In what follows, for a space X, F(X) = {U: U is a 

lThe author is extremely grateful to Professor Jack 
Porter for enormous help and advice. 

The author also thanks the referee for several useful 
suggestions. 
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free open ultrafilter on X}, F (X) = {U: U E F(X)}. Also,
s s 

N, Q, and R will denote the space of positive integers, 

the rationals and the reals (with usual topology) respec­

tively. 

A map f: X ~ Y is a (not necessarily continuous) func­

tion from X to Y. A map f: X ~ Y is called compact if for 

each y E Y, f+(y) (= {x E X: f(x) y}) is a compact sub­

set of Xi f is called perfect if it is both a compact and 

a closed map, and f is called irreducible if f is onto, 

closed, and, for each proper closed subset A of X, f(A) f Y. 

A map f: X ~ Y is called 8-continuous at a point x E X (see 

[6]) if for each open neighborhood G of f(x) in Y, there is 

an open neighborhood U of x in X such that f(clxU) c cIyG. 

If f is 8-continuous at each x E X then f is called 

8-continuous. A map f: X ~ Y is called a 8-homeomorphism 

provided that f is one-to-one, onto and both f and f+ are 

8-continuous, and in this case the spaces X and Yare 

called 8-homeomorphic. 

1.1 With each Hausdorff space X there is associated 

the space EX (called the Iliadis absolute of X [7]) con­

sisting of all the convergent open ultrafilters on X with 

the topology T(EX) generated by the open base {OxU: 

U E 1 (X) }, where 

0XU = {U E EX: U E U}. 

The space EX is unique (up to homeomorphism) with respect 

to possessing these properties: EX is extremally discon­

nected and zero-dimensional (see [24] for definitions), 

and there exists a perfect, irreducible and a-continuous 
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surjection k : EX ~ X (given by kx(~ = adX(U), U E EX).x 

The Hausdorff absoLute (see [10], [19]) is the space PX 

whose underlying set is the set of EX with the topology 

~(PX) generated by the open base {OxU n k;(V): U, V E T(X)}. 

The space PX is unique (up to homeomorphism) with respect 

to possessing these properties: PX is extremally discon­

nected (but not necessarily zero-dimensional) and there 

exists a perfect, irreducible, continuous surjection 

TI X: PX ~ X, given by TIx(U) = adx(U), UE PX. For a space 

X, EX = (PX)s' T(EX) ~ T(PX) and RO(EX) = RO(PX) = CO(EX) 

CO(PX) = {OxU: U E T(X)}. For further details about EX 

and PX, the reader may refer to [7], [10], [12], [19], 

[ 20], [ 21 ] and [ 26] . 

1.2 An extension of a space X is a Hausdorff space Y 

such that X is a dense subspace of Y. If Y and Z are 

extensions of a space X, then Y is said to be projectiveLy 

Larger than Z, wri tten hereafter Y ~X Z ,. if there is a 

continuous mapping ~: Y ~ Z such that ~Ix = ~' the 

identity map on X. Two extensions Y and Z of a space X 

are called equivaLent if Y ~X Z and Z ~X Y. We shall 

identify two equivalent extensions of X,. If Y is an 

extension of X, then Y is an extension of X Let Y be s s 

an extension of a space X. If U is an open (ultra) filter 

on X, then 

U* = {U E T (Y): U n X E U} 

is an open (ultra) filter on Y which converges in Y if and 

only if Uconverges in Yi if W is an open (ultra) filter 

on Y, then 
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w* = {w n X: W E W} 

is an open (ultra) filter on X which converges in Y if and 

only if Wconverges in Y. If more than one extension is 

involved, the meanings of lj* and W* will be clear from the 

context. 

Each extgnsion Y of a space X induces the extensions 

y# and y+ of X. The extensions y# and y+ were introduced 

by Banaschewski [2] in 1964 (see also [16]). Let Y be an 

extension of X. For a point y E Y, let 

(a) oy = (N )
Y y * 

where Ny is the open neighborhood filter of y in Y. For 

an open subset U of X, let 

(b) 0y(U) = {y E Y: U E O~}.
 

The family {Oy(U): U E T(X)} (respectively, {U U {y}:
 

y E Y\X, U E O~} U T(X» forms an open base for a coarser
 

(resp. finer) Hausdorff topology T# (resp. T+) on Y. The
 

space (Y,T#) (resp. (Y,T+), denoted by y# (resp. y+) is an
 

extension of X. An extension Y of a space X is called a
 

strict (resp. simple) extension of X if Y = y# (resp.
 

Y = y+). It can be shown very easily that Y is a simple
 

extension of X if and only if X is open in Y and Y\X is a
 

discrete subspace of Y. It is proved in [16] that for any
 

extension Y of X,
 

(c) 

for each W E T(Y). 

1.3 Definition [9]. Let Y be an extension of a space 

X. Then, 
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(a) X is said to be paracombinatorially embedded in y 

if, for each pair G ,G of disjoint open subsets of X,
l 2 

cly(G ) n cly (G ) c X.l 2 

(b) X is said to be hypercombinatorially embedded in 

Y if for each pair F ,F of closed subs,=ts of X such thatl 2 

F n F is nowhere dense in X, clyF n cl F = F n F •yl 2 l 2 l 2
 

It follows from the definition that if Y is an exten­

sion of X, then X is paracombinatorially embedded in Y if 

and only if X is paracombinatorially e~bedded in y# (resp. 

y+). The following result will be used subsequently. 

1.4 Proposition [18]. Let T be an extension of a 

space X~ S a space and f: S ~~ T a perfect~ irreducible and 

continuous surjection. If X is hypercombinatorially embedded 

in T~ then f+(X) is hypercombinatorially embedded in S. 

1.5 Recall that a space X is called H-closed (see [1] 

provided that X is closed in every Hausdorff space Y in 

which X is embedded. X is called minimal Hausdorff if 

l(X) does not contain any coarser Hausdorff topology on X. 

A subset A c X is called a H-set in X (see [23]) if when­

ever ( is any cover of A by open sets in X, then there is 

a finite subfamily {C.: i = 1,2, ••• ,n}c C such that 
1 ­

A ~ u{clXC : i = 1,2, ••• ,n}; this is equivalent to sayingi 

that for every open filter] on X if A n F ~ ~ for each 

FE], then A n (ad (]» ~~. The Katetov extension (seex 

[9]) of a space X is the simple H-closed extension KX of X
 

whose underlying set is the set X U F(X) with the topology
 

T(KX) generated by the open base T(X) U {U U {lj}:
 

U E lj E F(x), U E 1(X)}. The Fomin extension (see [6]) of
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a space X is the strict H-closed extension aX of X whose 

underlying set is the set of KX and whose topology T(aX) is 

generated by the open base {oox(U): U E T(X)}, where for 

each U E T(X), 0aX(U) = U U {tJ: U E tJ E F(X)}. The 

space KX is the projective maximum in the set of all the 

H-closed extensions of X, aX = (KX)#, KX = (oX)+ and 

(KX)S = (oX)s; moreover, the identity map i: aX ~ KX is 

perfect, irreducible and a-continuous (see [1], [6], [8], 

[9],	 [15], [16], [17] and [20] for further details). 

2.	 The Banaschewski-Fomin-Shanin (BFS)-Extension pX 

The minimal Hausdorff extension (aX)s (generally 

denoted by llX and called the BFS-extension in the existing 

literature) has been extensively studied by many authors 

for a semiregular space X (see for example [5], [13], [14], 

lIS], [16] and I17]). It has been an open problem for a 

long time whether an extension of the type llX can be ob­

tained for a general Hausdorff space X. Ovsepjan [11] 

gave a definition in this direction. In what follows, 

we shall explicitly describe an extension of the type ~X 

for a general Hausdorff space X and study some of its pro­

perties. 

2.1	 Let X be a Hausdorff space and let X = X u F (X).
s 

For each G E T(X), let 0x-(G) = G u {tJ : tJ E X\X, G E lj }.s s s 

Then, 

0X(G) n 0X(H) = 0x(G n H) if G,H E T(X). 

Hence, the family {ox(G): G E T(X)} forms an open base for 

a topology T# on X. A routine verification shows that that 

(X,T#), briefly denoted by Xl' is a strict H-closed 
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extension of X. The map j: aX ~ Xl defined by: 

j(x) x if x E X 

U if U E F(X) (note U t- U in general)s s 

is a bijection. 

We now define a topology T+ on X by declaring that X 

is open in X, and, for U E X\X, a 1+-basic neighbourhood
s 

of U is U U {U } where U is open in X and U E U. Then s s s
 

(X,T+) is a simple H-closed extension of X. A direct
 

application of the definition leads to the following result. 

2.2 Proposition. For each open subset U of a space X~ 

(a) cli (U) = clx (oi (U) = (clxU) U 0i (intxclxU) c 
111 1 

Claxj+(U), and 

lb) 0illintxclxIU»\X = 0aXj+(U)\X. 

2.3 Theorem. Let X be a space. Then: 

(a) the mapping j+ Xl ~ aX is a e-homeomorphism~ and 

(b) Xl\X ~ aX\X. 

Proof. The proof of (a) follows by 2.2(a) and [l6~ 

1.2]. To prove (b), we note that from 2.2(b) it follows 

that the mapping j+li1\x: il\x ~ oX\X is continuous. 

Further, if U E 0X- (U), then there is a regular open set 
s 1 

V E RO(X) such that V E Us and V ~ U. So, U E 0aX(V). 

By 2.2(b), 0aX(V)\X Ox (intxclx(V»\X = Ox (V)\X ~ Ox (U)\X. 
1 1 1 

Hence the map (j+lx1\x)+: aX\X + i1\x is continuous, and 

(b) follows. 

2.4 Proposition. The following statements are equiva­

lent for a space x. 
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(a) X is semireguZar. 

(b) Xl is semireguZar. 

(c) Xl = (aX)s.
 

Proof. Since the proof of (c) ~ (b) ~ (a) is obvious,
 

we show that (a) ~ (b) ~ (c). Now, (b) ~ (c) follows from 

2.3(a) and [16]. To prove (a) ~ (b), since 

G E T(X), it suffices to show that the family 

{ox (intxclx(H): H open in X} is an open base for Xl. Let 
1 

...., 

U be a nonempty open subset of Xl. If Ii E U\X, then there s 

is a nonempty open subset G of X such that lis E Ox (G) ~ u. 
I 

Since G E lis' G :: intxclxH for some H E Ii. Now intxclxH E lis. 

So, Us E OX (intxclxH) =- Ox (G) cU. Now, let x E U n X, 
1 

and let G be open in X such that x E Ox (G) c U. Then 
1 

x E G. Since X is semiregular, there is an open set HeX 

such that x E intxclXH ~ G. Hence, x E Ox (intxclxH) c 
1 

Ox (G) ~ u, and (b) follows. 
1 

2.5 Remark. In view of 2.4 we shall, henceforth, 

denote Xl by ]lX, and call it the BFS-extension of X. For 

each Hausdorff space X, ]lX = aX (or, equivalently, 

KX = l.l+X) if and only if Ii= lis for each Ii E F(X) . One can 

show very easily that a space X is extremally disconnected 

if and only if l.lX is extremally disconnected, if and only 

if l.l+X is extremally disconnected. It would be interesting 

to characterize those Hausdorff spaces X for which ]lX = aX. 

In the next two propositions, we provide a partial answer 

to this problem. 
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2.6 Proposition. If every closed and nowhere dense 

subset of a space X is contained in a H-set, then aX = ~X. 

Proof. Let U E F(X). If U E U and U is not regular 

open, then by hypothesis, there exists a H-set HeX such 

that ~ ~ clx(intxclxU\U) ~ H. Since U is free, then, for 

each P E H there exist open subsets T and W of X such 
P P 

that pET , W E U, W c U and T n W =~. Since H is 
P P P - P P 

a H-set in X, the open covering {T : p E H} of H contains p 

a finite subfamily {T : i = 1,2,··.,n} such that 
Pi 

H C U{Clx(T .): i = 1,2,···,n} = clx(T), where p
1 

T U{T i = 1,2,···,n}. Let W be the corresponding
Pi Pi 

members of Uwith W n T =~, and W c U for all 
Pi Pi Pi 

i 1,2,· •• ,n, and let W = n{W i = 1,2, ••• ,n}. Th~n 
Pi 

W E U, W ~ U and (intxclxW) n H ~. Now intxclxW ~ 

intxclx(U) U U (intxclxU\U) c U U H and the above fact 

Hence, U E U... Thus U = Us 
•c::» 

and the result follows by 2.5. 

2.7 Proposition. Let X be semireguZar and extremaZZy 

disconnected. Then aX ~x if and only if every closed 

and nowhere dense subset of X is compact. 

2.8 Definition. (a) [13]. A Hausdorff space X is 

said to be almost H-closed if, for every pair of disjoint 

nonempty open subsets of X, the closure of at least one of 

them is H-closed. 

(b) [9]. A subset A of a space X is called regularly 

nowhere dense if there are disjoint open sets U and V such 
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2.9 Theorem. Let X be a space. The following state­

ments are equivalent. 

(a) KX = aX. 

(b) !KX\XI < ~O. 

(c) X has a finite cover of almost H-closed spaces. 

(d) ll+X llX.
 

Proof. See [16, Thm. 4.2] and [5, Thro. 12].
 

If the space llX is compact then X must be semiregular. 

It is proved in [15] that for a space X, llX is compact if 

and only if llX = SX, if and only if X is semiregular and 

every closed regularly nowhere dense subset of X is compact. 

We prove the analogous result for ll+X. 

2.10 Theorem. For a space X, the following statements 

are equivalent. 

(a) ll+X is compact. 

(b) (i) X has a finite cover of almost H-closed spaces, 

and 

(ii) X is semiregular and every closed regularly 

nowhere dense subset of X is compact. 

Proof. The proof is a direct consequence of 2.9, 

[15, Thm. 6.2] and the fact that ll+X\X is discrete. 

3. Characterization of the Spaces pX and p+X 

3.1 Definition. (a) A point p of a space X is called 

a semiregular point (respectively, a regular point) if when­

ever G is any open neighborhood of p in X, then there 

exists an open subset U c X such· that p E intxclxU ~ G 

(respectively, p E clxU c G) . 
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(b) A filter J on the Boolean algebra R(X) of a space 

x will be called a rc-filter on X. An open filter J on a 

space X is called a regular filter if, for each U E J, there 

is a V E J such that clxV ~ U. 

The next two propositions characterize the spaces ~X 

and ~+X. We omit their	 straightforward proofs. 

3.2 Proposition. The space ~X is uniquely determined 

by the following properties: 

(a) ~X is a strict H-closed extension of X, 

(b) X is paracombinatorially embedded in ~X, and 

(c) each point p E ~X\X	 is a semiregular point in ~X. 

3.3 Proposition. The space ~+x is uniquely determined 

by the following properties: 

(a) ~+x is a simple H-closed extension of X, 

(b) X is hypercombinatoriaZly embedded in ~+XJ and 

(c) each point p E ~+X\X is a semiregular point in 

(~+X) #. 

3.4	 Lemma. Let W be a fpee rc-ultpafiltep on x, and 

Then WO = U for some U E F(x).
s 

Proof. Clearly, WO is a free open filter base and is 

contained in some free open ultrafilter U. Moreover, 

WO c Us. Now, if V is a regular open set in Us' then 

V n intxW ~ ~ for all W E W. Thus, (clxV) n W ~ ~ for all 

W E W. Since X = (clxV) u (X\V) E W and W is a rc-ultrafil ­

ter, either clx(V) E W or, X\V E W. However, (clxV) 1\ 

(X\V) = ~. So, X\V ¢ W. Thus clx(V) E W, whence, 

V = intxclxV E WOe Thus, Us WOe 
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Recall that an open cover Cof a space X is called 

a p-cover of X if there exist finitely many members 

Cl ,C 2 ,---,C in Csuch that X = U~=lclXCi. If X is an 

space and J is a filter on X, then, a subset A S X is said 

to miss J if A n F = ~ for some F E J; otherwise, we say 

that J meets A. 

3.5 Theorem. For a space X, the following statements 

are equivalent. 

(a) If A is any closed regularly nowhere dense subset 

of X, then A misses every free rC-filter on X. 

(b) U is a regular filter for each U E F(x).s 

(c) If C is any regular open cover of X such that C is 

not a p-cover, then for each closed regularly nowhere 

dense subset A of X there exist finitely many C ,C ,C ,---,C
l 2 3 n 

in Csuch that A c intxclx[U~=lCi]. 

Proof· (a) ~ (c). Let A ~ bdxU, U E RO(X) be any 

closed regularly nowhere dense subset of X, and let C be 

an open cover of X consisting of regular open subsets of 

X, which is not a p-cover. Then, J = {clxintx(X\U~=lCi): 

Cl ,C 2 , - - - ,C E [, n E N} is a free rc-filter base. Hence,n 

by (a) there is a finite family Cl ,C 2 ,---,C in Csuch n 

that A n clxintx[X\U~=lCi] = ~_ Consequently, 

A c intxclX[U~=lCi] and (c) follows_ 

(c) ~ (b) _ Let U E F(X) and let U E RO (X) n U. The 
s 

family {X\clx(W): W E Us} is a regular open cover of X 

which is not a p-cover. Hence, by (c), there are finitely 

many Wl 'W2 '---'W in Us such that bdxU ~ intxclx[U~=l(X\n 

clx(W.»] = X\clxintx[n~_l(Clx(W.»] c X\clx[n._ l w.]. Let
1 1- 1 - 1- 1 
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v = U n n~=lwi. Then, V E Us and (clxV) n [X\Clx(n~=lWi)] =~. 

Hence clxV ~ U and (b) follows. 

(b) ~ (a). Let A be a closed regularly nowhere dense 

subset of X, say A c bdxU for some U E RO(X). Let J be any 

free rc-filter on X. Assume that J meets A. Then J meets 

clXU. Hence, the family J U {clxV: V E T(X), V ~ bdxU} has 

the finite intersection property, and there is a free 

rc-ultrafilter Wcontaining this family. By 3.4, 

uP = {intxclxW: W E W} = U for some U E F(X). Now since s 

U E RO(X) , either U E U or X\clxU Suppose that s E Us • 
U E U . Since U is a regular filter by hypothesis, there s s 

is a set V E Us such that clxV c U. So, X\clxV == bdxU, 

and, hence, clX(X\clxV) E W. But then X\clxV intxclx(X\clxV) 

E Us' which is impossible, since V E Us. Now if X\clxU E Us' 

then there is a set V' E Us such that clxV' ~ X\clxU, and 

since bdxU = bdx(X\clxU), by the same reasoning as above, 

X\clxV' E Us' which is impossible. Thus J misses A, and 

the theorem follows. 

3.6 Proposition. For a space X~ each point p E uX\X 

is regular in ~x if and only if Us is a regular filter on 

X for each U E F(X). 

Proof. Suppose that U is a regular filter for each s 

lj E F(x). Let o~x(G) be a basic open neighborhood of Us in 

~X, where G E Us. There is a regular open set H E Us such 

that clXH c G. Then, Us E o~x (H) c.=. cl~x (opx (H» cl (H) Ux 

o~x(intxclxH) ~ o~x(G), whence, Us is a regular point in 

~x. Conversely suppose that each point Us E ~X\X is a 

regular point in ~X. Let Us E ~X\X, and let G E Us. Then, 
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there exists a basic open neighborhood ° X(H) of U such
11 s 

that U E ° X(H) c cl x H c 0X(G). Hence, H E U and s ~ - 11 - 11 s 

clxH c X n ° x(G) = G, whence U is a regular filter, and - 11 s 

the proof of the proposition is complete. 

3.7 Proposition. For a space X~ each point of oX\X 

is regular in oX if and only if U is a regular filter for 

each U E F(X) • 

Proof. Similar to the proof of 3.6. 

3.8 Example. Let X = SN\{p} where p E SN\N. By [15], 

~X = sx (=sN). Moreover, p is a regular point in X. How­

ever, oX t SX, and p is not a regular point on aX. In 

particular, oX t 11 X and KX t ~+X. 

It is easy to see that if X is any regular space, 

then each point of X is a regular point in oX (resp. 11X). 

4.	 Commutativity of the Absolutes E and P with the 
Extensions J.1 and J.1+ 

Let hX be a H-closed extension of a space X. We iden­

tify EX with k~x(X) and PX with TI~x(X). Let h'EX (respec­

tively, h'PX) be a H-closed extension of EX (resp. PX). We 

say that h'EX = EhX (resp. h'PX = PhX) provided that there 

exists a homeomorphism ~: h'EX + EhX (resp. ¢: h'PX + PhX) 

that fixes EX (resp. PX) pointwise. Various such comrnuta­

tivity relations h'EX = EhX have already been investigated 

in the literature. In [7] it is shown that EhX = SEX for 

every space X and every H-closed extension hX of X. In 

[9] and [17] it is shown that EoX = oEX if and only if the 

set of nonisolated points of EX is compact, if and only if 
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every closed and nowhere dense subset of EX is compact. 

In [10] and [18] it is shown that PKX = KPX for every space 

X. Recently it was shown in [18] that PaX = aPX for every 

space X, E~X = ~EX for every semiregular space X, and, for 

a regular space X, P~X = ~PX if and only if every closed 

regularly nowhere dense subset of X is compact. In what 

follows, we develop various commutativity relations between 

the two absolutes E and P and the extensions ~X and u+X. 

We begin with the next result. 

4.1 Theorem. For every Hausdorff space X, E~X ~EX. 

Proof. Now ~EX = SEX = E~X by [7] and [15]. 

4.2 Theorem. For a space X, ~+EX = E~+X if and only 

if X is a finite union of almost H-closed spaces. 

Proof. Since laEX\EXI I~EX\EX I = j SEX\EX I = IaX\X I ' 
it follows by 2.9 that X is a finite union of almost H-closed 

spaces if and only if EX is a finite union of almost H-closed 

spaces. Since E~+X = E~X = ~EX, the theorem follows from 

2.9. 

4.3 Remark. Let X = SN\{p} be the space of 3.8. 

Then X is extremally disconnected, and by [15], ~+x ~X = 

SX. Also EX PX X, ~+PX ~+x P~+X, ~PX = ~X = P~X. 

Moreover, KX aX ~ SX. Since PKX = KPX = KX, it follows 

that PKX ~ P~+X and PaX ~ P~X. (Incidently it follows that 

there are e-homeomorphic spaces Y = aX, Z =: ~X, such that 

EY = EZ, but PY ~ PZ.) However, the commutativity of P and 

~ is, in general, more delicate. 
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4.4 Example. Let mN be the following space defined by 

Urysohn [22]: 

mN { (0 ,1) , (0, -I)} U {( lin, 0): n EN} u {( lin, 11m) : 

n E N,lml EN}. Define t(mN) as follows: a subset U E mN is 

open	 if U\{(O,l), (o,-l)} is open in the topology that mN\ 

2
{(O,l) ,(O,-l)} inherits from the usual topology of n , and 

(0,1) E U (respectively, (0,-1) E U) implies that there is 

some kEN such that {(l/n,l/m): n > k,m E N(resp., -m EN)} 

c U. Then 

(a) mN is minimal Hausdorff, but not Urysohn (and 

hence is not regular), 

(b) mN contains a countable dense discrete subspace, 

and, hence, mN is a strict minimal Hausdorff extension of N. 

Now, the space PmN is a H-closed extension of TI:N(N) 

such that KN ~ PmN ~ aN. However, PmN t aN since mN is not 

compact. Also, (PmN)# = aN. Thus, even though mN is a 

strict H-closed extension of N, PmN is not a strict exten­

sion of n;N(N). 

The proof of the next lemma is straightforward and is 

omitted. 

4.5 Lemma. Let X be a Hausdorff space. 

(a) The map TI I PlJX\TI~x(X) + lJ X\X 
IJX PIJX \1T: (X) ...

X 

is a continuous bijection. 

(b) Each point of PlJx\n: (x) is semiregular in PlJX ifx 

and only if Us is a regular filter on X for each U E F(X) • 

4.6 Theorem. For a space X-' PlJX = llPX if and only if 

+
PlJX is a strict extension of TI (X) and tJ is a regular

lJx s 
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fi lter on X for each (j E F(X) • 

Proof. Since P~X is extremally disconnected, n:x(X) 

is paracombinatorially embedded in P~X. ~Phe theorem now 

follows directly from 3.2 and 4.5. 

4. 7 Proposi tion. Le t X be a regu lap space. Therz~ 

P~X = ~PX if and only if Us is a regular filter on X for 

each U E F(X) • 

Proof. We first show that if X is a regular space and 

U is a regular filter on X for each U E F(X), then P~X is s 

a strict extension of n:xIXI. Let W n:xlUI n O~xIVI (Where 

U and V are open subsets of ~X) be a basic open subset of 

P~X, and let a E W. We show that there is an open subset 

B ~ ~X such that a E 0p~X[O~XB n n:x(x)] ~ W. If a E W\ 

n+X(X) , then ~ = (a*) = n x(a) E U\X. So, there is a set 
~ s ~ 

G E ~ such that ~ E 0 x(G) c U. Since ~ is a regular filter, 
~ ­

there is a regular open set H E ~ such that clxH ~ G. Then 

~ E O~X(H) ~ cl~X(O~X(H)) = clx(H) U o~x(H) c o~x(G). 

Hence, a E n:x(O~x(H)) ~ Clp~x[n:x(o~x(H))] 

intF~xclp~x[n:x(o~x(H))] = intp~x[n:x(cl~x(o~x(H)))] c 

intp~xn:x(o~x(G)) ~ n:x(U). Since P~x is extremally dis­

connected, clp Xn+x (0 . (d) )] = 0 xA for some open subset 
~ ~ ~X ~ 

A ~ ~X. Take B = A n V. Then, a E O~XB = oPuX[O~XB n 

n:x(X)] C W. The case when a E w\n:x(x) is dealt in an 

analogous manner using the fact that X is regular. Thus, 

p~X is a strict extension of n:x(x). Now, n:x(X) is para­

combinatorially embedded in P~X. Hence, by 3.2 and 4.5 it 

follows that p~X = ~PX. The converse follows from 4.6. 
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4.8 Corollary. If X is a regular space~ then Us is a 

regular filter on X for each U E F(x) if and only if every 

closed and regularly nowhere dense subset of X is compact. 

Proof. The proof follows from 4.7 and [18, Thm. 7.1]. 

We conclude this section with the following remarks. 

4.9 Remarks. (1) Let Y E~. Then]JY 

SE R= SY, and aY f. ]JY. 

(2) Now, let X = Q u Q (12) with the topology T(X) 

induced by the usual topology on R. Let Y be the space 

with the underlying set of X and the topology T(Y) generated 

by the family {T(X) U {Q}} (i.e. Q is open in Y). Since 

(-12,/2) n X is an open neighborhood of 0 in X, (-12,/2) n Q 

is an open neighborhood of 0 in Y. If Us E o]Jy((-/~,/1) n 

Q)\y, then there exists an open set U E U (E F(y)) such that 

intycly(U) c (-/2,12) n Q, which is impossible. Thus 

0lly((-I2,/2) nQ)\y=~. On the other hand, for each non­

empty open subset V C Y, 0aY(V n Q)\y ~~. This shows that 

o is not an interior point of 0lly((-/2,/2) n Q) in aY and 

hence 0lly((-I2,I2) n Q) is not open in aYe The above 

examples show that the topologies T(aZ) and T(llZ) are not 

(in general) comparable, and that the following diagram 

cannot be completed: 

KZ ) aZ 
-~ continuous 

continuous ______ continuous 
I 

continuous ~ 
ll+Z )- llZ 
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