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SUBREGULAR REFINABILITY AND 

SUBPARACOMPACTNESS 

H. H. Wicke and J. M. Worrell, Jr. 

1. Introduction 

We introduce and study the concepts of subregular 

refinabilityl and sub-K-regular refinability. These 

generalize regular refinability [A] and K-regular refina­

bility [W]. The first of these is involved in the classical 

Alexandroff-Urysohn metrization theoreln [AU] of which the 

following theorem is a slight variation. 

1.1 Theorem. A space is metrizable if and only if it 

is a Moore space~ i.e.~ a T developable [B] space~ which
3 

is regularly refinable. 

Worrell [W] proved the following theorem. 

1.2 Theorem. A space is regular and paracompact if 

2and only if it is essentially T and w-regularly refinable.
1 

In this paper we replace the open refinements entering 

into the definitions of regular and K-regular refinability 

by sequences of open refinements in a natural way illustrated 

by the relation between full normality and one of the equiva­

lent forms of subparacompactness ([B], Theorem 3.l(v» or 

lDefinitions are given in Section 2. 

2A space X is essentially T [WW] if and only if for 
all x,y E X, if x E {y} then y EI {x}. Regular spaces have 
the property and normal spaces with the property are regular. 
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that between metacompactness and e-refinability [WW] 

(= submetacompactness). These concepts permit us to obtain 

Theorem 1.3, a natural analogue of Theorem 1.2, and 

Theorem 1.4 which is related to Theorem 1.1. 

1.3 Theorem. A regular space is subparacompact if and 

only if it is sub-w-regularly refinable. 

1.4 Theorem. A regular space is a Moore space if and 

only if it is sub-w-regularly refinable and has a base of 

countable order. 3 

The next two theorems are variations of Theorems 1.4 

and 1.2, respectively. 

1.5 Theorem. A regular space is a Moore space if and 

only if it is subregularly refinable~ submetaLindelof~ and 

has a base of countable order. 

1.6 Theorem. A space is regular paracompact if and 

only if it is essentially Tl~ collectionwise normal and 

sub-w-reguZarZy refinabZe. 

As a corollary to this we have a metrization theorem. 

1.7 Theorem. A space is metrizable if and only if it 

is T collectionwise normal~ subregularly refinable~ sub­l 

metaLindelof and has a base of countable order. 

These theorems provide some evidence that the "sub" 

concepts introduced here have a natural place in the theory 

3por a definition see [WW]. 
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of previously defined concepts such as subparacompactness, 

submetacompactness (e-refinability) and sUbmetaLindelofness 

(68-refinability) • 

The characterization of subparacompactness given in 

Theorem 1.3 is deduced from Theorem 3.1 below which states 

that in a sub-K-regularly refinable space every open cover 

has a K-discrete refinement (where K > w). 

Section 2 of the paper contains definitions and a 

lerruna; section 3 presents the proof of Theorem 3.1. 

Section 4 contains a general theorem on subparacompactness 

which includes the Theorem 1.3. We also give the proofs of 

the other new results of the introduction in section 4. In 

section 5 we list some relevant examples. Definitions of 

other covering properties not in section 2 can be found in 

[Bu]. We use ZFC set theory in the notation of [Mo]. 

Topological terminology used is standard; we are not assuming 

that the concepts of regularity or collectionwise normality 

imply T however.l , 

2.	 Subregular Refinability and Related Concepts 

In this section we give the definitions of the two 

basic concepts involved in the results and prove a lemma. 

If U and V are covers of a set X, the collection V is called 

a refinement of U if for every V E V there is some U E U 

such that V c U. If V is not required to cover X, then we 

say that V partiaZZy refines U. We use K to denote a 

cardinal number such that K > 1. The reference [Bu] can 

be used for definitions not found here. 
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2.2 Definitions. A space X is called regularly 

refinable [A] if and only if every open cover of X has an 

open regular refinement. A space X is called K-regularly 

refinable [W] if and only if every open cover U of X has an 

open refinement V that is (K,l)-regularly inscribed in U 

at all p E X. 

The concept of subregular refinability (sub-K-regular 

refinability) is related to regular refinability (K-regular 

refinability) in a fashion analogous to the way in which 

subparacompactness is related to paracompactness or 

e-refinability (= submetacompactness) is related to meta­

compactness. 

2.3 Definitions. A space X is called subregularly 

refinabZe (sub-K-reguZarZy refinabZe) if and only if for 

every open cover U of X there is a sequence < Vn: nEw) of 
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open refinements of U such that for all p E X there is 

nEw such that V is regularly «K,l)-regularly) inscribed n 

in U at p. We call such a sequence (V : nEw) a subregu­n 

larly (sub-K-regularly) refining sequence of U. 

2.4 Lemma. Let X be a sub-K-regularly refinable space. 

Let U be an open cover of X. Then there exists a sequence 

( Un: n E w ) of open covers of X such that for all n E w: 

(1) UUo 
(2) Un+l refines Un 

(3) For each p E X~ there is jEw such that j > nand 

U is (K~ I)-regularly inscribed in Un at p.j 

Proof. For collections Hand K let H A K = {H n K: 

H E Hand K E K}. Define W(O,O) = U. Assume W(k,m) is 

defined for m < k and 0< k < n + 1 and that (V(j,k): j > k) 

is a sub-K-regularly refining sequence of W(k,k) for 

° < k < n + 1. Then we define 

W(n+l,O) W(n,n) A V(n,O) and, if W(n+l,j) is defined 

for ° ~ j < ill ~ n let 

W(n+l,m) W(n+l,m-l) A V(n,m) and, finally, let 

W(n+l,n+l) = W(n+l,n). 

Let (V(j,n+l): j ~ n + 1) be a sUb-K-regularly refining 

sequence of W(n+l,n+l). Thus W(n,m) is defined for all 

(n,m) E w x w such that m < n. Let Un = W(n,n) for all 

n E w. Then IJO IJ and refines Suppose p E X= IJn + l IJn • 

and n E w. Then p E uU and there is j > n such that n -
V(j ,n) is (K,l)-regularly inscribed in at p. ThusUn 

W(j+l,n) is also (K,l)-regularly inscribed in at p andIJn 

so is IJj + l = W(j+l,j+l) .• 
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3.	 Sub-K-Regular Refinability and K-Discrete Refinements 

In this section we prove a principal theorem on the 

existence of K~discrete refinements which, together with 

regularity, implies the characterization of subparacompact­

ness of Theorem 1.3. We also prove Theorem 3.2 which 

gives a simple necessary and sufficient condition that a 

subregularly refinable space be sub-K-regularly refinable. 

3.1 Theorem. Suppose K ~ wand X is a sub-K-regularly 

refinabZe space. Then every open cover of X has a K-discrete 

refinement. 

Proof. Suppose X is such a space and U is an open cover 

of X. There is a sequence (U : nEw) of open covers of X,
n 

Uo 
We use this sequence to construct a sequence (V : nEw),n 

with a special relationship to (Un: nEw), to which 

Theorem 1 of [W] may be applied. The construction proceeds 

by making several auxiliary definitions and proving four 

statements concerning these concepts. We use the notation 

n w for the set of all functions from the integer nEw into 

w. We also use R(V,U,K,p) to stand for the statement that 

V is (K,l)-regularly inscribed in U at p. We employ the 

following notation: If W is a collection of sets and E is 

a set, then WIE = {W n E: W E W} and (W) = {W E W: pEW}.
P 

Also ~In denotes the restriction of ~ to the set n. 

We define the concept of n-admissible for n E w\l by 

induction. 

~ is l-admissibZe if and only if ~ E lw and there is 

= U,
with which satisfies the conclusion of Lemma 2.4. 

P E X such that ~ (0) = min{j E w: R( Uj , U
O

,K ,p) }. Assume 
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m-admissibility is defined for all mEn and suppose n > 1: 

Then ¢ is n-admissible if and only if ¢ E n w and for all 

m E n\l, ¢Im is m-admissible and there is p E X such that 

¢(n - 1) = min{j E w: j > <p(n - 2) and 

R(Uj ,U<p(n_2) ,K,p)}. 

For each I-admissible ¢ define 

E¢ = {p E X: <P(O) = min{j E w: R(Uj , U ' K,p) }}.
O 

If E¢ is defined for all m-admissible ¢ such that m < n, 

then for n > 1 and n-admissible ¢, define 

E<p {p E E<p1 (n-l): ¢(n - 1) = min{j E w: 

j .::. ¢(n - 2) and R( Uj ' Ucp(n_2) ,K,p) }}. 

Then the following four statements hold: 

(1) For all n E w\l, {E ¢: ¢ is n-admissible} is a 

partition of X. 

For if n = 1 and p E X, then by ( 3) of Lemma 2.4 there 

is a l-admissible <p such that R(U<p(O),UO,K,p) and p E E<p e 

If <P' ~ <p and <P' is I-admissible, then <P' (0) ~ <P(O), thus 

P £ E<p I * Suppose n E w\2 and that (1) is true for all 

m E n\l. Let p E X. Then p E E~ for some unique (n-l)­

admissible~. Define ¢ E n w by letting ¢ I (n - 1) ~ and 

defining <p(n - 1) as follows: By (3) of Lemma 2.4, 

k = min{j E w: j ~ ~(n - 2) and 

R(Uj ,U (n_2),K,P)} exists. 
lJJ 

Let ¢(n - 1) = k. Then ¢ is n-adrnissibl.~ and pEE <p. If 

<pI E n w and p E E<p" then <p' l(n - 1) = <p1(n - 1) so that 

<P' (n - 1) <p(n - 1) by the definition of E<p and E<p'. Hence 

<p = <p'. 
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(2) If n > 0, ~ is (n+l)-admissible, and p E E~ then 

U¢(n) IE¢ is (K,l)-regularly inscribed (and, hence, regularly 

inscribed) in U¢(n-l) [E¢ln at p. 

By the definition of E¢, p E E¢ln and U¢(n) is 

(K,l)-regularly inscribed in U¢(n-l) at p. Hence there is 

W ~ Uep(n-l) with IWI ~ K such that U,V E U¢(n) and p E U n V 

implies that there is W E W such that U U V c W. Since 

E¢ =E¢ln it follows that U n V n E~ =W n E¢ln. Since 

I{W n E¢ln: W E Wli ~ K the result follows. 

(3) For any 2-admissible ¢ and p E E¢, U¢(l) IE¢ is 

(K,2)-regularly inscribed in U at p.o 
Suppose U,V E q E U n V and p U. ByU¢ (1) , n E¢ E 

( 2) there is \;J E such that U n Eep c w.U¢(o) IE¢ll U V 

Since <p11 is I-admissible, there is /fJ c U with K such1/fJ1 <o 

that 
4 

partially refines /fl. Hence U U V n E(U¢(o) IE¢ll)p ¢ 
is a subset of some member of /fl. 

Now define V = U and, for n E w,o o 
V = <P (n+l)-admissible}.is n + 1 U{Uep(n) IE¢: 

(4) For all n E w, V covers X, regularly refines 
n Vn + l 

V and is (K,2)-regularly inscribed in at all p E X.n' VI Va
 

Va is a cover of X. If n E wand p E X, there is an
 

(n+l)-affinissible ep such that p E E¢. Since U¢(n) covers X, 

there is an element of U¢(n) IE¢ that contains p. By (2), 

U¢(n) IE¢ is (K,l)-regularly inscribed in U¢(n-l) IE¢ln at p. 

Since the only elements of Vn+
l 

that contain p belong to 

U¢(n) IE¢ and U¢(n-l) IE¢ln ~ Vn , it follows that Vn+ l is 

(K,l)-regularly inscribed in V at p. The last statement 
n 

{W E W: p E wl. 
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of (4) follows from (3). 

Theorem 1 of [\v] irilplies that for such a sequence 

<V: nEw) there exist 1-l c w\l and a function f: 1.1 + ~(~(X)) n -

such that: (a) Uf(1.1) covers X, (b) if n E 1.1 and [ is a 

coherent subcollection of V (i.e., [ is not the union of 
n 

two nonempty collections A and B such that uA n uB = ~) 

such that 1[1 < 3, then u[ does not intersect two elements 

of f(n), and (c) if n E 1.1 and A E f(n), then {V E V : 
n 

V n A ~ ~} is regularly inscribed in some subcollection of 

V of cardinal number <K.o 
Let n + 1 E 1.1 and let ¢ be (n+l)-admissible. Let 

k <p (n). Then no element of Uk meets two elements of 

{A n E<p: A E f(n + I)}. For if U E Uk thl=n U n E E UkIE¢ 
cP 

~ V+l . The set {U n E } is a coherent subcollection of n cP 

Vn+l and thus does not intersect two elements of f(n + 1). 

Hence for all nEw, if n + 1 E 1.1 and <p is (n+l)-admissible, 

{A n E : A E f(n + I)} is a discrete collection since U¢(n)
cP 

is an open cover of X. If n + 1 E 1.1, the collection of 

all elements of Vn+ l intersecting A E f(n + 1) is regularly 

inscribed in a subcollection V6(A) of Va of cardinality ~K, 

by (c) above. Let <Va,A: a < K) be an enumeration of V~(A) 

(with repetitions possible). Then each set D(a,n,¢) = 

{A n E n Va,A: A E fen + I)}, where ¢ is (n+l)-admissible,
cP 

is discrete and partially refines Vo Uo. Since there are 

<K such collections for each nEw and (n+l)-admissible <p, 

there are at most K such sets. If p E X, then by (a) there 

exist nEw with n + 1 E 1.1, A E f~n + 1), and an (n+l)­

admissible cP such that pEA n E • There is also some 
cP 
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W E V +l with pEW, so there exists a < K such that n 

W c V . Hence p E UD(a,n,~). Thus the collection of - a,A 

all D(a,n,~) is a K-discrete refinement of U. 

3.2 Theorem. Let X be a subregularly refinable space. 

Then X is sub-K-regularly refinable if and only if for every 

open cover U of X there is a sequence <V : nEw) of open
n 

refinements of U such that for all p E X there exist nEw 

and m c U such that 1m I < K and (V )p5 partially refines p - p - n 

m . p
 

Proof. The necessity is clear. Let U be an open
 

cover of X and let < V : nEw) be a sequence of refinements 
n 

of U with the property indicated above. For each nEw, 

there is a subregular refining sequence < /)/ : m E w ) of 
nm V • n 

Suppose p E X. Then for some n E wand m c u, < KImplP -

and (Vn)p partially refines /f)
p 

• For some m E w, is/)/nm 

regularly inscribed in V at p. Suppose Wl 'W2 E /)/ and 
n nm 

P E WI n W2 . There is V E (Vn)p such that WI U W2 ~ V. 

There is also G E m such that V c G. Thus <W : <n,m>p nm 

E wxw> is a sequence of open refinements of U such that for 

all p E X there is some W which is (K,l)-regularlynm 

inscribed in U at p. 

4. Subparacompactness and Related Topics 

4.1 Theorem. The following are equivalent for a regular 

space X: 

(a) X is subparacompact. 

(b) For every open cover U of X there exists a sequence 

{W E W: PEW}. 
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(V : nEw) of open refinements of lj such that for all n 

P E X there exist m,n E w such that V is (m,l) -regularly
n 

inscribed in U at p. 

(c) X is sub-w-regularly refinable. 

(d) X is subregularly refinable and for every open cover 

U of X there is a sequence ( V : nEw) of open refinements n 

such that for all p E X there is nEw and mc U such that 

< wand (V) partially refines m. 
- n p 

(e) X is subregularly refinable and submetaLindel~f. 

Proof. (a) ~ (b). Let U be an open cover of X. By 

Theorem 3.1 (v) of [Bu] there is a sequence ( Un: nEw) of 

open refinements of U such that for every p E X there is 

nEw such that st(p,V ) c U for some U E U. Hence (b)n 

holds with m = 1. 

(b) ~ (c) and (c) ~ (d) are both clear from Definition 

2.3. 

(c) ~ (a). Let U be an open cover of X. By regularity 

there is an open refinement Wof U such that {W: W E W} 

refines U. By Theorem 3.1, Whas a a-discrete refinement 

UnEwO , where each On is discrete. Then U{D: D E On A nEw}n 

is a a-discrete closed refinement of U. 

(d) ~ (c) by Theorem 3.2 for the case K = w, and 

(e) ~ (d) by definition. 

(a) ~ submetacompactness by Theorem 3.1 (vi) of [Bu]. 

Also (a) ~ subregularly refinable because (a) ~ (c). Hence 

(a) ~ (e). 

It is clear from (a) ~ (c) that Theorem 1.3 holds. 
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Proof of Theorems 1.4 and 1.5. Theorem 1.4 follows 

from 4.1 part (e) and the fact that a regular subparacom­

pact space having a base of countable order is a Moore 

space. This is a direct consequence of Theorem 3 of [WW] 

and the fact that subparacompactness implies e-refinability. 

Theorem 1.5 follows from 1.4 by applying Theorem 3.2 and 

the definition of submetaLindelof. 

Proof of Theorem 1.6. A regular paracompact space is 

essentially T and collectionwise normal. Since such al 

space is w-regularly refinable [W], it is sub-w-regularly 

refinable. On the other hand if a space satisfies the condi­

tions then it is regular and by Theorem 4.1 (c), it is sub­

paracompact. But a collectionwise normal subparacompact 

space is paracompact fM]. 

Proof of Theorem 1.7. This follows from 1.4 and the 

fact that a collectionwise normal Moore space is metrizable 

[B] • 

5. Examples 

We cite several examples showing the independence of 

some of the concepts involved above. 

5.1 Example. A T collectionwise normal regularly2 

refinable but not sub-w-regularly refinable space. 

The space wI with the order topology is T collection­2 

wise normal. It is also regularly refinable [W]. The 

space cannot be subparacompact since it is countably com­

pact but not compact, hence it cannot be sub-w-regularly 

refinable by Theorem 1.3. 
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5.2 Example. A sub-w-regularly refinable space 

which	 is not regularly refinable. 

Any non metrizable Moore space has this property 

since	 such a space is subparacompact but cannot be regularly 

refinable by Theorem 1.1. 

5.3 Example. A T2 normal metacompact space which is 

not subregularly refinable. 

Example 4.9 (ii) of [Bu] is T normal and metacompact.2 

Since it is not subparacompact it cannot be sub-w-regularly 

refinable. If it were subregularly refinable, it would be 

sub-w-regularly refinable by Theorem 3.2. 
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