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THE FELL COMPACTIFICATION 

AND QUASI-UNIFORMITIES 

H-P A Kiinzi 

o. Introduction 

Let X be a (T -) space that admits a coarsest quasi-
O

uniformity V. In this paper we consider the bicompletion 

(X,V) of the quasi-uniform space (X,V). 

In [8] we have shown that the class of topological 

spaces that admit a coarsest quasi-uniformity generalizes 

the class of locally compact topological spaces (in fact, 

the class of core-compact spaces) in a natural way. Let 

us also observe that each topological space that admits a 

coarsest quasi-uniformity is locally bounded. For each 

point of a non-compact space X that admits a coarsest quasi

uniformity has a neighbourhood G that is relatively handy 

in X\{y}for some y E X [8, Proposition 2] and, thus, G is 

relatively compact in X [8, Remark 2{d)]. {Recall that.a 

topological space X is called locally bounded [7], if each 

of its points has a neighbourhood that is bounded (=re1a

tively compact, in the sense of section 1.2) in X.) 

In this note we show that for topological (T -) spacesO

admitting a coarsest quasi-uniformity, the bicompletion of 

the coarsest quasi-uniformity yields a super-sober locally 

compact compactification (Lemma 5), which is functorial for 

maps that are quasi-uniformly continuous with respect to 

the coarsest compatible quasi-uniformities on the topologi

cal spaces under consideration (Proposition 5). Hence the 
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full subcategory A of locally compact strongly sober spaces 

of the category B of topological TO-spaces admitting a 

coarsest quasi-uniformity and maps that are quasi-uniformly 

continuous with respect to these quasi-uniformities is 

epireflective in B (see also [10]; on the other hand com

pare with [4, Remark 6.10]). 

If X is a locally compact (sober) space and V is the 

coarsest quasi-uniformity that X admits, then the bicomple
..... 

tion (X,](M) yields the pseudo-spectrum ~X of the lattice" 

of open sets of X (see [6]) and (X,J(V*) is the so-called 

Fell compactification #(X) of X [1]. In particular, if the 

lattice of the open sets of X is algebraic, then V is transi

tive, and thus, ~X is a spectral space (compare [4, p. 114]; 

[9, Proposition l]), because the bicompletion of a transitive 

quasi-uniformity is transitive. 

We recall that each perfect continuous ([4, p. 101], 

compare [6, Remark 1.3]) map between two locally compact 

spaces is quasi-uniformly continuous in the sense mentioned 

above [9, Remark 2]. The converse obtains if the domain of 

the map is strongly sober, but it is wrong in general, as 

the canonical embedding of a locally compact non-compact 

TO-space into the bicompletion of its coarsest quasi

uniformity shows (compare [9, Remark 2]). 

The connections between the three different construc

tions mentioned above are rather transparent, because for 

a topological space X that admits a coarsest quasi-uniformity 

V the elements of the "standard" bicompletion (X,V) of 

(X,V) (namely the minimal V*-Cauchy filters) are in an 
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obvious one-to-one correspondence with the limit sets of the 

primitive filters on X (Corollary 1). Furthermore the pseudo-

prime elements [4, p. 68 or 6, p. 291] of the lattice of 

open sets of a topological space X are exactly the (set

theoretical) complements of the limit sets of the open 

(proper) prime filters (equivalently, the complements of the 

limit sets of the primitive filters, see section 1.3; com

pare [4, Remark 1.17]) on X. 

We remark that in [4] R.-E. Hoffmann studies #(X) using 

the methods of the theory of continuous lattices. Although 

we do not make any use of the theory of continuous lattices 

in this paper, readers familiar with this theory should have 

no problems in translating its content into a more lattice-

theoretical terminology. Several of our results essentially 

show that some general facts about quasi-uniformities, when 

specialized to the coarsest compatible quasi-uniformity on 

a (sober) core-compact space, are equivalent to important 

results of the theory of (distributive) continuous lattices. 

In fact, this is not very surprising, because we can easily 

describe the coarsest compatible quasi-uniformity U on a 

core-compact space using its way-below relation [9, Lemma 5]. 

Furthermore, if X is locally compact, then, obviously,] (U- l ) is the 

cocompact and ](U*) is the patch topology of X [6, Definition 1.5]. 

The idea of the coarsest compatible quasi-uniformity (quasi

proximity) on a core-compact space also clarifies some obvious 

connections between the theory of the Fell compactification 

and the theory of Hausdorff compactifications (see [4, p. 

114]). Of course, some readers may prefer, instead of 

considering the coarsest compatible quasi-proximity on a 

core-compact space, to study the corresponding notion of a 
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coarsest approximating strong inclusion-relation ([2, Pro

position 1.24], compare section 1.2) on a continuous frame. 

(Here a strong inclusion-relation «on a frame L is said to 

be approximating if sup{a E L\a «b} b for each bEL.) 

Since several important results about locally compact 

and locally bounded spaces also hold for topological spaces 

that admit a coarsest quasi-uniformity (see [8]), it may 

be appropriate to close this introduction with a counter

example, which shows that an open continuous image of a 

space admitting a coarsest quasi-uniformity need not admit 

a coarsest quasi-uniformity. (Identify in the Example of 

[8] for each J E ~ the two points (J,l) and (J,2). The 

corresponding quotient space is a Hausdorff space that is 

not locally compact and, thus, does not admit a coarsest 

quasi-uniformity [8, Corollary 3], although the quotient 

map is open.) 

In this paper a compact space need not be a Hausdorff 

space. 

1. Definitions and Notation 

In section 1.1 we recall several concepts of the 

theory of quasi-uniform spaces. Section 1.2 contains the 

facts that we will need about the class of topological 

spaces that admit a coarsest quasi-uniformity. Finally, in 

section 1.3 we discuss the basic notions of the theory of 

the Fell compactification. 

1.1 We begin by recalling some basic results of the 

theory of quasi-uniform spaces. We refer the reader to [2] 
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for the explanation of notions that are not explained 

here. 

Let X be a set. A filter V on X x X is called a 

quasi-uniformity on X if (a) each member of V is a reflexive 

relation on X and (b) if U E V then V 0 V c U for some 

V E V. If U E V and x E X, then U(x) denotes the set 

{y E Xl (x,y) E U}. The topology ](V) {G c Xl for each 

x E G there is a U E V such that U(x) c G} is said to be 

induaed by V on X. If V is a quasi-uniformity on X, then 

ur l denotes the quasi-uniformity {u-llu E V} on X. Moreover, 

V* denotes the uniformity generated by {U n u-llu E V} on X. 

A quasi-uniformity V on X is said to be biaomplete (totally 

bounded) if V* is complete (totally bounded). Observe that 

a filter J on X is a V*-Cauahy filter if for each U E V 

there is an F E J such that F x FeU [2, Proposition 3.2]. 

A V*-Cauchy filter is called minimal provided that it con

tains no V*-Cauchy filter other than itself. If (X,V) is 

a quasi-uniform space, then a base B for a quasi-uniformity 

V can be defined on the set X of all minimal V*-Cauchy 
..., 

filters as follows: If U E V set U {(],§) E X x Xl there 

is an FE] and aGE § such that F x G c U}. 

Note that (U n V) = U n V if U,V E V. Set 

B {uiU E V}. 

The quasi-uniform space (X,V) is bicomplete and 

(X,](V» is a TO-space [2, Proof of Theorem 3.33]. We 
-1"" --1 ...,...,

recall also that (V ) = V and that (V*) = (V)* 

[2, 3.37]. Furthermore the topology](V*) is compact if 

and only if V is totally bounded {see 2, Proof of Proposi

tion 3.36]. 
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It is known that if Uis totally bounded, then 

(X,](~) is strongly sober and locally compact [9, see 

Proof of Theorem 1]. We recall that a topological space is 

called BtrongZy Bober if it is compact and super sober [4, 

p. 73]. A topological space is called Buper Bober if t~e 

convergence set of each convergent ultrafilter is the 

closure of a unique singleton. A topological space is said 

to be ZocaZZy compact if each point has a neighbourhood 

base consisting of compact sets. 

If (X,U) is a quasi-uniform space such that (X,](U» 

is a TO-space, then j: (X,U) + (X,U) defined by j(x) = n*(x) 

for each x E X (where n*(x) denotes the ](U*)-neighbourhood 

filter of x) is a quasi-uniform embedding [see 2, Theorem 

3.33]. As usual, we will identify j(X) with X in this case 

and call (X,U) the bicompletion of (X,U). 

It is ~nownthat if (X,U) and (Y,V) are quasi-uniform 

spaces such that (X,](U» and (Y,](V» are TO-spaces and 

f: (X,U) + (Y,V) is a quasi-uniformly continuous map, then 

there is a (unique) quasi-uniformly continuous map 

f: (X,U) + (Y,V) that extends f [see 2, Theorem 3.29 and 

Proposition 1.14]. 

1.2 In this section we recall some notions of the 

theory of the topological spaces that admit a coarsest 

quasi-uniformity. 

Note first that since each compatible quasi-uniformity 

on a topological space contains a compatible totally bounded 

quasi-uniformity, a topological space admits a coarsest 

quasi-uniformity if and only if it admits a coarsest quasi

proximity. 
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Let A and B be subsets of a topological space X. We 

say that A is relatively handy in B (with respect to X) [8], 

if for each ultrafilter V on X that contains A there exists 

a finite collection mof open subsets of X such that nm c B 

and such that each member of mcontains a limit point of V. 

If A is relatively handy in B, we write A < B. If it is not 

clear from the context which space we are considering, we 

will write A < B(X). 

We will use the convention that n~ = X. 

Note that if X is a topological space, then we have 

that X < X and that ~ < ~. 

It is known that a topological space X admits a coarsest 

quasi-proximity if and only if every open subset G of X is 

the union of open sets that are relatively handy in G [8, 

Proposition 2]. 

If a topological space X admits a coarsest quasi

proximity 8, then 8 can be described as follows: For 

A,B c X we have that A8B if and only if A < X\B [8, Corol~ 

1ary 1]. 

Note that if X is a topological space that admits a 

coarsest quasi-proximity, then {(X\A) x X U X x BIA < B(X)} 

is a subbase for the coarsest compatible quasi-uniformity 

on X (see [2, Theorem 1.33]). 

A subset G' of a set G in a topological space X is 

called relatively compact in G,if each ultrafilter on X 

that contains G' has a limit point in G. Obviously, if 

G is open and G' is relatively compact in G, then G' < G. 

A topological space X is called core-compact [5], if each 
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open set G of X is the union of open subsets that are 

relatively compact in G. 

It is an immediate consequence of Lemma 5 of [9] that 

for a core-compact space X we have A < B if and only if 

there is a finite collection of open sets ~ of X such that, 

for each M E ~, A is relatively compact in M and such that 

n~ c B. 

Clearly, each core-compact space admits a coarsest 

quasi-uniformity and each locally compact space is core

compact. Although none of these implications is reversible 

{see 5, 8], the three classes of topological spaces under 

consideration coincide in the class of super-sober spaces 

[8, Corollary 3]. 

It is known (and easy to see) that the coarsest compati

ble quasi-uniformity on a locally compact space X is generated 

by the subbase {(X\K) x X U X x GIK C G, K is compact and 

G is open in X} {9, Proof of Proposition 2]. 

Finally, let us mention that if lj is a totally bounded 

quasi-uniformity on a set X, then lj is the coarsest quasi

uniformity that the locally compact space (X,J(lj» admits 

19, Proposition 2]. 

1.3 In this section we discuss several notions of the 

theory of the Fell compactification of a locally compact 

topological space. 

We will denote the convergence set of a filter base J 

on a topological space by lim J. 

Recall that a net (or a filter) J on a topological 

space is called primitive, if each cluster point of J is 
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a limit point of J [1]. Clearly, each ultrafilter on a 

topological space is primitive. 

In the following, L will denote the set of the con

vergence sets of the primitive filters on a topological 

space X. 

Let X be a locally compact space. Fell studies in [1] 

the topology J on L that is generated by the subbase con

sisting of the union of the two collections {(X,G}IG is 

open in X} (where (X,G) = {F E LIG n F ~ ~}) and {(X\K}IK 

is compact in X} (where (X\K) = {F E LIK n F = ~}). He 

shows that (L,J) is a compact Hausdorff space and calls 

(L,J) the Hausdorff compactification H(x) of X. He observes 

that for a locally compact non-compact Hausdorff space X, 

H(X) is the Alexandroff one-point-compactification of X 

where each point x of X is identified with \x} ELand ~ is 

adjoined as the point-at-infinity. 

We close this section with some remarks on the set L 

of the convergence sets of the primitive filters on a 

topological space X. 

Note that if U is an ultrafilter on a topological space 

X and J is a primitive filter on X contained in U, then lj 

and J have the same limit points. Hence L is also the set 

of the convergence sets of the ultrafilters on X. Further

more, note that if lj is an ultrafilter on a topological 

space X, then, clearly, ~ = {G E UIG is open in X} is an 

open prime filter on X and lim lj = lim~. On the other 

hand, if ~ is an open prime filter on a topological space 

X, then J = ~ U {X\G[G is open in X and G ~ ~} has the 
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finite intersection property. If U is an ultrafilter on X 

that contains J, then lim ~ = lim U. We conclude that L is 

also the set of the convergence sets of the open prime 

filters on X. 

These observations can be used to give different, but 

equivalent formulations of the definition of the relation < 

on the power set of a topological space. Since one of the 

basic notions in Hoffmann's paper [4] is the notion of an 

open prime filter, we would like to mention the following 

result. 

Lemma o. If X is a topoZogiaaZ space and G and G
l 2 

are open subsets of X, then the foZZowing two conditions 

are equivaZent: 

(ii) Whenever and are two open prime fiZters on~l ~2 

X suah that lim ~l C lim 7?2 and G E then G El Rl' 2 ~2· 

Proof· Assume that G < G2 · Let R and R be two
l l 2 

open prime filters on X such that lim 7?1 c lim 7?2 and 

G E ~l. Consider the case that G ~ X. Let U be anl 2 

ultrafilter on X containing Rl such that lim R
l 

= lim U. 

Then there is a nonempty finite collection ~ of open subsets 

of X such that n~ C' G and such that each member of ~ con2 

tains a limit point of U. Since lim R C limR2 , we havel 

that G E R2 •2 

In order to prove the converse, assume that G and G
l 2 

satisfy condition (ii), but that they do not satisfy condi

tion(i). Then there is an ultrafilter U on X containing 

G1 such that J = {G c XIG is open in X and G contains a 
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limit point of U} U {X\G } has the finite intersection2

property. If V is an ultrafilter on X containing J, then 

UI = {G E UIG is open in X} and VI = {G E VIG is open in X} 

are open prime filters on X such that G E UI, but G ~ VI.l 2 

However, lim UI c lim VI. We have reached a contradiction. 

2.	 Preliminaries 

If (X,U) is a quasi-uniform space, then ~ = nU is a 

partial order on X and (X,J(U*) ,nUl is a partially ordered 

topological space [2, p. 81]. 

Let X be a topological space that admits a coarsest 

quasi-uniformity V. After some preparation we will be able 

-
to characterize the partial order nV on X in Lemma 4. 

Proposition 1, which is the main result in this section, 

will show the importance of this characterization in the 

theory of the topological spaces that admit a coarsest 

quasi-uniformity. 

Lemma 1. Let X be a topological space and let W be 

a compatible quasi-uniformity on X. If J l ,J 2 E X and 

-(J ,J2) E nW, then lim J l c lim J 2•l
 

Proof. Consider the case that lim J l ~~. Let
 

2
 x E lim J l and let U E W. There is a V E W such that v c U. 

Since (J ,J ) E V, there are F E J and F2 E J 2 such that
l 2 1 l 

F l x F 2 c V. Then v-I (F
l 

) x F2 c U and x E V
-1 

(F1) • Hence 

F c U(x) and U(x) E J • We conclude that x E lim J2 • Thus
2 2 

lim J 1 c lim J 2 • 
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Lemma 2. Let V be a totally bounded quasi-uniformity
 

on a set X and let y be a V*-Cauchy filter on X. Denote
 

the quasi-proximity induced by V on X by o.
 
(a) If A<sB" then X\A E Yor X\B E y. 
(b) Yis a ](V)-primitive filter on x. 
Proof. If A8B, then there is aCe X such that A8C 

and X\C8B. Set U = (X\A) x X U X x (X\C) and 

H = C x X U X x (X\B) • Then U and H belong to V [2, Theorem 

1.33] • Since y is a V*-Cauchy fil ter, there is an x E X 

such that [ (H n U) n (H n U) -1] (x) E y. If x E C, then 

u- l (x) c X\A. If x ~ C, then H(x) c X\B. We conclude 

that X\A or X\B belong to y. 
In order to prove part (b) we assume that x is a 

](V)-cluster point of y that is not a ](V)-limit point of 

~. Then there is aGE ](V) such that x E G ~ y. There 

is a ](V)-open set D in X such that xED and D8X\G. By 

part (a) we conclude that X\D E §. Since xED, x is not 

a ](V)-cluster point of y, a contradiction. 

We observe that if (X,U) is a quasi-uniform space and 

x E X, then the J(U)-convergence set of the ](lj*)-neighbour

hood filter n*(x) of x is cl](lj) {x} [see e.g. 9, Lemma 1]. 

Lemma 3. Let Wbe a compatible totally bounded quasi
..., 

uniformity on a topologicaZ space X. Let h: X ~ L be 

defined by h(J) = lim J for each J E X. Then h is surjective. 

Proof. By Lemma 2 h is well-defined. Let A E L. Then 

A = lim J for some primitive filter J on X. Let U be an 

ultrafilter on X that contains J. Since W is totally 
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bounded, V is a W*-Cauchy filter on X [2, Proposition 3.14]. 

Hence it contains a minimal W*-Cauchy filter ~ [2, Proposi

tion 3.30]. Since J and ~ are primitive, lim J = lim V = 

lim~. We conclude that h is surjective. 

Lemma 4. Let X be a topological space that admits a 

coarsest quasi-uniformity V. If J ,J2 E X~ thenl 

(J	 ,J ) E nV if and only if lim J c lim J •
l	 2 l 2

Proof. Because of Lemma 1 it remains to prove that if 

J ,J E X and lim J c lim J2 , then (J ,J ) E nV. Letl 2 l l 2 

A < B(X) and let H = (X\A) x X U X x B. If X\A E J then
l

, 

(J l ,J2 ) E H. If X\A ~ J 
l 

, then J U {A} has the finite
l 

intersection property. Let V be an ultrafilter that con

tains J U {A}. Then lim V lim J because J is primil ,l l 

tive. Since A E V, there is a finite collection mof open 

subsets of X such that each element of mcontains a limit 

point of V and such that nm c B. Since lim J 
l 

c lim J2 , 

we conclude that B E J • Hence (J ,J ) E H. Since V is2 l 2 

generated by the subbase {(X\A) x X U X x BIA < B(X)}, we 

have shown that (J
1

,J
2 

) E nV. 

Corollary 1. Let X be a topological space that admits 

a coarsest quasi-uniformity V. Then the map h: X + L defined 

by h(J) = lim J for each J E X is a bijection. 

Proof. By Lemma 3 it suffices to show that h is 

injective. Let J ,J E X such that lim 3 = lim J • By
1 2 1 2 

Lemma 4 we have that (J ,J ) E nV and that" (J ,J ) E nV.
1	 2 2 1 

Since nV is a partial order on X, we have that J1 = J
2 

• 
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Corollary 2. Let X be a topological space that admits 

a coarsest quasi-uniformity V. A filter J on X is a 

V*-Cauchy filter if and only if it is ](V)-primitive. 

Proof. By Lemma 2 every V*-Cauchy filter is ](V)

primitive. In order to prove the converse we assume that 

J is a ](V)-primitive filter on X. In the proof of Lemma 4 

set J J = J (instead of assuming that J ,J E X).l 2 l 2 

Clearly, the proof shows that J is a V*-Caucny filter. 

In the following h will always denote the map defined 

in Corollary 1. Note that Corollary 1 says that if X is a 

topological space that admits a coarsest quasi-uniformity 

V, then we can identify X with L in a natural way. We will 

make use of this possibility by assuming in the following 

that the quasi-uniformity V is defined on L (instead of X) . 

The results mentioned in the introduction yield the 

following proposition. 

Lemma 5. Let X be a topological space that admits a 

coarsest quasi-uniformity V. Let V be the quasi-uniformity 

on L that is generated by the sets U = {(h(J) ,h(y)) IJ,y E X 

and there is an F E J and aGE y such that F x G c U} where 

U E V. Then ](V*) is a compact Hausdorff topology on L. 

Moreover, the bicomplete quasi-uniformity V is the coarsest 

quasi-uniformity that the strongly sober locally compact 

space (L,](V)) admits. 

Our last result in this section shows that the property 

considered in Lemma 4 can be used to characterize coarsest 

compatible quasi-uniformities on topological spaces. 
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Proposition 1. Let W be a compatible totally bounded 

quasi-uniformity on a topological space X. Assume that W 

satisfies the following condition: 

(J ,J ) E nW~ whenever J ,J E X such that
l 2 l 2
 

lim J c lim J •

l 2 

Then X admits a coarsest quasi-uniformity and Wis the 

coarsest quasi-uniformity that X admits. 

Proof. Let 0 be the quasi-proximity that is induced 

by Won X. We want to show that 0 is the coarsest compatible 

quasi-proximity on X. In [8, Lemma 2] it is proved that if 

A < X\B for subsets A and B of a topological space X, then 

ApB for each compatible quasi-proximity p on X. Hence it 

remains to show that if A,B c X and A8B, then A < X\B. 

Let A,B c X such that A8B. Then there is aWE W such 

3 lthat w (A) n B ~. Hence if H (X\W(A» x X U X x (X\W- (B», 

then HEW by [2, Theorem 1.33]. If A < X\B, then we con

struct as in the second part of the proof of Lemma 0 two 

ultrafilters U and V on X such that A E U, B E V and 

lim U c lim V. 

Since W is totally bounded, U and V are W*-Cauchy 

filters [2, Proposition 3.14]. By [2, Proposition 3.30] 

there are J ,3 E X such that 3 c U and 32 c V. Furtherl 2 1 

more, W(A) E J and W-l(B) E 3 because A E U and B E V
2

,
l 

[2, Proposition 3.30]. Hence (J ,J2 ) ~ H, althoughl 

lim 3 = lim U and lim J = lim V, because 3 and 3 2 are
1 2 1 

primitive filters on X. We have reached a contradiction. 

Hence A < X\B. Thus W is the coarsest compatible quasi-

uniformity on X. 
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3. Main Results 

Let X be a topological space that admits a coarsest 

quasi-uniformity V. 

In this section we give an explicit description of the 

topology ](V) on L, where V is the quasi-uniformity on L 

defined in Lemma 5. We will use this description in order 

-
to show that, if X is locally compact, then J(V*) is the 

topology J on L defined by Fell in [1]. Finally we will 

reconsider a problem studied by Hoffmann in [4]. 

Proposition 2. Let X be a topological space and let 

L be the set of the convergence sets of the primitive 

filters on X. Let J' be the topology on L that is generated 

by the base {[G] IG is open in X} where [G] = {F E LI 
there is a finite collection mof open subsets of X such 

that nmeG and such that for each M E mwe have that 

MnF~.0'}. 

Then (L , ]') is strongly sober and locally compact if 

and only if X admits a coarsest quasi-uniformity. 

-
](V) 

If X admits a coarsest quasi-uniformity V, then 

= J'. 

Proof. Let X be a topological space that admits a 

coarsest quasi-uniformity V. By Lemma 5 ](V) is strongly 

sober and locally compact. Hence it suffices to show that 

the two topologies J(V) and]' on L coincide. Let us first 
-

show that ] (V) c ]'. 

Let J E X and U E V. We assume without loss of gener

ality that U (X\A) x X U X x B, where A < B(X). Since X 

admits a coarsest quasi-uniformity, there exists C c X such 
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that A < C < B. If X\A E J, then L [X] = U (h (J) ). If 

X\A ~ J, then by Lemma 2(a) we have that C E J. Since 

C < Band J is a primitive filter on X, we get that 

h(J) E [int B] by the definition of the relation <. If 

h (II) E [int B] where II E X, then B E II and, thus, 
..... 

h (II) E U(h(J» . Hence h(J) E [int B] c U(h(J». Therefore 

J(V) c J' . 

Next we want to show that J' c J(V) • Let h (J) E [G] , 

where J E X and G ~ X is open in X. There is a nonempty 

finite collection /fl of open subsets of X such that for each 

M E /fl we have that h(J) n M ~ fl and such that n/fl c G. If 

M E /fl, there are open subsets P' (M) ,P" (M) of X such that 

P' (M) < P" (M) < M and such that P' (M) n h(J) ~ fl, because 

X admits a coarsest quasi-uniformity. For each M E /fl set 

UM: = (X\P' (M» x X U X X p" (M). Then for each M E /fl we have 
..... 

that UM E V. Let h(lI) E n{UM(h(J» 1M E /fl} where II E X. Let 

M E /fl. Then P' (M) E J, because P' (M) n h(J) ~ fl. Thus 

P"(M) E II, because h(lI) E UM(h(J». Since II is a primitive 

filter on X and P"(M) < M, there is a finite collection 

N(M) of open subsets of X such that for each N E N(M), 

N n h(lI) ~ fJ, and such that nN(M) c M. Since nm c G, 
..... 

h(lI) E [G]. Therefore, n{UM(h(]» 1M E m} c [G]. Hence 

J' c J(V) and, thus, J(V) = J'. 

In the second part of the proof we assume that X is a 

topological space such that (L,J') is strongly sober and 

locally compact. Since (L,J') is locally compact, (L,J') 

admits a coarsest quasi-uniformity. 
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Define i: X + L by i(x) = rxr for each x E X. We show 

that X admits a coarsest quasi-uniformity by proving that 

each open set G of X is the union of open subsets that are 

relatively handy in G. Let G ~ X be an open neighbourhood 

of a point x E X. Then i(x) E [G]. Since (L,]') admits a 

coarsest quasi-uniformity, there is an open subset G' of X 

such that i(x) E [G'] < [G]. Clearly, this implies that 

x E G' c G. We show that G' < G(X). Let U be an ultra

filter on X that contains G'. Then [G'] E i(U), where 

i(U) denotes the ultrafilter on L that is generated by the 

filterbase {i(U) IU E U}. Since [G'] < [G] ~ Land 

[G'] E i(U), there is a nonempty finite collection mof 

open subsets of X such that n{ [M] 1M E m} c [G] and such 

that if 1\1 E m, then [M] contains a limit point lim 'PM of 

i(U) , where 'P is a primitive filter on X. Let M Em. IfM 

there is a y E lim 'PM\lim U, then there is an open neighbour

hood G of Y such that G ~ U. Clearly lim 'PM E [G ].y y y 

Since lim 'PM is a limit point of i(U), we have that 

i(U) c [Gy ] for some U E U and thus U c Gy E U, a contradic

tion. Therefore, for each M E m, lim 'PM c lim U. Since 

for each M E m, lim 'PM E [M] , we conclude that lim U E [M] 

for each M E m. Since n{ [M] 1M E m} c [G] , we have shown 

that lim U E [G] • Therefore, G' < G(X) as desired. We 

have proved that X admits a coarsest quasi-uniformity. 

Coro l lary 3. [8, Theorem 2'] If X is a TO-space 

that admits a coarsest quasi-uniformity V and each ultra

filter on X has an irreducible nonempty convergence set, 

then (L,](V» is the sobrification of x. 
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Proof. By Proposition 2, (L,J(V)) = (L,J I 
). Since 

each ultrafilter on X has an irreducible nonempty convergence 

set, L is the set of the nonempty closed irreducible subsets 

of X and [G] = (X,G) for each open subset G of X. Hence 

(L,JI) is the sobrification of X [see 4, p. 64]. 

Proposition 3. Let X be a topological space that 

admits a coarsest quasi-uniformity V. Then the topology 

J(V) on L is generated by the subbase Sl = {(X,G)IG is open 

in X} if and only if X is core-compact. 

Proof. Recall that by Proposition 2 the topologies 

JI and J(V) on L coincide. 

First we want to show that the topology JI on L is 

always coarser than the topology generated by 51. 

Note that [X] = L. Let F ELand F E [G], where G ~ X 

is open in X. There is a nonempty finite collection mof 

open subsets of X such that if M E m, then F n M f ~, and 

such that nm c G. Hence F E n{(x,M)IM E m} c [G] and we 

are done. 

Assume now that X is core-compact. Let lim? E (X,G), 

where G is an open subset of X and P is a primitive filter 

on X. There is an open subset G I of X such that G I is 

relatively compact in G and lim P n G I f~. If 

lim Pi E [G'] where p, is a primitive filter on X, then 

G' E Pi, and thus lim p' E (X,G). Hence lim P E [G'] c (X,G). 

Therefore we have proved that 51 generates the topology, 

J(V) on L, if X is core-compact. 

In order to prove the converse we assume that Sl 

generates the topology J(V) on L. We show that X is 
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core-compact. Let G be an open neighbourhood of a point 

x E X. Then fXT E (X,G). Hence there is an open set G' 

of X such that rxr E [G 1
] c (X,G). Thus x E G' c G. Since 

X admits a coarsest quasi-uniformity, there is an open sub-

set G" of X such that x E G" < G' c G. We show that G" is 

relatively compact in G. Let lj be an ultrafilter on X that 

contains Gil. Since Gil < G', we have that lim lj E [G'l c (X,G). 

Hence lim lj n G ~~. We conclude that X is core-compact. 

Proposition 4. If X· is locally compact and V is the 

coarsest quasi-uniformity for X, then (L,](V*» is Fell's 

compactification H(x) of x. 

Remark 1. 

(a) It follows from Proposition 4 and Lemma 4 that 
..., 

(L,](V*) ,nV) is the compact partially ordered topological 

space that Hoffmann calls the Fell compactification of X in 

[4] • 

(b) If X is a locally compact To-space, then X is 

strongly sober if and only if the coarsest compatible quasi-

uniformity V on X is bicomplete [9, Proposition 2]. Hence 

if X is strongly sober and locally compact and V is the 

coarsest compatible quasi-uniformity on X, then Fell's 

compactification H(X) of X is (X,](V*». In particular, 

if X is a compact Hausdorff space, then ](V*) = ](V), 

because V = V* [2, Proposition 1.47]. 

(c) The elementary proof given below is self-contained. 

Readers familiar with the theory of continuous lattices may 

prefer a shorter proof: (L,]) in its inclusion order is a 
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compact Hausdorff pospace, whose upper topology is 

generated by 51 [see e.g. 6, section 2]. Hence Sl 

generates ](lj) [2, Proposition 4.22], where lj denotes the 

(unique) quasi-uniformity that determines (L,J,c) [2, 
...., 

Theorem 4.21]. By Proposition 3, ~(lj) = J(V). Since lj 
...., ...., 

and V are both totally bounded and bicomplete, lj = V by 
...., 

[9, Proposition 2] and, thus, ](V*) = J. 

Proof of Proposition 4. We show that S2 = {(X\K)IK is 

compact in X} is a subbase for the strongly sober locally 

compact topology ](V- l ) on L. Since ](V*) = sup{J(V),J(V- l )} 
...., 

and since (by Proposition 3) 51 generates the topology J(V) 

on L, this will complete the proof of Proposition 4. 

Recall that the quasi-uniformity V on X is generated 

by the subbase 5 = {(X\K) x X u X x GIK is a compact sub

set of the open set G of X}, because X is locally compact. 

First let us show that 52 generates a topology on L 

that is finer than J(V- l ). Let V E V and let J E X. We 

assume without loss of generality that V = U where 

U = (X\K) x X U X x G E 5. Since X is locally compact, 

there exist an open subset G' of X and a compact subset K'
 

of X such that KeG' c K' c G. If h(]) n G ~ ~, then
 

G E ] and U-l(h(J» = L. If h(J) n G = ~, then h(J) E (X\K').
 

Let h(lI) E <X\K') where II E X. Since h(lI) n K' = ~ and K'
 

is compact, K' ~ II. Thus G' ~ II. By Lemma 2(a) X\K E II,
 

because K < G'. Hence h(lI) E V-l(h(]» and thus
 

h (J) E <X\K' ) c
 v-I (h (J) ) • 

Let us now show that J(V- l
) is finer than the topology 

generated by 52. 
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Assume that h(J) E (X\K) where J E X and K is compact 

in X. Since X is locally compact, there are open subsets 

G ,G ,G of X and compact subsets K ,K ,K of X such thatl 2 3 l 2 3 

K c G c K c G c K c G c K c X\h(J). Let U = (X\K ) xl l 2 2 3 3 l 

X U X x G2 . Then U E S. Let h(H) E U-l(h(J» where HEX. 

Since h(J) n K ~, we have that G ~ J. By Lemma 2(a) we3 3 

see that X\K2 E J. Hence X\Kl E H, because h(H) E ~-l(h(J». 

Thus X\G E H, which implies that h(H) c X\G We have shownl l • 

'" 1
that h(H) E (X\K). Hence U- (h(J» C (X\K). We conclude 

that S2 is a subbase for the topology J(V- l 
) on L. 

Proposition 5. If Xi (i = 1,2) are two topological 

TO-spaces that admit a coarsest quasi-uniformity Vi and 

f: (Xl,Vl ) + (X 2 ,V2 ) is a quasi-uniformZy continuous map 

(equivalently, f is a qp-continuQus map [2, p. 23], i.e. 

-1 -1if A,B C X2 and A < B(X ), then f A < f B(X l », then2

~here e~ists a un~que qUaSi-Uniformzy.continuous extension  
f: (Ll,Vl ) + (L ,V2 ) of f. Here L (~= 1,2) denotes the 2 i 

set of the aonvergenae sets of the primitive fiZters on Xi 

and Xi is identified with ji(Xi ), where ji: (Xi,Vi ) + (Li,V i ) 

is the quasi-uniform embedding defined by j. (x) = txT for 
~ 

each x E Xi. 

Proof. This result is a special case of the correspond

ing result mentioned in the introduction. 

Remark 2. We note that using a completely different 

method, Hoffmann proves (see [4, Theorem 6.8 and Remark 6.9]; 

'[6] and [4, Remark 6.10]) similar results in the special 

case of core-compact spaces and perfect continuous maps 

(compare [9, Remark 2b]). 
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Since in [4] Fell's compactification is studied in the 

setting of topological partially ordered spaces, let us 

mention the following well-known result, which can be used 

to formulate several variants of Proposition 5. 

Let (X,V) and (Y,V) be totally bounded quasi-uniform 

spaces such that J(V) and J(V) are To-topologies. If V is 

bicomplete, then a map f: X + Y is a quasi-uniformly con

tinuous map from (X,V) into (Y,V) if and only if 

f:	 (X,J(V*) ,nV) + (Y,J(V*) ,nV) is continuous and increasing 

[e.g. 11, Theorems 5 and 6] . 

Remark (added July 1986). In a recent paper [3] 

quasi-uniformities are used to study several hyperspa,ce 

topologies. In particular Fell's topology [1] is considered. 
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