TOPOLOGY PROCEEDINGS

Volume 10, 1985 Pages 207–220

http://topology.auburn.edu/tp/

SUBREGULAR REFINABILITY AND SUBPARACOMPACTNESS

by

H. H. WICKE AND J. M. WORRELL, JR.

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SUBREGULAR REFINABILITY AND SUBPARACOMPACTNESS

H. H. Wicke and J. M. Worrell, Jr.

1. Introduction

We introduce and study the concepts of subregular refinability¹ and sub- κ -regular refinability. These generalize regular refinability [A] and κ -regular refinability [W]. The first of these is involved in the classical Alexandroff-Urysohn metrization theorem [AU] of which the following theorem is a slight variation.

1.1 Theorem. A space is metrizable if and only if it is a Moore space, i.e., a T_3 developable [B] space, which is regularly refinable.

Worrell [W] proved the following theorem.

1.2 Theorem. A space is regular and paracompact if and only if it is essentially T_1^2 and w-regularly refinable.

In this paper we replace the open refinements entering into the definitions of regular and κ -regular refinability by sequences of open refinements in a natural way illustrated by the relation between full normality and one of the equivalent forms of subparacompactness ([B], Theorem 3.1(v)) or

¹Definitions are given in Section 2.

²A space X is essentially T₁ [WW] if and only if for all x,y \in X, if x \in { \overline{y} } then y \in ¹{ \overline{x} }. Regular spaces have the property and normal spaces with the property are regular.

that between metacompactness and θ -refinability [WW] (= submetacompactness). These concepts permit us to obtain Theorem 1.3, a natural analogue of Theorem 1.2, and Theorem 1.4 which is related to Theorem 1.1.

1.3 Theorem. A regular space is subparacompact if and only if it is sub- ω -regularly refinable.

1.4 Theorem. A regular space is a Moore space if and only if it is sub-w-regularly refinable and has a base of countable order. 3

The next two theorems are variations of Theorems 1.4 and 1.2, respectively.

1.5 Theorem. A regular space is a Moore space if and only if it is subregularly refinable, submetaLindelöf, and has a base of countable order.

1.6 Theorem. A space is regular paracompact if and only if it is essentially T_1 , collectionwise normal and sub-w-regularly refinable.

As a corollary to this we have a metrization theorem.

1.7 Theorem. A space is metrizable if and only if it is T_1 collectionwise normal, subregularly refinable, submetaLindelöf and has a base of countable order.

These theorems provide some evidence that the "sub" concepts introduced here have a natural place in the theory

³For a definition see [WW].

of previously defined concepts such as subparacompactness, submetacompactness (θ -refinability) and submetaLindelöfness ($\delta\theta$ -refinability).

The characterization of subparacompactness given in Theorem 1.3 is deduced from Theorem 3.1 below which states that in a sub- κ -regularly refinable space every open cover has a κ -discrete refinement (where $\kappa > \omega$).

Section 2 of the paper contains definitions and a lemma; section 3 presents the proof of Theorem 3.1. Section 4 contains a general theorem on subparacompactness which includes the Theorem 1.3. We also give the proofs of the other new results of the introduction in section 4. In section 5 we list some relevant examples. Definitions of other covering properties not in section 2 can be found in [Bu]. We use ZFC set theory in the notation of [Mo]. Topological terminology used is standard; we are not assuming that the concepts of regularity or collectionwise normality imply T₁, however.

2. Subregular Refinability and Related Concepts

In this section we give the definitions of the two basic concepts involved in the results and prove a lemma. If U and V are covers of a set X, the collection V is called a *refinement* of U if for every $V \in V$ there is some $U \in U$ such that $V \subseteq U$. If V is not required to cover X, then we say that V partially refines U. We use κ to denote a cardinal number such that $\kappa \geq 1$. The reference [Bu] can be used for definitions not found here. 2.1 Definitions [W]. Let # and # be collections of sets. The collection # is said to be $(\kappa, 1)$ -regularly $((\kappa, 2)$ -regularly) inscribed in # at p if and only if $p \in U \#$ and there exists $\# \subseteq \#$ such that $|\Psi| \leq \kappa$ and if $U, V \in \#$ and $p \in U \cap V(U, V \in \#, U \cap V \neq \emptyset$, and $p \in U$), then there is $\Psi \in \#$ such that $U \cup V \subset W$.

The collection k is said to be regularly inscribed in # at p if and only if k is (|#|, 1)-regularly inscribed in # at p. The collection k is said to be regularly inscribed in # [P] if and only if k is regularly inscribed in # at all p $\in UK$. If, in addition, U# = UK, then k is called a regular refinement [A] of #.

2.2 Definitions. A space X is called regularly refinable [A] if and only if every open cover of X has an open regular refinement. A space X is called κ -regularly refinable [W] if and only if every open cover // of X has an open refinement // that is $(\kappa, 1)$ -regularly inscribed in //at all $p \in X$.

The concept of subregular refinability (sub- κ -regular refinability) is related to regular refinability (κ -regular refinability) in a fashion analogous to the way in which subparacompactness is related to paracompactness or θ -refinability (= submetacompactness) is related to metacompactness.

2.3 Definitions. A space X is called subregularly refinable (sub- κ -regularly refinable) if and only if for every open cover // of X there is a sequence $\langle V_n : n \in \omega \rangle$ of

open refinements of \mathcal{U} such that for all $p \in X$ there is $n \in \omega$ such that \mathcal{V}_n is regularly ((κ , l)-regularly) inscribed in \mathcal{U} at p. We call such a sequence (\mathcal{V}_n : $n \in \omega$) a subregularly (sub- κ -regularly) refining sequence of \mathcal{U} .

2.4 Lemma. Let X be a sub- κ -regularly refinable space. Let U be an open cover of X. Then there exists a sequence $(U_n: n \in \omega)$ of open covers of X such that for all $n \in \omega$:

(1) $U_0 = U$

(2) U_{n+1} refines U_n

(3) For each $p \in X$, there is $j \in \omega$ such that $j \ge n$ and U_j is $(\kappa, 1)$ -regularly inscribed in U_n at p.

Proof. For collections # and k' let $\# \land k' = \{ H \cap K : H \in \#$ and $K \in k' \}$. Define #(0,0) = #. Assume #(k,m) is defined for $m \leq k$ and $0 \leq k < n + 1$ and that $\langle \forall(j,k) : j \geq k \rangle$ is a sub- κ -regularly refining sequence of #(k,k) for

0 < k < n + 1. Then we define

$$\begin{split} &\mathcal{W}(n+1,0) = \mathcal{W}(n,n) \wedge \mathcal{V}(n,0) \text{ and, if } \mathcal{W}(n+1,j) \text{ is defined} \\ & \text{ for } 0 \leq j < m \leq n \text{ let} \\ &\mathcal{W}(n+1,m) = \mathcal{W}(n+1,m-1) \wedge \mathcal{V}(n,m) \text{ and, finally, let} \\ &\mathcal{W}(n+1,n+1) = \mathcal{W}(n+1,n) . \end{split}$$

Let $\langle V(j,n+1): j \ge n + 1 \rangle$ be a sub- κ -regularly refining sequence of W(n+1,n+1). Thus W(n,m) is defined for all $\langle n,m \rangle \in \omega \times \omega$ such that $m \le n$. Let $U_n = W(n,n)$ for all $n \in \omega$. Then $U_0 = U$ and U_{n+1} refines U_n . Suppose $p \in X$ and $n \in \omega$. Then $p \in \cup U_n$ and there is $j \ge n$ such that V(j,n) is $(\kappa,1)$ -regularly inscribed in U_n at p. Thus W(j+1,n) is also $(\kappa,1)$ -regularly inscribed in U_n at p and so is $U_{j+1} = W(j+1,j+1)$.

3. Sub-«-Regular Refinability and «-Discrete Refinements

In this section we prove a principal theorem on the existence of κ -discrete refinements which, together with regularity, implies the characterization of subparacompactness of Theorem 1.3. We also prove Theorem 3.2 which gives a simple necessary and sufficient condition that a subregularly refinable space be sub- κ -regularly refinable.

3.1 Theorem. Suppose $\kappa \ge \omega$ and X is a sub- κ -regularly refinable space. Then every open cover of X has a κ -discrete refinement.

Proof. Suppose X is such a space and // is an open cover of X. There is a sequence $\langle l_n : n \in \omega \rangle$ of open covers of X, with $l_0 = l/$, which satisfies the conclusion of Lemma 2.4. We use this sequence to construct a sequence $\langle l_n : n \in \omega \rangle$, with a special relationship to $\langle l_n : n \in \omega \rangle$, to which Theorem 1 of [W] may be applied. The construction proceeds by making several auxiliary definitions and proving four statements concerning these concepts. We use the notation n_{ω} for the set of all functions from the integer $n \in \omega$ into ω . We also use $R(l/, l/, \kappa, p)$ to stand for the statement that l/ is $(\kappa, 1)$ -regularly inscribed in l/ at p. We employ the following notation: If l/ is a collection of sets and E is a set, then $l/|E = \{W \cap E : W \in l/\}$ and $(l/)_p = \{W \in l/: p \in W\}$. Also $\phi|n$ denotes the restriction of ϕ to the set n.

We define the concept of n-admissible for n $\in \omega \$ by induction.

 ϕ is 1-*admissible* if and only if $\phi \in {}^{1}\omega$ and there is $p \in X$ such that $\phi(0) = \min\{j \in \omega : R(\mathcal{U}_{j}, \mathcal{U}_{0}, \kappa, p)\}$. Assume

m-admissibility is defined for all $m \in n$ and suppose n > 1: Then ϕ is n-admissible if and only if $\phi \in {}^{n}\omega$ and for all $m \in n \setminus 1$, $\phi \mid m$ is m-admissible and there is $p \in X$ such that

 $\phi(n - 1) = \min\{j \in \omega: j \ge \phi(n - 2) \text{ and }$

 $R(\mathcal{U}_j, \mathcal{U}_{\phi(n-2)}, \kappa, p)\}$.

For each 1-admissible ϕ define

$$\begin{split} \mathbf{E}_{\phi} &= \{\mathbf{p} \in \mathbf{X}: \ \phi(\mathbf{0}) = \min\{\mathbf{j} \in \omega: \ \mathbf{R}(\mathcal{U}_{\mathbf{j}}, \mathcal{U}_{\mathbf{0}}, \kappa, \mathbf{p})\}\}. \end{split}$$
 If \mathbf{E}_{ϕ} is defined for all m-admissible ϕ such that m < n, then for n > 1 and n-admissible ϕ , define

$$E_{\phi} = \{p \in E_{\phi \mid (n-1)} : \phi(n-1) = \min\{j \in \omega: j \ge \phi(n-2) \text{ and } R(\mathcal{U}_{j}, \mathcal{U}_{\phi(n-2)}, \kappa, p)\}\}.$$

Then the following four statements hold:

(l) For all n \in $\omega \backslash l$, $\{E_{\varphi}; \ \varphi \ is \ n-admissible \}$ is a partition of X.

For if n = 1 and $p \in X$, then by (3) of Lemma 2.4 there is a 1-admissible ϕ such that $R(\mathcal{U}_{\phi(0)}, \mathcal{U}_0, \kappa, p)$ and $p \in E_{\phi}$. If $\phi' \neq \phi$ and ϕ' is 1-admissible, then $\phi'(0) \neq \phi(0)$, thus $p \notin E_{\phi'}$. Suppose $n \in \omega \setminus 2$ and that (1) is true for all $m \in n \setminus 1$. Let $p \in X$. Then $p \in E_{\psi}$ for some unique (n-1)admissible ψ . Define $\phi \in {}^n \omega$ by letting $\phi \mid (n - 1) = \psi$ and defining $\phi(n - 1)$ as follows: By (3) of Lemma 2.4,

 $k = \min\{j \in \omega: j \ge \psi(n - 2)\}$ and

 $R(U_{j}, U_{\psi(n-2)}, \kappa, p) \}$ exists.

Let $\phi(n - 1) = k$. Then ϕ is n-admissible and $p \in E_{\phi}$. If $\phi' \in {}^{n}\omega$ and $p \in E_{\phi'}$, then $\phi'|(n - 1) = \phi|(n - 1)$ so that $\phi'(n - 1) = \phi(n - 1)$ by the definition of E_{ϕ} and $E_{\phi'}$. Hence $\phi = \phi'$. (2) If n > 0, ϕ is (n+1)-admissible, and $p \in E_{\phi}$ then $\mathcal{U}_{\phi(n)} | E_{\phi}$ is $(\kappa, 1)$ -regularly inscribed (and, hence, regularly inscribed) in $\mathcal{U}_{\phi(n-1)} | E_{\phi|n}$ at p.

By the definition of \mathbf{E}_{ϕ} , $\mathbf{p} \in \mathbf{E}_{\phi|\mathbf{n}}$ and $\mathcal{U}_{\phi(\mathbf{n})}$ is $(\kappa, 1)$ -regularly inscribed in $\mathcal{U}_{\phi(\mathbf{n}-1)}$ at \mathbf{p} . Hence there is $\mathcal{W} \subseteq \mathcal{U}_{\phi(\mathbf{n}-1)}$ with $|\mathcal{W}| \leq \kappa$ such that $\mathbf{U}, \mathbf{V} \in \mathcal{U}_{\phi(\mathbf{n})}$ and $\mathbf{p} \in \mathbf{U} \cap \mathbf{V}$ implies that there is $\mathbf{W} \in \mathcal{W}$ such that $\mathbf{U} \cup \mathbf{V} \subseteq \mathbf{W}$. Since $\mathbf{E}_{\phi} \subseteq \mathbf{E}_{\phi|\mathbf{n}}$ it follows that $\mathbf{U} \cap \mathbf{V} \cap \mathbf{E}_{\phi} \subseteq \mathbf{W} \cap \mathbf{E}_{\phi|\mathbf{n}}$. Since $|\{\mathbf{W} \cap \mathbf{E}_{\phi|\mathbf{n}}: \mathbf{W} \in \mathcal{W}\}| \leq \kappa$ the result follows.

(3) For any 2-admissible ϕ and $p \in E_{\phi}$, $\mathcal{U}_{\phi(1)} | E_{\phi}$ is $(\kappa, 2)$ -regularly inscribed in \mathcal{U}_{0} at p.

Suppose U,V $\in U_{\phi(1)}$, $q \in U \cap V \cap E_{\phi}$ and $p \in U$. By (2) there is $W \in U_{\phi(0)} | E_{\phi|1}$ such that $U \cup V \cap E_{\phi} \subseteq W$. Since $\phi|1$ is 1-admissible, there is $\mathcal{M} \subseteq U_0$ with $|\mathcal{M}| \leq \kappa$ such that $(U_{\phi(0)} | E_{\phi|1})_p^4$ partially refines \mathcal{M} . Hence $U \cup V \cap E_{\phi}$ is a subset of some member of \mathcal{M} .

Now define $V_0 = U_0$ and, for $n \in \omega$,

 $V_{n+1} = U\{U_{\phi(n)} | E_{\phi}: \phi \text{ is } (n+1)-admissible}\}.$

(4) For all $n \in \omega$, V_n covers X, V_{n+1} regularly refines V_n , and V_1 is (κ ,2)-regularly inscribed in V_0 at all $p \in X$.

 V_0 is a cover of X. If $n \in \omega$ and $p \in X$, there is an (n+1)-admissible ϕ such that $p \in E_{\phi}$. Since $U_{\phi(n)}$ covers X, there is an element of $U_{\phi(n)} | E_{\phi}$ that contains p. By (2), $U_{\phi(n)} | E_{\phi}$ is $(\kappa, 1)$ -regularly inscribed in $U_{\phi(n-1)} | E_{\phi|n}$ at p. Since the only elements of V_{n+1} that contain p belong to $U_{\phi(n)} | E_{\phi}$ and $U_{\phi(n-1)} | E_{\phi|n} \subseteq V_n$, it follows that V_{n+1} is $(\kappa, 1)$ -regularly inscribed in V_n at p. The last statement

 ${}^{4}(\mathcal{U})_{p} = \{ \mathbb{W} \in \mathcal{U} : p \in \mathbb{W} \}.$

of (4) follows from (3).

Theorem 1 of [W] implies that for such a sequence $\langle V_n: n \in \omega \rangle$ there exist $\mu \subseteq \omega \backslash 1$ and a function f: $\mu \neq \mathcal{P}(\mathcal{P}(X))$ such that: (a) $\forall f(\mu)$ covers X, (b) if $n \in \mu$ and f is a coherent subcollection of V_n (i.e., f is not the union of two nonempty collections A and β such that $\forall A \cap \forall \beta = \emptyset$) such that $|f| \leq 3$, then $\forall f$ does not intersect two elements of f(n), and (c) if $n \in \mu$ and $A \in f(n)$, then $\{\forall \in V_n: \forall n \in \psi\}$ is regularly inscribed in some subcollection of V_0 of cardinal number $<\kappa$.

Let $n + 1 \in \mu$ and let ϕ be (n+1)-admissible. Let k = φ (n). Then no element of ${\mathcal U}_k$ meets two elements of {A $\cap E_{\phi}$: A \in f(n + 1)}. For if U $\in U_k$ then U $\cap E_{\phi} \in U_k | E_{\phi}$ $\subseteq V_{n+1}$. The set {U $\cap E_{\phi}$ } is a coherent subcollection of V_{n+1} and thus does not intersect two elements of f(n + 1). Hence for all $n \in \omega$, if $n + 1 \in \mu$ and ϕ is (n+1)-admissible, $\{A \cap E_{\phi}: A \in f(n + 1)\}$ is a discrete collection since $U_{\phi(n)}$ is an open cover of X. If $n + 1 \in \mu$, the collection of all elements of V_{n+1} intersecting A \in f(n + 1) is regularly inscribed in a subcollection $V_0^{i}(A)$ of V_0^{i} of cardinality $\leq \kappa$, by (c) above. Let $(V_{\alpha,A}; \alpha < \kappa)$ be an enumeration of $V_0(A)$ (with repetitions possible). Then each set $\hat{\jmath}\left(\alpha,n,\phi\right)$ = $\{A \cap E_{\phi} \cap V_{\alpha,A} : A \in f(n + 1)\}, \text{ where } \phi \text{ is } (n+1)-admissible, \}$ is discrete and partially refines $V_0 = U_0$. Since there are < κ such collections for each n ε ω and (n+1)-admissible φ , there are at most κ such sets. If $p \in X$, then by (a) there exist $n \in \omega$ with $n + 1 \in \mu$, $A \in f(n + 1)$, and an (n+1)-

W $\in V_{n+1}$ with p $\in W$, so there exists $\alpha < \kappa$ such that W $\subseteq V_{\alpha,A}$. Hence p $\in U_{\ell}^{j}(\alpha, n, \phi)$. Thus the collection of all $\hat{\ell}(\alpha, n, \phi)$ is a κ -discrete refinement of l_{ℓ} .

3.2 Theorem. Let X be a subregularly refinable space. Then X is sub-K-regularly refinable if and only if for every open cover U of X there is a sequence $\langle V_n: n \in \omega \rangle$ of open refinements of U such that for all $p \in X$ there exist $n \in \omega$ and $\mathcal{M}_p \subseteq U$ such that $|\mathcal{M}_p| \leq \kappa$ and $(V_n)_p^5$ partially refines \mathcal{M}_p .

Proof. The necessity is clear. Let l' be an open cover of X and let $\langle l'_n : n \in \omega \rangle$ be a sequence of refinements of l' with the property indicated above. For each $n \in \omega$, there is a subregular refining sequence $\langle l'_{nm} : m \in \omega \rangle$ of l'_n . Suppose $p \in X$. Then for some $n \in \omega$ and $l'_p \subseteq l'$, $|l'_p| \leq \kappa$ and $(l'_n)_p$ partially refines l'_p . For some $m \in \omega$, l'_{nm} is regularly inscribed in l'_n at p. Suppose $W_1, W_2 \in l'_{nm}$ and $p \in W_1 \cap W_2$. There is $V \in (l'_n)_p$ such that $W_1 \cup W_2 \subseteq V$. There is also $G \in l'_p$ such that $V \subseteq G$. Thus $\langle l'_{nm} : \langle n, m \rangle$ $\in \omega \times \omega \rangle$ is a sequence of open refinements of l' such that for all $p \in X$ there is some l'_{nm} which is $(\kappa, 1)$ -regularly inscribed in l' at p.

4. Subparacompactness and Related Topics

4.1 Theorem. The following are equivalent for a regular space X:

(a) X is subparacompact.

(b) For every open cover U of X there exists a sequence

⁵(\mathcal{W})_p = { $\mathcal{W} \in \mathcal{W}$: $p \in \mathcal{W}$ }.

 $\langle V_n: n \in \omega \rangle$ of open refinements of U such that for all $p \in X$ there exist $m, n \in \omega$ such that V_n is (m, 1)-regularly inscribed in U at p.

(c) X is sub- ω -regularly refinable.

(d) X is subregularly refinable and for every open cover U of X there is a sequence $\langle V_n: n \in \omega \rangle$ of open refinements such that for all $p \in X$ there is $n \in \omega$ and $M \subseteq U$ such that $|M| \leq \omega$ and $(V_n)_p$ partially refines M.

(e) X is subregularly refinable and submetalindelöf.

Proof. (a) \Rightarrow (b). Let l/l be an open cover of X. By Theorem 3.1(v) of [Bu] there is a sequence $\langle l/n : n \in \omega \rangle$ of open refinements of l/l such that for every $p \in X$ there is $n \in \omega$ such that $st(p, l/n) \subseteq U$ for some $U \in l/l$. Hence (b) holds with $m \equiv 1$.

(b) \Rightarrow (c) and (c) \Rightarrow (d) are both clear from Definition 2.3.

(c) \Rightarrow (a). Let $\[mathcal{l}]$ be an open cover of X. By regularity there is an open refinement $\[mathcal{l}]$ of $\[mathcal{l}]$ such that $\{\overline{W}: W \in \[mathcal{W}\}\}$ refines $\[mathcal{l}]$. By Theorem 3.1, $\[mathcal{l}]$ has a $\[mathcal{\sigma}$ -discrete refinement $U_{n\in\omega}\partial_n$, where each $\[mathcal{D}]_n$ is discrete. Then $U\{\overline{D}: D \in \[mathcal{D}]_n \land n \in \[mathcal{w}\}\}$ is a $\[mathcal{\sigma}$ -discrete closed refinement of $\[mathcal{l}]$.

(d) \Rightarrow (c) by Theorem 3.2 for the case $\kappa = \omega$, and

(e) \Rightarrow (d) by definition.

(a) ⇒ submetacompactness by Theorem 3.1 (vi) of [Bu].
Also (a) ⇒ subregularly refinable because (a) ⇔ (c). Hence
(a) ⇒ (e).

It is clear from (a) \Rightarrow (c) that Theorem 1.3 holds.

Proof of Theorems 1.4 and 1.5. Theorem 1.4 follows from 4.1 part (e) and the fact that a regular subparacompact space having a base of countable order is a Moore space. This is a direct consequence of Theorem 3 of [WW] and the fact that subparacompactness implies θ -refinability. Theorem 1.5 follows from 1.4 by applying Theorem 3.2 and the definition of submetaLindelöf.

Proof of Theorem 1.6. A regular paracompact space is essentially T_1 and collectionwise normal. Since such a space is ω -regularly refinable [W], it is sub- ω -regularly refinable. On the other hand if a space satisfies the conditions then it is regular and by Theorem 4.1 (c), it is subparacompact. But a collectionwise normal subparacompact space is paracompact [M].

Proof of Theorem 1.7. This follows from 1.4 and the fact that a collectionwise normal Moore space is metrizable [B].

5. Examples

We cite several examples showing the independence of some of the concepts involved above.

5.1 Example. A T_2 collectionwise normal regularly refinable but not sub- ω -regularly refinable space.

The space ω_1 with the order topology is T_2 collectionwise normal. It is also regularly refinable [W]. The space cannot be subparacompact since it is countably compact but not compact, hence it cannot be sub- ω -regularly refinable by Theorem 1.3. 5.2 *Example*. A sub- ω -regularly refinable space which is not regularly refinable.

Any non metrizable Moore space has this property since such a space is subparacompact but cannot be regularly refinable by Theorem 1.1.

5.3 Example. A T_2 normal metacompact space which is not subregularly refinable.

Example 4.9 (ii) of [Bu] is T_2 normal and metacompact. Since it is not subparacompact it cannot be sub- ω -regularly refinable. If it were subregularly refinable, it would be sub- ω -regularly refinable by Theorem 3.2.

References

- [A] P. S. Alexandroff, On some results concerning topological spaces and their continuous mappings. In: General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961), Academic Press, New York, 1962, 41-54.
- [AU] and P. Urysohn, Une condition nécessaire et suffisante pour qu'une classe (L) soit une classe (D),
 C. R. Acad. Sci. Paris 177 (1923), 1274-1276.
- [B] R. H. Bing, Metrization of topological spaces, Can.
 J. Math. 3 (1951), 175-186.
- [Bu] D. K. Burke, Covering properties. In: Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, 347-422.
- [M[L. F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc. 9 (1958), 796-799.
- [Mo] J. D. Monk, Introduction to set theory, McGraw-Hill, New York, 1969.
- [P] V. Ponomarev, Axioms of countability and continuous mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. et Phys. 8 (1960), 127-133.

- [W] J. M. Worrell, Jr., On collections of domains inscribed in a covering of a space in the sense of Alexandroff and Urysohn, Portug. Math. 26 (1967), 405-420.
- [WW] _____ and H. H. Wicke, Characterizations of developable topological spaces, Can. J. Math. 17 (1965), 820-830.
- Ohio University
- Athens, Ohio 45701