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THE STRICT p-SPACE PROBLEM 

s. W. Davis 

o.	 Introduction 

In this article, we survey the so called "strict 

p-space problem" and present some recent partial results.* 

Among the new results given is a characterization of para-

compact p-spaces which is reminiscent of the Alexandroff-

Urysohn Metrization Theorem. 

Definition 0.1. [A ] Suppose X is a Tychonoff space.l 
v 

A pluming of X in its Stone-Cech compactification SX is a 

sequence <y : nEw} of open collections in SX, each cover­n 

ing X, such that for each x E X, nnEwst(x,yn) C X. 

A strict pluming of X in SX is a pluming (y : nEw)n 

with the additional property that for each x E X and each 

nEw, there exists mEw such that st(x,y ) c st(x,y ) • m n 

A space X which has a pluming in SX is called a 

P-space, [Al ]. A space which has a strict pluming is called 

a strict P-space, [A2 ]. 

Since a locally compact space X must be open in SX, 

it is clear that all locally compact spaces are p-spaces. 

It is also clear that all spaces X which are Cech complete 

(i.e.	 X is a Go-set in SX [C]) are p-spaces. It is also 

*After this paper was submitted, Jiang Shouli, a 
graduate student at the University of Wisconsin, solved 
this problem by answering Question 1.1 (and hence also 
Questions 1.4 and 1.7) in the affirmative. 
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true that all metrizable spaces are p-spaces, although it 

is not quite as immediate from the definition. 

Properties which are defined in terms of both a space 

and some external structure on the space are often awkward 

to apply and to understand. Fortunately, in the late 

1960's, D. K. Burke gave us internal characterizations of 

both p-space and strict p-space, [B ], [BS]. These havel 

become the working definitions of these properties. Due 

to the theme of this article, we will state the characteri­

zation only of strict p-space. 

Theorem 0.2. [BS] A Tychonoff space X is a strict 

p-space if and only if there exists a sequence <y : nEw)n 

of open covers of X such that Yn+l refines Y 3 for eachn

n E W and for x E X3 the set P nnEwst(x,yn) is compact3 x 

and {st(x,y ): nEw} is a local base at P i.e. if U is3 n x 

open and P ~ U3 then there is nEw with st{x,y ) =U. x n 

From Burke's criterion, it is clear that all metrizable 

spaces and all Moore spaces are strict p-spaces. Indeed, 

if <Y : nEw) is a development for X, then for each x E X,n 

we have P = {x}. For lack of a better term, we shall call x 

the sequence of open covers in Burke's criterion a strict 

p-sequence. In the sequel~ we shall also use Burke's P x 

notation as above. 

From the outset, discussion of p-spaces and strict 

p-spaces has been involved with covering properties. In 

fact, probably the major reason for the interest in these 

classes came from the attempts in the early 1960.'s to 

characterize the spaces which are pre images of metrizable 
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spaces under perfect mappings, i.e. mappings which are 

closed, continuous, and inverses of points are compact. 
v 

This was done by Arhangel'skii. 

Theorem 0.3. [AI] A Tyahonoff spaae X is the perfect 

preimage of a metrizable space if and only if X is a para­

aompaat p-space. 

In this discussion, the main covering property with 

which we will be concerned is e-refinability. 

Definition 0.4. {WW] A space X is said to be 

e-refinable if and only if for every open cover V of X 

there exists a sequence (V : nEw) of open covers of X,n 

each refining V, such that for each x E X, there exists 

n E w with ord{x,V ) = I{V: x EVE V l! < w. x n n x x 

If the collections V are not required to cover X,
n 

but merely be open partial refinements of V and for each 

x E X, there exists n E w with 0 < ord{x,V ) < w, then we 
x nx 

say X is weakly e-refinable, [BL]. 

It is not difficult to see that all metacompact spaces 

[AD] and all subparacompact spaces [B ] are e-refinable,2

and that all perfect (= closed sets are Go-sets) weakly 

e-refinable spaces are subparacompact. 

It can be argued that e-refinable is related to sub­

paracompact in essentially the same way that metacompact is 

related to paracompact. For this reason, it has become 

fairly common in recent years to use the term submetaaompact 

for e-refinable. We will use the traditional terminology, 

but the reader should be aware of the new term. 
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1. The Problem 

In this section, we state the main question. In addi­

tion, there are two auxilIary questions which are intimately 

related and independently interesting. We are therefore 

inclined to lump the three of them together as the "strict 

p-space problem." 

Question 1.1. Is every strict p-space e-refinable? 

The earliest published paper of which this author is 

aware which specifically states this question is [CJ]. 

However, it is essentially stated in [B ].3

It is shown in [Bl ] that every e-refinable p-space is 

a strict p-space. So an affirmative answer to this question 

would provide a very pretty characterization of strict 

p-spaces. 

Part of what makes this question so tantalizing is 

contained in the following characterization of e-refinable. 

First, let us make one more definition. We say a collection 

V of subsets of a space X is an F-refinement of a collection 

lj of subsets of X if and only if for each V E V there is a 

finite W ~ lj with V c uw. 

Theorem 1.2. [J] A regular spaae X is e-refinable if 

and only if every open cover of X has a a-alosure preserving 

F-refinement. 

It is an easy exercise to show the following: 

Theorem 1.3. Every open aover of a striat p-spaae has 

a a-cushioned F-refinement. 
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Dating back to the landmark work on paracompactness 

by Michael in the 1950's, most covering properties 

which can be characterized by closure preserving collections 

can also be characterized in exactly the sa~e way by replacing 

"closure preserving" by "cushioned." If that is true of 

8-refinable, (and it may be, we simply don't know), then 

the strict p-space problem is solved. 

Interestingly, the "closure preserving" versus 

"cushioned" relationship is at the heart of the "M
l 

versus M " problem as well, [G].
3 

Question 1.4. Is every strict p-space with a 

Go-diagonal developable? 

This would be answered by an affirmative answer to 

Question 1.1, in view of the following theorem. 

Theorem 1.5. [K] A spaae X is developable if and 

only if X is a 8-refinable p-spaae with a Go-diagonal. 

We remind the reader that X is said to have a 

Go-diagonal if and only if the diagonal of X x X is a 

Go-set in X x X. If we increase the strength slightly of 

the diagonal condition, then the question has an affirmative 

answer. 

Theorem 1.6. If X is a strict p-spaae with a 

Go-diagonal [K] ~ [A
3 

] ~ or a G'6-diagonal [H] ~ then X is 

de ve lopab le . 

This result eliminates many popular construct~on tech­

niques, since any submetrizable space, i.e. a space with a 
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weaker metrizable topology, has these strong diagonal condi­

tions simply because the metric topology has them. So the 

search for a potential counterexample is likely to be 

difficult. 

Question 1.7. Is every perfect image of a strict
 

p-space also a strict p-space?
 

Once again, this question would be answered by an
 

affirmative answer to Question 1.1, in view of the follow­


ing theorem.
 

Theorem 1.8. [W] Every perfect image of a e-refinabZe 

p-space is a 8-refinabZe p-space. 

-2. Results 

At the heart of this problem lies the understanding 

(or lack thereof) of the covering properties of strict 

p-spaces. There is definitely something at work here. The 

two usual tests for the existence of covering properties 

for a class of spaces are (1) "Are all countably compact 

members of the class compact?" and (2) "Are all ~l-compact 

members of the class Lindelof?" To both of these questions 

the answer is "yes" for the class of strict p-spaces. We 

need to d~scover exactly what covering properties are present 

in strict p-spaces. 

The following is an easy first step. See [Dl ] for 

definitions. 

Theorem 2.1. [D ] If X is a strict p-space, then X2

satisfies property IxIL. 
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On the other hand, Burke has given an example in [B ]
2

of a strict p-space which is not subparacompact. In 1979, 

Chaber and Junnila solved the problem for locally compact 

spaces. 

Theorem 2.2. [CJ] Every ZoaaZZy aompaat striat 

p-spaae is 8-refinabZe. 

The author used a very similar approach to obtain the 

following. See [Au] for definition. 

Theorem 2.3. [D 2] Every ZoaaZZy LindeZof striat 

p-spaae is o8-refinabZe. 

K. Wagner subsequently improved this. 

Theorem 2.4. [Wa] Every ZoaaZZy ~l-compaat striat 

p-space is 8-refinabZe. 

It is not known if strict p-spaces are even weakly 

8-refinable. Wagner has investigated this quite a lot, 

and she has several nice results about when weakly 

e-refinable strict p-spaces must be 8-refinable [Wa]. 

Before discussing the results related to the 

Go-diagonal condition, we state a lemma due to Cedar. 

Theorem 2.5. [C] A spaae X has a Go-diagonaZ if and 

onZy if thepe is a sequence (Un: nEw) of open aovers of 

X suah that for eaah x E x,n E st(x,U ) = {x}.
n w n 

Remark. Obviously, we can arrange ta have U +ln 

refine U , for each nEw. From now on, we will make that n 
assumption. 
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It is tempting to assert that if we have a strict 

p-sequence and a Go-diagonal sequence as in Ceder's charac­

terization, we need only blend them by the usual pairwise­

intersection-at-each-Ievel technique to obtain a development. 

Alas, this fails. Still, in the presence of Go-diagonal the 

sets P are very nice, in fact compact and metrizable byx 

Sneider's Theorem. 

Theorem 2.6. [S] Every compact T space with a
2 

Go-diagonaZ is metrizabZe. 

In the hope of using the nice structure of these sets, 

we prove the following result. 

Theorem 2.7. Suppose (~n: nEw) is a strict p-sequence 

for x, and x E X. If (Un: nEw) is a sequence of open sets 

in X such that for each nEw and k E w there exists 

mEw with m > k and x E Urn C U and (U n P : nEw) is a n n x 

neighborhood base at x in the subspace P ' then x 

(Un n st(x,y ): nEw) is a neighborhood base at x in the n 

space X. 

Proof. Suppose U is open and x E U. Choose nEw such 

that Un n P C U n P . Let W = X\D , and note that 
x - x n 

P C U U W. Choose k E w such that st(x,y ) U U W. Now~ x - k 

choose m > k with U C U then x E U n st(x,y ) U n~ m n' m m n 

U n (U u W) C U n U C U. 
n - n -

If (Un: nEw) is a decreasing sequence of open sets 

with nnEwUn = {x}, then by the compactness of Px the 

hypothesis of 2.7 is satisfied. Hence if X has a Go-diagonal 

sequence (lj : nEw) wi th {x} = nEst (x,lj ) (then X is said nnw n 
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to have a G8-diagonal, [H) and if X is a strict p-space, 

then 2.7 gives us the result that X is developable. 

Toward obtaining the above situation, we define the 

following properties. 

Definition 2.8. We say a space X satisfies Property 

(*) if and only if for every open cover 0 of X there exists 

a sequence (V : nEw) of open covers of X, each refiningn 

~such that for each x E X there is n E w with st(x,V ) c x n x 

st (x, 0) • 

If the terms V are not required to cover X, we say
n 

X satisfies weak (*). 

If the terms V are all the same, we say X satisfies n 

strong (*). 

The following is an easy exercise. 

Theorem 2.9. If X is a regular space~ then the 

following are true: 

i) if X is metacompact" then X satisfies strong (* ) • 

ii) if X is 8 -re finab Ze.J then X satisfies (* ) • 

iii) if X is weak ly 8-refinable.J then X satisfies weak (*) • 

We now see that (*) is exactly what we need in the 

Go-diagonal situation. 

Theorem 2.10. If a space X has a Go-diagonal and 

satisfies (*}.J then X has a G6-diagonal. 

Proof. To any Go-diagonal sequence for X, we apply (*) 

at each level. Now order the resulting w x w sequence by 

W, and it will be a G8-diagonal sequence. 



286 Davis 

Corollary 2.10.1. If X is a strict p-space with a 

Go-diagonal which satisfies (*), then X is developable. 

We can make similar use of 2.7 in the weak (*) case to 

prove the following result. 

Theorem 2.11. If X is a strict p-space with a 

Go-diagonal which satisfies weak (*), then X is quasi­

deve lopable. 

Proof. As in 2.10, we apply weak (*) to each term of 

a Go-diagonal sequence, and then reorder by w to obtain a 

sequence <V : nEw> of open collections where individual n 

terms may not cover X, but for each x E X, n{st(x,V ):
n 

st(x,V ) ~ ~} = {x}.n 

Now if <§n: nEw> is a strict p-sequence for X, then 

by 2.7, for each x E X, {st(x,V ) n st(x'§n): nEw} is an 

neighborhood base at x. Hence, letting W = {V n G: n 

V E V ,G E § }, we have that <W : nEw> is a quasidevelop­n n n 

mente 

Corollary 2.11.1. Every weakly 8-refinable strict 

p-space with a Go-diagonal is quasidevelopable. 

A similar result is given by Bennett and Berney in [BB] 

where it is shown that every hereditarily weakly 8-refinable 

p-space with a Go-diagonal is quasidevelopable. We note 

that the word "hereditarily" is omitted in [BB], but it 

seems to be needed for that approach to the result. 

It seems natural at this point to ask the following 

question. 
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Question 2.12. Does every strict p-space satisfy (*)? 

An example giving a negative response will, of course, 

answer 1.1. Also, by 2.10.1, a positive answer gives a 

positive answer to 1.4. In either case, an answer to this 

question would be interesting. In fact, better understand­

ing of (*) would be interesting. By the following result, 

it is not truly a covering property. 

Theorem 2.13. The ordinal space wl satisfies strong 

( *) • 

Proof. Suppose V is an open cover of wI. For each 

a E wI' choose f(a) < a such that for some U E V, (f(a), 

a] ~ U. By the Pressing Down Lemma, there exists y < wl 

such that (y,wl) ~ st(a,(J) for every a > y. Choose a 

finite set {Vl ,v ,···,V } of open subsets of wl whose
2 n 

closures refine V such that U~=lVk = [O,y]. Now we define 

V = {V l ,v2 ,···,V } U {U n [y + l'Wl): U E V}. Now V is an n 

open cover of wl and refines V. If a < y, st(a,V) 

u{V.: 1 < i < n, a E V.} c st(a,(J). If a > y, st(a,llr c_
1 - - 1 ­

For our last result, we shall need the neighborhood 

metrization theorem of Nagata. We state the form given in 

the text by Willard [W]. 

Theorem 2.14. [N] A To space X is metrizable if and 

only if each x E X possesses a countable neighborhood base 

{U : nEw} with the following properties:
x,n 
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(a) if y E U then U cUI3 x,n y,n x,n­

(b) if y f U 1 3 then U n U ~.x,n- . y,n x,n 

We now give a characterization of paracompact strict 

p-spaces (which are the same as paracompact p-spaces). 

This result is very similar in formulation to the Alexandroff-

Urysohn Metrization Theorem which is, of course, a charac­

terization of paracompact developable spaces. The author 

has been informed by H. H. Wicke that this result was known 

to J. M. Worrell in 1967, and, while never published, it is 

alluded to in [WolJ. 

Theorem 2.15. A completely regular T 2-space X is a 

paracompact p-space if and only if X has a strict p-sequence 

<Y : nEw> such that if U,V E Yn+l and U n V t f(J3 then theren 

exists W E Y such that U U V c W. 
n 

Proof. Suppose X is a paracompact p-space. By 
u 

Arhangel'skii's theorem (0.3), there is a metric space (M,d) 

and a perfect mapping f of X onto M. For Y E M and E > 0, 

we let B(y,E) = {z E M: d(y,z) < E}. For each n E w\{O}, 

r. -1 -n r.letY = {f(B(y,2 »: y EM}, and let YO = {X}. It is n 

straightforward to show that <y : nEw> is the desired n 

strict p-sequence. 

Now suppose X has a strict p-sequence of the type 

indicated. We shall construct a metrizable space Y and a 

perfect mapping of X onto Y. We define a relation ~ on X 

by x ~ y if and only if x E P. The relation is clearly
y 

reflexive and symmetric. Suppose x ~ y and y z. For 

each nEw, choose U ,V E Y+1 with {x,y} c U and n n n - n 
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Hence there exists W E Y with {x,z} c W • n n - n 

Thus x ~ z, and we have that ~ is transitive. Hence ~ is 

an equivalence relation, and for x E X the equivalence 

class determined by x is the set P . Let Y = X/~, and let x 

f be the natural quotient mapping. To see that f is a per­

fect mapping, we have only to check that f is closed. 

Suppose A ~ X is closed. Let F = UxEAPx f-l(f(A». SUp­

pose x E X\F. Thus P n A = ~, so there exists nEw such x 

that st(x'~n) n A =~. We will show that st(x'§n+l) n F = ~. 

If not, choose y E st(x'§n+l) n F. Since y E F, Py n A f ~, 

so there exists U E ~n+l with y E U and UnA f~. Also 

choose V E §n+l with {x,y} ~ V. Since y E U n V, there 

exists W E §n with U U V c W. Thus W ~ st(x'§n) and 

W n A f ~, a contradiction. Thus F is a closed set in X, 

and since Y has the quotient topology, then f(A). is closed 

in Y. Hence f is a perfect mapping. We now use 2.14 to 

show that Y is metrizable; completing the proof. For each 

Y E Y, we can chose x E X with Y = P • We assume that such x 

a choice has been made, and for the remainder of the proof 

we refer to the point as P • For each nEw, let Upx x,n 

f(st(x'§2n». Since f is closed and Px ~ st(x'§2n)' we 

have that Up is a neighborhood of P in Y. If P E Up , 
x,n x y x,n 

then there exists z E P such that z E st(x'§2n). So there y 

is Gl E §2n sUCh that {x,z} ~ Gl and there is G2 E §2n such 

that {z,y} ~ G2 • Thus there is G3 E §2n-l such that 

{x,y} ~ G3 • Hence y E st(x'§2n_l). Now if P E Up ,n'z 
y 

then, as above, z E st(y'§2n_l). Hence z E st(x'~2n_2). 
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So p	 So condition (a) of z 

Nagata's theorem is satisfied. Now suppose Up n Up ~ fJ,,n ,nx y 

say P E U n U Then we have P n st (x,§ 2n) ~ fJz p,n P,n	 z x y 

and P n st(y'§2n) ~ ~. Choose r E P n st (x,§ 2n) and z z 

t E P n st(Y'§2n) • Choose G1 , G
2 

, G3 , G4 elements of §2nz 

such that {x,r} ~ G1 , {r,z} ~ G2 , {z,t} =G3 , and {t,y} ~ G4 • 

Choose Ul 'U 2 E §2n-l with G1 U G2 =Ul and G U G c ·3 4 U2 

Now z E Ul n U2 , so there exists V E §2n-2 with U U U c V.1 2 

Thus we have {x,y} =V, so Y E st(x'§2n_2). Hence P E 
Y 

Up n-l. Thus condition (b) of Nagata's theorem is satisfied, 
x' 

so Y is metrizable, and the proof is complete. 
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