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SOME NEW EXAMPLES OF HOMOGENEOUS CURVES 

Piotr Minc and James T. Rogers, Jr.1 

1.	 Introduction 

In the plane, the only aposyndetic, homogeneous con­

tinuum is the simple closed curve [3]. Outside the plane, 

things are more interesting. In particular, the second 

author [4 and 5] has proved the existence of uncountably 

many aposyndetic, homogeneous curves that are not locally 

connected. These continua were all constructed by spinning 

the Menger universal curve about one of its holes. These 

continua were termed Case continua, after J. H. Case, who 

first constructed such continua [2]. 

In the Special Session on Continua Theory at the AMS 

meeting at Baton Rouge in November, 1982, it was asked if 

these continua are the only aposyndetic, homogeneous curves 

that are not locally connected. In this paper we construct 

many others. The idea is to spin the Menger curve around 

several holes at the same time. 

A Case continuum X has the property that Hl(X) ~ Hl(S) 

e !Z, wbere S is a particular solenoid. We construct these 

new continua in two ways--a bundle construction and in 

inverse limit construction--and differentiate them from 

Case continua by calculating their cohomology. 

lThe research of the second author was partially
 
supported by NSF grant MCS-8300569.
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K. Kuperberg has asked if an arcwise-connected, homo­

geneous continuum must be locally connected. The first 

author has asked if a hereditarily decomposable, homogeneous 

curve must be a simple closed curve. The second author has 

asked if a pointed one-movable, aposyndetic homogeneous 

continuum must qe lo~ally connected. 

Each of these new examples can be mapped onto some 

(nontrivial) solenoid. Hence none of them is arcwise­

connected, hereditarily decomposable, or pointed one-

movable. Whether an aposyndetic, homogeneous curve with 

one of these properties must be locally connected remains 

an open question. 

Let X be a closed m-manifold, m > 1. If X retracts 

onto a finite wedge of circles, then the constructions of 

this	 paper show that associated with X is a collection of 

aposyndetic, homogeneous, m-dimensional continua that are 

not locally connected. 

A continuum is a compact, connected, nondegenerate, 

metric space. A curve is a one-dimensional continuum. 

The first Cech cohomology group with integral coefficients 

of the continuum X is denoted H1(X). 

2.	 A Bundle Construction 

Let P be a Sierpi~ski curve "face" of the Menger 

curve	 M. Let q: M ~ P be the projection map. 

Let B be a bouquet of n circles embedded in P, and let
I 

r: P	 ~ B be a retraction.
I
 

Let T = rr~=lsl be the n-dimensional torus, and let
 

v (e,···,e) be the identity of T. Let i: B ~ T be the
1 
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natural embedding of B onto the set {(xl,···,x ): xi = el n 

except for at most one coordinate}. Often we write B forl 

n
Let S = ITi=lSi be the product of n (possibly different) 

nontrivial solenoids. Let f = (fl,···,f ) be the productn 

of n projection maps f : Si ~ Sl. Let G = ker f and leti ,i i 
n 

G = IIi=lGi • 

It follows that (S,f,T,G) is a principal bundle, and 

that G is an abelian group whose underlying space is a 

Cantor set. 

This information enables us to construct the left 

column and bottom row of Diagram 1. Everything else in 

Diagram 1 arises from induced bundles. In particular, 

every horizontal level represents a principal bundle 

whose structure group is G. 

M +,......-------- M 

I
 
I 
'f 

PP+--------­

-t 
B 

j 
S 

The space B may also be regarded as f -1 
(B l ), and the 

map p as the restriction of f. Our first task is to show 

that B is connected. 

T + 

Diagram 1 
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Theorem 1. B is connected. 

Proof. It suffices to show that p-l(v) is contained 

in a connected subset of B, for if b is any point of B, 

there exists an arc from p(b) to v, which lifts to an arc 

from b to a point of p-l(v). 

The set p-l(v) = ((cl,···,C ): fi(c ) = e, for all iL 
n i 

Let c and d be points of p-l(v) that differ in only one 

coordinate, say the first. The set W = {(x,c ,c ' ---,c ):
2 3 n 

x E Sl}' which is homeomorphic to the solenoid Sl' contains 

both c and d, and f(W) = {(xl ,e2 
, ---,en): xl E Sl} c B •l 

Therefore, c and d belong to a connected subset of B. 

-1
For arbitrary points c and d in p (v), there exists a 

finite sequence of points of p-l(v) such that c is the first, 

d is the last, and two adjacent members of the sequence 

differ in at most one coordinate. It follows that c and d 

are points of a connected subset of B. 

Theorem 2. M - is connected. 

Proof. There is an arc from any point of M to a point 

of B. 

The next theorem follows from the methods of [4], in 

particular, Theorems 6 and 7. 

Theorem 3. M - is a coZocaZZy connected 3 homogeneous 

curve that is not locally connected. In particular, M is 

aposyndetic. 

For n = 1, such continua were constructed in [2, 4, 

and 5] and termed Case continua. We wish to show that for 
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n > 1, the continuum M is not homeomorphic to a Case con­

1 ­tinuum. Our method will be to calculate H (M) and show that 

it is not isomorphic to Hl(X), for X a Case continuum. 

If P = (Pl,P2'···) is a sequence of positive integers 

and So is the solenoid associated with P, then Hl(SO) is 

isomorphic to the group of all rationals of the form 

klPl ... Pm' where k is an integer and m is a positive 

integer. If p. > 1, for infinitely many i, then So is a 
1 

non-trivial solenoid (i.e. , not a simple closed curve) , in 

which case Hl(SO) admits infinite division. This means that 

for each element hI of Hl(SO)' there exist an integer m > 1 

1
and an element h of H (SO) such that mh = hI. Two sole­2 2 

noids So and Sl are homeomorphic if and only if Hl(SO) is 

isomorphic to Hl(Sl). 

Let C i = l,···,c, and D i = l,··.,d, be groupsi , i , 

each of which is isomorphic to the first cohomology group 

of a nontrivial solenoid (the solenoid may vary with the 

index). If 

L~=lCi ~ LZ ~ L~=lDi ~ LZ, 

then it can be shown [1] that c = d and that, for some 

reindexing of {D i }, C is isomorphic to D i , for all i.i 

Proof. Represent S as the inverse limit of tori 

{Tm,g:+l}. In the top row of Diagram 2, define B + = m l 

(gm+l)-l(B ) and the bonding maps to be restrictions. All 
m 

vertical arrows are inclusions. Hence B ~ lim B , and m+ 

(S,B) ~ lim(rr ,B ).
+ m m 
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B + B + · . . . BI 2 

j j j 
T T + · . . . S

I 2 

{-
j jI 

(TI,B I )-< (T 2 ,B 2 )+ · . . . (S,B) 

Diagram 2 

Regard T as a CW-complex with I-skeleton B . Hence m m 

(Tm,B ) is I-connected [6, p. 403] and so HI(Tm,B ) ~ o. m m

Hence HI(S,B) ~ dir lim HI(T ,B ) = o. m m 

Consider the following part of the cohomology sequence 

of the triple (T T(2) B) where T(2) is the 2-skeleton
m' m 'm' m 

i* 
m H2 (T T(2))

m' m 

Diagram 3 

Since (T T(2)) is 2 connected [6, p. 403], the relative m m 

Hure~icz isomorphism theorem [6, p. 397], together with 

[6 p. 373], implies that H2 (T ,T(2)) ~ o. , m m 

The strong excision property implies that H2(T~2) ,B ) ­
m

H2 (T(2) /B ). Since T(2) /B is a wedge (or bouquet of 
m m TIL m 

2-spheres, H2 (T(2) ,B ) ~ LZ. Hence Diagram 3 becomes 
m m
 

i*

LZ ~(__m~ 2

H (T ,B ) o m m 

and i~ is an injection. 

m-lSince gm is a product of covering maps of circles, 

the map g: H2 (T(2) B ) ~ H2 (T(2) B ) induced by gmm+l takes 
m 'm m+l' m+l 

a generator of H2 (T(2) B ) to a sum of generators of 
m 'm 
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H2 (T(2) B 1). Hence dir lim H2 (T(2) ,B ) - IZ. It follows
m+l' m m m 

that the direct limit of Diagram 3 is 

i* 2
L:Z	 +--- H (S,B) ~*--- o.
 

2
and hence H (S,B) - L:Z. 

Theorem 5. Hl(~) = Hl(B) ED 
00 

L:Z. 

Proof· The proof of [4, Theorem 10] applies. 

l n 1
Theorem 6. H (;) - (L:i=lH (Si)) ED 

00

IZ. 

Proof· Consider the following part of the long exact 

sequence of the pair (S,B). 

1 11' 2
H (S,B) ~ H (S) ---~ H (B) ~ H (S,B). 

Theorem 4 implies that this sequence is 

0 --+ HI{S) --+ HI(B) --)­ "Z. 
Hence HI(B) ~ HI{S) ED IZ. The Kunneth formula implies 

n 1HI (S)	 Thus, by Theorem 5,- Li=lH (Si)·
 
n
HI(~) =	 

00 

LZ.(Li=IH(Si)) ED 

Theorem 7. Let M and M be two of the continua con­
a S 

structed in this section. Associated with M is a product
a 

na a n S S 
of solenoids ITi=l{Si) and with MS a product ITi=l(Si). If 

the continua M and MS are homeomorphic~ then n = n S and~ a a 

for some reindexing~ S~ = S~. 
1 1 

Proof. This follows immediately from Theorem 6 and 

the remarks preceding Theorem 4. 

Corollary 8. If M is homeomorphic to a Case continuum, 

then n = 1. 
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In general, we have proved the following theorem, 

which applies, in particular, to closed m-manifolds, m > 1, 

that retract onto a finite wedge of circles. 

Theorem 9. Suppose X is a strongly locally homogeneous, 

m-dimensional continuum such that points of X have arbi­

trarily small neighborhoods with connected boundaries 

and such that there exists a retraction of X onto a wedge 

of n circles. Then, for any n solenoids, there exists an 

aposyndetic, homogeneous, m-dimensional continuum M that 

retracts onto each of these solenoids and that is the total 

space of a Cantor set bundle over X. 

3. An Inverse Limit Construction References 

In this section we indicate how to construct the con­

tinuum M as an inverse limit of universal curves and cover­

ing maps. 

Let T IT~=lsl be the n-dimensional torus, n > 3. Let 

j-l 1 n
Zj = ITi=l{e} x S x ITi=j+l{e}, for j = 1,2,···,n. One can 

assume that the Menger curve M is embedded in T such that 

Z. c M for every j = 1,2,···,n.
] 

For any sequence a of n positive integers al,a 2 ,···,a ,n 

let fa: T ~ T be the mapping defined by the formula 

a l a 2 an 
f (zl,z2,···,zn) = (zl ,z2 , ••• ,zn )a 

Theorem 10. The space fa-1 
(M) is a Menger curve con­

taining Zj' for j = 1,2,···,n. 

The proof is similar to the proof of [5, Lemma 6] and 

is omitted. 
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k 00 

Let S = (a )k=l be a sequence of finite sequences, 

k k k keach	 of n positive integers, say a (a
1

,a
2
,···,a ).

n 

Define MS = M and MS = f- 1 (M S ) .
0 k a k-l

k 

SISLet MS lim {Mk ' f a Mk }.+­ k 

Theorem 11. The curve MS is homogeneous and colocally 

connected. 

The proof is the same as the proof of [5, Theorem 7]. 

The above examples were obtained by spinning the Menger 

curve M around a finite number of its holes. It remains an 

open	 question whether one can construct a similar example 

by spinning M around infinitely many of its holes. In 

particular, it is unknown whether there exists a colocally 

connected homogeneous curve containing an infinite number 

of different solenoids as its retracts. 
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