TOPOLOGY PROCEEDINGS

Volume 10, 1985

Pages 207-220

http://topology.auburn.edu/tp/

SUBREGULAR REFINABILITY AND SUBPARACOMPACTNESS

by

H. H. WICKE AND J. M. WORRELL, JR.

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SUBREGULAR REFINABILITY AND SUBPARACOMPACTNESS

H. H. Wicke and J. M. Worrell, Jr.

1. Introduction

We introduce and study the concepts of subregular refinability l and sub- κ -regular refinability. These generalize regular refinability [A] and K-regular refinability [W]. The first of these is involved in the classical Alexandroff-Urysohn metrization theorem [AU] of which the following theorem is a slight variation.

1.1 Theorem. A space is metrizable if and only if it is a Moore space, i.e., a T3 developable [B] space, which is regularly refinable.

Worrell [W] proved the following theorem.

1.2 Theorem. A space is regular and paracompact if and only if it is essentially T_1^2 and w-regularly refinable.

In this paper we replace the open refinements entering into the definitions of regular and k-regular refinability by sequences of open refinements in a natural way illustrated by the relation between full normality and one of the equivalent forms of subparacompactness ([B], Theorem 3.1(v)) or

Definitions are given in Section 2.

 $^{^2}A$ space X is essentially T₁ [WW] if and only if for all x,y \in X, if x \in $\{\overline{y}\}$ then y $\in^1\{\overline{x}\}$. Regular spaces have the property and normal spaces with the property are regular.

that between metacompactness and θ -refinability [WW] (= submetacompactness). These concepts permit us to obtain Theorem 1.3, a natural analogue of Theorem 1.2, and Theorem 1.4 which is related to Theorem 1.1.

- 1.3 Theorem. A regular space is subparacompact if and only if it is sub- ω -regularly refinable.
- 1.4 Theorem. A regular space is a Moore space if and only if it is sub- ω -regularly refinable and has a base of countable order. ³

The next two theorems are variations of Theorems 1.4 and 1.2, respectively.

- 1.5 Theorem. A regular space is a Moore space if and only if it is subregularly refinable, submetaLindelöf, and has a base of countable order.
- 1.6 Theorem. A space is regular paracompact if and only if it is essentially \mathbf{T}_1 , collectionwise normal and sub- ω -regularly refinable.

As a corollary to this we have a metrization theorem.

1.7 Theorem. A space is metrizable if and only if it is \mathbf{T}_1 collectionwise normal, subregularly refinable, submetaLindelöf and has a base of countable order.

These theorems provide some evidence that the "sub" concepts introduced here have a natural place in the theory

³For a definition see [WW].

of previously defined concepts such as subparacompactness, submetacompactness (θ -refinability) and submetaLindelöfness ($\delta\theta$ -refinability).

The characterization of subparacompactness given in Theorem 1.3 is deduced from Theorem 3.1 below which states that in a sub- κ -regularly refinable space every open cover has a κ -discrete refinement (where $\kappa > \omega$).

Section 2 of the paper contains definitions and a lemma; section 3 presents the proof of Theorem 3.1. Section 4 contains a general theorem on subparacompactness which includes the Theorem 1.3. We also give the proofs of the other new results of the introduction in section 4. In section 5 we list some relevant examples. Definitions of other covering properties not in section 2 can be found in [Bu]. We use ZFC set theory in the notation of [Mo]. Topological terminology used is standard; we are not assuming that the concepts of regularity or collectionwise normality imply T1, however.

2. Subregular Refinability and Related Concepts

In this section we give the definitions of the two basic concepts involved in the results and prove a lemma. If \mathcal{U} and \mathcal{V} are covers of a set X, the collection \mathcal{V} is called a refinement of \mathcal{U} if for every $V \in \mathcal{V}$ there is some $U \in \mathcal{U}$ such that $V \subseteq U$. If \mathcal{V} is not required to cover X, then we say that \mathcal{V} partially refines \mathcal{U} . We use κ to denote a cardinal number such that $\kappa \geq 1$. The reference [Bu] can be used for definitions not found here.

2.1 Definitions [W]. Let \mathscr{H} and \mathscr{K} be collections of sets. The collection \mathscr{K} is said to be $(\kappa,1)$ -regularly $((\kappa,2)$ -regularly) inscribed in \mathscr{H} at p if and only if $p \in U\mathscr{K}$ and there exists $\mathscr{W} \subseteq \mathscr{H}$ such that $|\mathscr{W}| \leq \kappa$ and if $U,V \in \mathscr{K}$ and $p \in U \cap V(U,V \in \mathscr{K}, U \cap V \neq \emptyset$, and $p \in U$), then there is $W \in \mathscr{W}$ such that $U \cup V \subset W$.

The collection K is said to be regularly inscribed in \mathcal{H} at p if and only if K is $(|\mathcal{H}|,1)$ -regularly inscribed in \mathcal{H} at p. The collection K is said to be regularly inscribed in \mathcal{H} [P] if and only if K is regularly inscribed in \mathcal{H} at all p \in UK. If, in addition, U \mathcal{H} = UK, then K is called a regular refinement [A] of \mathcal{H} .

2.2 Definitions. A space X is called regularly refinable [A] if and only if every open cover of X has an open regular refinement. A space X is called κ -regularly refinable [W] if and only if every open cover ℓ of X has an open refinement ℓ that is $(\kappa,1)$ -regularly inscribed in ℓ at all p \in X.

The concept of subregular refinability (sub- κ -regular refinability) is related to regular refinability (κ -regular refinability) in a fashion analogous to the way in which subparacompactness is related to paracompactness or θ -refinability (= submetacompactness) is related to meta-compactness.

2.3 Definitions. A space X is called subregularly refinable (sub-K-regularly refinable) if and only if for every open cover // of X there is a sequence <//><math>// n < ω of

open refinements of U such that for all p \in X there is $n \in \omega$ such that V_n is regularly ((κ ,1)-regularly) inscribed in \mathcal{U} at p. We call such a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ a subregularly (sub-k-regularly) refining sequence of U.

- 2.4 Lemma. Let X be a sub-K-regularly refinable space. Let U be an open cover of X. Then there exists a sequence $\langle U_n : n \in \omega \rangle$ of open covers of X such that for all $n \in \omega$:
 - (1) $U_0 = U$
 - (2) U_{n+1} refines U_n
- (3) For each p \in X, there is j \in ω such that j > n and U_{i} is $(\kappa,1)$ -regularly inscribed in U_{n} at p.

Proof. For collections # and & let # \wedge & = { \mathbb{H} \cap \mathbb{K} : H \in # and K \in &}. Define &(0,0) = &. Assume &(k,m) is is a sub- κ -regularly refining sequence of $\mathcal{V}(k,k)$ for 0 < k < n + 1. Then we define

 $W(n+1,0) = W(n,n) \wedge V(n,0)$ and, if W(n+1,j) is defined for 0 < j < m < n let

 $W(n+1,m) = W(n+1,m-1) \wedge V(n,m)$ and, finally, let W(n+1,n+1) = W(n+1,n).

Let $\langle V(j,n+1): j > n + 1 \rangle$ be a sub- κ -regularly refining sequence of W(n+1,n+1). Thus W(n,m) is defined for all $\langle n,m \rangle \in \omega \times \omega$ such that $m \leq n$. Let $U_n = W(n,n)$ for all n $\in \omega$. Then \mathcal{U}_0 = \mathcal{U} and \mathcal{U}_{n+1} refines \mathcal{U}_n . Suppose p $\in X$ and n $\in \omega$. Then p $\in UU_n$ and there is $j \ge n$ such that V(j,n) is (κ,l) -regularly inscribed in U_n at p. Thus $\mathcal{W}(j+1,n)$ is also $(\kappa,1)$ -regularly inscribed in \mathcal{U}_n at p and so is $U_{j+1} = W(j+1,j+1)$.

3. Sub-κ-Regular Refinability and κ-Discrete Refinements

In this section we prove a principal theorem on the existence of κ -discrete refinements which, together with regularity, implies the characterization of subparacompactness of Theorem 1.3. We also prove Theorem 3.2 which gives a simple necessary and sufficient condition that a subregularly refinable space be sub- κ -regularly refinable.

3.1 Theorem. Suppose $\kappa \geq \omega$ and X is a sub- κ -regularly refinable space. Then every open cover of X has a κ -discrete refinement.

Proof. Suppose X is such a space and \mathscr{U} is an open cover of X. There is a sequence $\langle \mathscr{U}_n \colon n \in \omega \rangle$ of open covers of X, with $\mathscr{U}_0 = \mathscr{U}$, which satisfies the conclusion of Lemma 2.4. We use this sequence to construct a sequence $\langle \mathscr{V}_n \colon n \in \omega \rangle$, with a special relationship to $\langle \mathscr{U}_n \colon n \in \omega \rangle$, to which Theorem 1 of [W] may be applied. The construction proceeds by making several auxiliary definitions and proving four statements concerning these concepts. We use the notation $^n\omega$ for the set of all functions from the integer $n \in \omega$ into ω . We also use $R(\mathscr{V}, \mathscr{U}, \kappa, p)$ to stand for the statement that \mathscr{V} is $(\kappa, 1)$ -regularly inscribed in \mathscr{U} at p. We employ the following notation: If \mathscr{W} is a collection of sets and E is a set, then $\mathscr{W}|_E = \{W \cap E \colon W \in \mathscr{W}\}$ and $(\mathscr{W})_p = \{W \in \mathscr{W} \colon p \in W\}$. Also $\phi|_n$ denotes the restriction of ϕ to the set n.

We define the concept of n-admissible for $n\in\omega\backslash 1$ by induction.

 ϕ is 1-admissible if and only if $\phi \in {}^1\omega$ and there is $p \in X$ such that $\phi(0) = \min\{j \in \omega \colon R(U_j, U_0, \kappa, p)\}$. Assume

m-admissibility is defined for all m \in n and suppose n > 1: Then ϕ is n-admissible if and only if $\phi \in {}^n\omega$ and for all m \in n\l, ϕ |m is m-admissible and there is p \in X such that

$$\phi(n-1) = \min\{j \in \omega \colon j \ge \phi(n-2) \text{ and }$$

$$R(\mathcal{U}_j, \mathcal{U}_{\phi(n-2)}, \kappa, p)\} \ .$$

For each 1-admissible ϕ define

$$\begin{split} E_{\varphi} &= \{ p \in X \colon \, \varphi(0) \, = \, \min \{ j \in \omega \colon \, R(\mathcal{U}_j, \mathcal{U}_0, \kappa, p) \, \} \}. \end{split} \\ &\text{If } E_{\varphi} \text{ is defined for all m-admissible } \varphi \text{ such that m } < n, \\ &\text{then for } n > 1 \text{ and n-admissible } \varphi, \text{ define} \end{split}$$

$$\begin{split} \mathbb{E}_{\varphi} &= \{ p \in \mathbb{E}_{\varphi \mid (n-1)} : \ \varphi(n-1) = \min \{ j \in \omega : \\ j &\geq \varphi(n-2) \ \text{ and } \ \mathbb{R}(\mathcal{U}_{j}, \mathcal{U}_{\varphi(n-2)}, \kappa, p) \} \}. \end{split}$$

Then the following four statements hold:

(1) For all n ε w\l, $\{E_{\,\varphi}\colon \, \varphi \text{ is } n\text{-admissible}\}$ is a partition of X.

For if n=1 and $p\in X$, then by (3) of Lemma 2.4 there is a 1-admissible ϕ such that $R(\mathcal{U}_{\varphi(0)},\mathcal{U}_0,\kappa,p)$ and $p\in E_{\varphi}$. If $\phi'\neq\phi$ and ϕ' is 1-admissible, then $\phi'(0)\neq\phi(0)$, thus $p\not\in E_{\varphi}$. Suppose $n\in\omega\backslash 2$ and that (1) is true for all $m\in n\backslash 1$. Let $p\in X$. Then $p\in E_{\psi}$ for some unique (n-1)- admissible ψ . Define $\phi\in {}^n\omega$ by letting $\phi|(n-1)=\psi$ and defining $\phi(n-1)$ as follows: By (3) of Lemma 2.4,

$$k = \min\{j \in \omega: j \ge \psi(n - 2) \text{ and}$$

$$R(\mathcal{U}_j, \mathcal{U}_{\psi(n-2)}, \kappa, p)\} \text{ exists.}$$

Let $\phi(n-1)=k$. Then ϕ is n-admissible and $p\in E_{\phi}$. If $\phi'\in {}^n\omega$ and $p\in E_{\phi'}$, then $\phi'|(n-1)=\phi|(n-1)$ so that $\phi'(n-1)=\phi(n-1)$ by the definition of E_{ϕ} and $E_{\phi'}$. Hence $\phi=\phi'$.

(2) If n > 0, ϕ is (n+1)-admissible, and p \in E $_{\varphi}$ then $\mathcal{U}_{\varphi\,(n)} \mid E_{\varphi} \text{ is } (\kappa,l) \text{-regularly inscribed (and, hence, regularly inscribed) in } \mathcal{U}_{\varphi\,(n-1)} \mid E_{\varphi} \mid_{n} \text{ at p.}$

By the definition of E_{φ} , $p \in E_{\varphi \mid n}$ and $\mathcal{U}_{\varphi(n)}$ is (κ,l) -regularly inscribed in $\mathcal{U}_{\varphi(n-l)}$ at p. Hence there is $\mathcal{W} \subseteq \mathcal{U}_{\varphi(n-l)}$ with $|\mathcal{W}| \leq \kappa$ such that $U,V \in \mathcal{U}_{\varphi(n)}$ and $p \in U \cap V$ implies that there is $W \in \mathcal{W}$ such that $U \cup V \subseteq W$. Since $E_{\varphi} \subseteq E_{\varphi \mid n}$ it follows that $U \cap V \cap E_{\varphi} \subseteq W \cap E_{\varphi \mid n}$. Since $|\{W \cap E_{\varphi \mid n} \colon W \in \mathcal{W}\}| \leq \kappa$ the result follows.

(3) For any 2-admissible φ and p \in E $_{\varphi},~\mathcal{U}_{\varphi\left(1\right)}\left|\right.^{E}_{\varphi}$ is (k,2)-regularly inscribed in \mathcal{U}_{0} at p.

Suppose U,V $\in \mathcal{U}_{\varphi(1)}$, $q \in U \cap V \cap E_{\varphi}$ and $p \in U$. By (2) there is $W \in \mathcal{U}_{\varphi(0)}|_{\varphi|1}$ such that U U V $\cap E_{\varphi} \subseteq W$. Since $\varphi|1$ is 1-admissible, there is $\mathcal{M} \subseteq \mathcal{U}_0$ with $|\mathcal{M}| \leq \kappa$ such that $(\mathcal{U}_{\varphi(0)}|_{\varphi(1)})_p^4$ partially refines \mathcal{M} . Hence U U V $\cap E_{\varphi}$ is a subset of some member of \mathcal{M} .

Now define $V_0 = U_0$ and, for $n \in \omega$, $V_{n+1} = U\{U_{\Phi(n)} | E_{\phi} \colon \phi \text{ is } (n+1) \text{-admissible}\}.$

(4) For all $n \in \omega$, V_n covers X, V_{n+1} regularly refines V_n , and V_1 is $(\kappa,2)$ -regularly inscribed in V_0 at all $p \in X$.

 V_0 is a cover of X. If $n \in \omega$ and $p \in X$, there is an (n+1)-admissible ϕ such that $p \in E_{\phi}$. Since $U_{\phi(n)}$ covers X, there is an element of $U_{\phi(n)}|E_{\phi}$ that contains p. By (2), $U_{\phi(n)}|E_{\phi}$ is $(\kappa,1)$ -regularly inscribed in $U_{\phi(n-1)}|E_{\phi|n}$ at p. Since the only elements of V_{n+1} that contain p belong to $U_{\phi(n)}|E_{\phi}$ and $U_{\phi(n-1)}|E_{\phi|n} \subseteq V_{n}$, it follows that V_{n+1} is $(\kappa,1)$ -regularly inscribed in V_{n} at p. The last statement

⁴ $(W)_p = \{W \in W : p \in W\}.$

of (4) follows from (3).

Theorem 1 of [W] implies that for such a sequence $\langle V_n \colon n \in \omega \rangle$ there exist $\mu \subseteq \omega \backslash 1$ and a function $f \colon \mu \to \mathcal{P}(\mathcal{P}(X))$ such that: (a) Uf(μ) covers X, (b) if $n \in \mu$ and ℓ is a coherent subcollection of V_n (i.e., ℓ is not the union of two nonempty collections ℓ and ℓ such that U ℓ ℓ U ℓ = ℓ 0) such that $|\ell| \leq 3$, then U ℓ does not intersect two elements of f(n), and (c) if $n \in \mu$ and $n \in \ell$ 1, then $n \in \ell$ 2 is regularly inscribed in some subcollection of $n \in \ell$ 3 of cardinal number $n \in \ell$ 4.

Let $n + 1 \in \mu$ and let ϕ be (n+1)-admissible. Let κ = $\varphi\left(n\right)$. Then no element of \mathcal{U}_{k} meets two elements of $\{A \cap E_{\underline{\phi}} \colon A \in f(n+1)\}.$ For if $U \in \mathcal{U}_{\underline{k}}$ then $U \cap E_{\underline{\phi}} \in \mathcal{U}_{\underline{k}} | E_{\underline{\phi}}$ \subseteq V_{n+1} . The set {U \cap E_{ϕ} } is a coherent subcollection of V_{n+1} and thus does not intersect two elements of f(n + 1). Hence for all $n \in \omega$, if $n + 1 \in \mu$ and ϕ is (n+1)-admissible, {A \cap E_{ϕ}: A \in f(n + 1)} is a discrete collection since $\mathcal{U}_{\phi(n)}$ is an open cover of X. If $n + 1 \in \mu$, the collection of all elements of V_{n+1} intersecting A \in f(n + 1) is regularly inscribed in a subcollection $V_0^*(A)$ of V_0 of cardinality $\leq \kappa$, by (c) above. Let $\langle V_{\alpha,A} : \alpha < \kappa \rangle$ be an enumeration of V_0 (A) (with repetitions possible). Then each set $\partial(\alpha, n, \phi) =$ {A \cap E_{ϕ} \cap V_{α ,A}: A \in f(n + 1)}, where ϕ is (n+1)-admissible, is discrete and partially refines $V_0 = U_0$. Since there are $<\kappa$ such collections for each $n\in\omega$ and (n+1)-admissible ϕ , there are at most κ such sets. If $p \in X$, then by (a) there exist $n \in \omega$ with $n + 1 \in \mu$, $A \in f(n + 1)$, and an (n+1)-

W \in V_{n+1} with p \in W, so there exists α < κ such that W \subseteq $V_{\alpha,A}$. Hence p \in U $\partial(\alpha,n,\phi)$. Thus the collection of all $\partial(\alpha,n,\phi)$ is a κ -discrete refinement of U.

3.2 Theorem. Let X be a subregularly refinable space. Then X is sub-K-regularly refinable if and only if for every open cover U of X there is a sequence (V_n : $n \in \omega$) of open refinements of U such that for all $p \in X$ there exist $n \in \omega$ and $M_p \subseteq U$ such that $|M_p| \leq \kappa$ and $(V_n)_p^5$ partially refines M_p .

Proof. The necessity is clear. Let $\mathscr U$ be an open cover of X and let $\langle \mathscr V_n \colon n \in \omega \rangle$ be a sequence of refinements of $\mathscr U$ with the property indicated above. For each $n \in \omega$, there is a subregular refining sequence $\langle \mathscr W_{nm} \colon m \in \omega \rangle$ of $\mathscr V_n$. Suppose $p \in X$. Then for some $n \in \omega$ and $\mathscr M_p \subseteq \mathscr U$, $|\mathscr M_p| \leq \kappa$ and $(\mathscr V_n)_p$ partially refines $\mathscr M_p$. For some $m \in \omega$, $\mathscr W_{nm}$ is regularly inscribed in $\mathscr V_n$ at p. Suppose $W_1, W_2 \in \mathscr W_{nm}$ and $p \in W_1 \cap W_2$. There is $V \in (\mathscr V_n)_p$ such that $W_1 \cup W_2 \subseteq V$. There is also $G \in \mathscr M_p$ such that $V \subseteq G$. Thus $\langle \mathscr W_{nm} \colon \langle n, m \rangle \in \omega \times \omega \rangle$ is a sequence of open refinements of $\mathscr U$ such that for all $p \in X$ there is some $\mathscr W_{nm}$ which is $(\kappa, 1)$ -regularly inscribed in $\mathscr U$ at p.

4. Subparacompactness and Related Topics

- **4.1** Theorem. The following are equivalent for a regular space \mathbf{X} :
 - (a) X is subparacompact.
 - (b) For every open cover U of X there exists a sequence

⁵ $(W)_{p} = \{W \in W : p \in W\}.$

 $\langle V_n : n \in \omega \rangle$ of open refinements of U such that for all $p \in X$ there exist $m, n \in \omega$ such that V_n is (m,1)-regularly inscribed in U at p.

- (c) X is $sub-\omega$ -regularly refinable.
- (d) X is subregularly refinable and for every open cover $\mathcal U$ of X there is a sequence ($\mathcal V_n\colon n\in\omega$) of open refinements such that for all $p\in X$ there is $n\in\omega$ and $\emptyset\subseteq\mathcal U$ such that $|\mathcal M|\le\omega$ and $(\mathcal V_n)_p$ partially refines \emptyset .
 - (e) X is subregularly refinable and submetalindelöf.

Proof. (a) \Rightarrow (b). Let \mathscr{U} be an open cover of X. By Theorem 3.1(v) of [Bu] there is a sequence $\langle \mathscr{U}_n \colon n \in \omega \rangle$ of open refinements of \mathscr{U} such that for every $p \in X$ there is $n \in \omega$ such that $\operatorname{st}(p, \mathscr{V}_n) \subseteq U$ for some $U \in \mathscr{U}$. Hence (b) holds with $m \equiv 1$.

- (b) \Rightarrow (c) and (c) \Rightarrow (d) are both clear from Definition 2.3.
- (c) \Rightarrow (a). Let \mathscr{U} be an open cover of X. By regularity there is an open refinement \mathscr{U} of \mathscr{U} such that $\{\overline{w}\colon w\in \mathscr{U}\}$ refines \mathscr{U} . By Theorem 3.1, \mathscr{U} has a σ -discrete refinement $U_{n\in\omega}\partial_{n}$, where each ∂_{n} is discrete. Then $U\{\overline{D}\colon D\in\partial_{n}\wedge n\in\omega\}$ is a σ -discrete closed refinement of \mathscr{U} .
 - (d) \Rightarrow (c) by Theorem 3.2 for the case $\kappa = \omega$, and
 - (e) \Rightarrow (d) by definition.
- (a) \Rightarrow submetacompactness by Theorem 3.1 (vi) of [Bu]. Also (a) \Rightarrow subregularly refinable because (a) \Leftrightarrow (c). Hence (a) \Rightarrow (e).

It is clear from (a) \Rightarrow (c) that Theorem 1.3 holds.

Proof of Theorems 1.4 and 1.5. Theorem 1.4 follows from 4.1 part (e) and the fact that a regular subparacompact space having a base of countable order is a Moore space. This is a direct consequence of Theorem 3 of [WW] and the fact that subparacompactness implies θ -refinability. Theorem 1.5 follows from 1.4 by applying Theorem 3.2 and the definition of submetaLindelöf.

Proof of Theorem 1.6. A regular paracompact space is essentially T_1 and collectionwise normal. Since such a space is ω -regularly refinable [W], it is sub- ω -regularly refinable. On the other hand if a space satisfies the conditions then it is regular and by Theorem 4.1 (c), it is subparacompact. But a collectionwise normal subparacompact space is paracompact [M].

Proof of Theorem 1.7. This follows from 1.4 and the fact that a collectionwise normal Moore space is metrizable [B].

5. Examples

We cite several examples showing the independence of some of the concepts involved above.

5.1 Example. A T $_2$ collectionwise normal regularly refinable but not sub- $\!\omega\!$ -regularly refinable space.

The space ω_1 with the order topology is T_2 collectionwise normal. It is also regularly refinable [W]. The space cannot be subparacompact since it is countably compact but not compact, hence it cannot be sub- ω -regularly refinable by Theorem 1.3.

5.2 Example. A sub- ω -regularly refinable space which is not regularly refinable.

Any non metrizable Moore space has this property since such a space is subparacompact but cannot be regularly refinable by Theorem 1.1.

5.3 Example. A T_2 normal metacompact space which is not subregularly refinable.

Example 4.9 (ii) of [Bu] is T_2 normal and metacompact. Since it is not subparacompact it cannot be sub- ω -regularly refinable. If it were subregularly refinable, it would be sub- ω -regularly refinable by Theorem 3.2.

References

- [A] P. S. Alexandroff, On some results concerning topological spaces and their continuous mappings. In:

 General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961), Academic Press, New York, 1962, 41-54.
- [AU] and P. Urysohn, Une condition nécessaire et suffisante pour qu'une classe (L) soit une classe (D), C. R. Acad. Sci. Paris 177 (1923), 1274-1276.
- [B] R. H. Bing, Metrization of topological spaces, Can.J. Math. 3 (1951), 175-186.
- [Bu] D. K. Burke, Covering properties. In: Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, 347-422.
- [M[L. F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc. 9 (1958), 796-799.
- [Mo] J. D. Monk, Introduction to set theory, McGraw-Hill, New York, 1969.
- [P] V. Ponomarev, Axioms of countability and continuous mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. et Phys. 8 (1960), 127-133.

- [W] J. M. Worrell, Jr., On collections of domains inscribed in a covering of a space in the sense of Alexandroff and Urysohn, Portug. Math. 26 (1967), 405-420.
- [WW] and H. H. Wicke, Characterizations of developable topological spaces, Can. J. Math. 17 (1965), 820-830.

Ohio University
Athens, Ohio 45701