TOPOLOGY PROCEEDINGS Volume 11, 1986 Pages 7–23

http://topology.auburn.edu/tp/

$\begin{array}{c} \mbox{COMPRESSED COMPACTA AND SARI} \\ \mbox{MAPS} \end{array}$

by

LAURENCE BOXER

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

COMPRESSED COMPACTA AND SARI MAPS

Laurence Boxer¹

1. Introduction

The notion of a compressed compactum was introduced in [Bx-S]. Here we observe that the compressed compacta coincide with the AWNR's [Bg]. We give a generalization of compression modelled on Čerin's generalizations of triviality and movability (see [C-S]). This generalization is a hereditary shape property, but in some respects does not behave as do Čerin's analogs.

In the spirit of Čerin's equicontinuous shape theory [C3] we give a "controlled" version of compression that yields a characterization of ANR's and helps us obtain a condition necessary and sufficient for ARI maps to preserve ANR's.

2. Preliminaries

Recall the following definitions:

(2.1) [Bg, p. 97] A compactum X is an absolute weak neighborhood retract (AWNR) if for some (indeed, for any) compact ANR Y containing X there is a neighborhood U of X in Y such that for every neighborhood V of X in Y there is a map r: U + V such that r(x) = x for all $x \in X$.

(2.2) [Bx-S, p. 851] Let U be a neighborhood of a compactum X in a space Y. Then U compresses toward X in

¹Supported by a grant from the Niagara University Research Council.

Y if for each neighborhood V of X in Y there exist a map r: U \rightarrow V and a neighborhood W of X, W \subset V, such that r(x) = x for all x \in W.

Let X be a compactum, C a family of metric spaces, and M an ANR-space containing X. We say X is C-compressed in M if there is a neighborhood U of X in M satisfying

C-comp(U,X): for every neighborhood V of X in U there is a neighborhood W of X in V such that for every C-map f: K \rightarrow U (by C-map we mean a map whose domain K belongs to C) there is a map g: K \rightarrow V such that $g|f^{-1}(W) = f|f^{-1}(W)$.

Note if U' is a neighborhood of X in U and C-comp(U,X), then C-comp(U',X).

The following shows the choice of M above is insignificant. The notation $f \cong_V^2 g$ will mean maps f and g are homotopic in V.

(2.3) Theorem. Let M and N be ANR-spaces containing
 homeomorphic compacta X and X', respectively. If X is
 C-compressed in M then X' is C-compressed in N.

Proof. Let h: $X \rightarrow X'$ be a homeomorphism. There exist neighborhoods U of X in M, U' of X' in N, and extensions f: U \rightarrow N of h and f': U' \rightarrow M of h⁻¹ such that C-comp(U,X) and f⁻¹(U') U f'(U') \subset U.

Let V' be a neighborhood of X' in U'. Let V = $f^{-1}(V')$. Then V is a neighborhood of X in U. Since C-comp(U,X), there is a neighborhood W of X in V such that for every C-map F: K \rightarrow U there is a map G: K \rightarrow V with $G|F^{-1}(W) =$ $F|F^{-1}(W)$. Recalling our choices of f and f' and using

[H, IV 1.1] and the fact that V' is an ANR-space, there is a closed neighborhood W' of X' in V' such that $f'(W') \subset W$ and $ff'|W' \cong i_{W',V'}$ (the inclusion of W' into V').

Suppose p: $K \rightarrow U'$ is a C-map. Then f'p: $K \rightarrow U$. Our choice of W implies that there is a map G: $K \rightarrow V$ such that $G|(f'p)^{-1}(W) = f'p|(f'p)^{-1}(W)$. Our choice of W' implies $G|p^{-1}(W') = f'p|p^{-1}(W')$. Then $fG(K) \subset V'$ with $fG|p^{-1}(W') =$ $ff'p|p^{-1}(W') \cong_{V'} p|p^{-1}(W')$ by our choice of W'. Since $p^{-1}(W')$ is closed in K and $fG|p^{-1}(W')$ extends to fG: $K \rightarrow V'$, Borsuk's Homotopy Extension Theorem [Bk, IV(8.1), p. 94] implies $p|p^{-1}(W')$ extends to P: $K \rightarrow V'$. It follows that C-comp(U',X').

In light of (2.3), we drop "in M" and say X is C-compressed if for some (hence every) ANR-space M containing X, X is C-compressed in M.

We will use the following well-known property several times:

(2.4) Theorem [Bk, V(3.1)]. Let Y be a compact ANR, $\varepsilon > 0$. There is a $\delta > 0$ such that if f,g: $X_0 \rightarrow Y$ are δ -close maps of a closed subset X_0 of a metric space X into Y, and f extends to F: $X \rightarrow Y$, then there is an extension G: $X \rightarrow Y$ of g such that F and G are ε -close.

3. Some Properties of C-Compressed Compacta

If X is a C-compressed compactum with C the class of all compact ANR's, we will say X is compressed. We have:

(3.1) Theorem. Let X be a compactum in the Hilbertcube Q. The following are equivalent:

a) X is compressed.

b) There is a neighborhood U of X in Q such that U compresses toward X in Q.

c) $X \in AWNR$.

Proof. a) implies b): If X is compressed, there is a compact ANR neighborhood U of X in Q such that ANR-comp(U,X). Let V be any neighborhood of X in U. Then there is a neighborhood W of X in/V such that for any ANR-map f: K + U there is a map g: K + V with $g|f^{-1}(W) = f|f^{-1}(W)$. In particular, for $l_U: U + U$ there is a map g: U + V such that for $x \in l_U^{-1}(W) = W$, $g(x) = l_U(x) = x$. Hence U compresses toward X in Q.

b) implies c): This follows from (2.1) and (2.2).

c) implies a): If $X \in AWNR$, there is a neighborhood U of X in Q such that for every neighborhood V of X in U there is a map r: U + V such that $r|X = i_{X,V}$. We may assume V is a compact ANR. By (2.4), there is a $\delta > 0$ such that if f,g: $Y_0 \rightarrow V$ are δ -close maps and Y_0 is a closed subset of a metric space Y, then if f extends to F: Y \rightarrow V then g also extends to a map G: Y \rightarrow V. There is a closed neighborhood W of X in V such that r|W and $i_{W,V}$ are δ -close.

Let f: K \rightarrow U be an ANR-map. Then rf: K \rightarrow V and (letting d^S denote the sup-metric for maps from K into Q) d^S(rf|f⁻¹(W), f|f⁻¹(W)) < δ . Our choices of δ and W imply f|f⁻¹(W) extends to F: K \rightarrow V. It follows that ANR-comp(U,X), and from (2.3) that X is compressed.

From (3.1) it follows that the following is a generalization of Tsuda's result [T, Thm. 1.2] that AWNR is a hereditary shape property.

(3.2) Theorem. Let X and Y be compacta, C a class of metric spaces. If X is C-compressed and Sh $X \ge Sh Y$, then Y is C-compressed.

Proof. There is no loss of generality in assuming $X \cup Y \subset Q$. Let U be a neighborhood of X in Q such that C-comp(U,X). Let $\underline{f} = \{f_k, X, Y\}_{Q,Q}$ and $\underline{g} = \{g_k, Y, X\}_{Q,Q}$ be fundamental sequences such that $\underline{fg} \cong \underline{1}_Y$. There exist a positive integer k_1 and a neighborhood U' of Y in Q such that $k > k_1$ implies $g_k(U') \subset U$.

Let V' be any neighborhood of Y in U'. There exist a positive integer k_2 and a neighborhood V of X in U such that $k > k_2$ implies $f_k(V) \subset V'$. Our choice of U implies there is a closed neighborhood W of X in V such that for each C-map f: K \rightarrow U there is a map g: K \rightarrow V such that $g|f^{-1}(W) =$ $f|f^{-1}(W)$. There exist a positive integer k_3 and a closed neighborhood W' of Y in Q with W' \subset V' such that $k > k_3$ implies $g_k(W') \subset W$ and $f_k g_k|W' \cong i_{W',V'}$.

Fix $k > \max\{k_1, k_2, k_3\}$. Let h: $K \neq U'$ be a C-map. Then $g_k h: K \neq U$, so there is a map H: $K \neq V$ such that $H|(g_k h)^{-1}(W)$ $= g_k h|(g_k h)^{-1}(W)$. Our choices of k_3 and W' imply $H|h^{-1}(W')$ $= g_k h|h^{-1}(W')$. Then $f_k H: K \neq V'$ with $f_k H|h^{-1}(W') = f_k g_k h|$ $h^{-1}(W') \cong_{V'} h|h^{-1}(W')$. Since V' is an ANR-space and $h^{-1}(W)$ is closed in K, we may apply Borsuk's Homotopy Extension Theorem to conclude that since $f_k H|h^{-1}(W')$ extends to f_{k}^{H} : $K \rightarrow V$, therefore $h|h^{-1}(W)$ extends to F: $K \rightarrow V$. It follows that C-comp(U',Y).

Recall a compactum X is *C-calm* [C1] if for some (any) ANR-space M containing X there is a neighborhood U of X in M such that for every neighborhood V of X in U there is a neighborhood W of X in V such that if f,g: $K \rightarrow W$ are C-maps with $f \cong_{_{II}} g$, then $f \cong_{_{VI}} g$.

Let us say a class C is I-closed (I is the interval [0,1]) if K \in C implies K \times I \in C.

(3.3) Theorem. Let C be an I-closed class of metric spaces and let X be a C-compressed compactum. Then X is C-calm.

Proof. Let M be an ANR-space containing X and let U be a neighborhood of X in M such that C-comp(U,X). Let V be a neighborhood of X in U. Let W be a neighborhood of X in V such that for every C-map f: $K \rightarrow U$ there is a map g: $K \rightarrow V$ with $g|f^{-1}(W) = f|f^{-1}(W)$.

Suppose $f_0, f_1 : K \neq W$ are C-maps with $f_0 \stackrel{\simeq}{=}_U f_1$. There is a map F: $K \times I \neq U$ such that $F(x, 0) = f_0(x)$,

$$F(x,1) = f_1(x)$$

for all $x \in K$. Since C is I-closed, F is a C-map. Our choice of W implies there is a map G: $K \times I \rightarrow V$ such that $G|F^{-1}(W) = F|F^{-1}(W)$. Thus $G(x,t) = F(x,t) = f_t(x)$ for $t \in \{0,1\}$, so $f_0 \cong_V f_1$, via G. It follows that X is C-calm.

(3.4) Corollary. If C is an I-closed class of connected metric spaces, the compactum X is C-compressed if and only if X has finitely many components, each of which is C-compressed. *Proof.* "If" is elementary. "Only if": that X C-compressed implies X has finitely many components follows from (3.3) and the fact that C-calm compacta have finitely many components [Cl, (4.6)]. Since C consists of connected spaces, it follows easily that each component of X is C-compressed.

(3.5) Remark. The importance of the assumption that C be I-closed in (3.3) and (3.4) is illustrated by the following: It is easily seen that every compactum is S-compressed, where S is the class consisting of one member, a space with one point; but compacta with infinitely many components are not S-calm.

(3.6) Remark. Let C and D be classes of compacta. We say C shape-dominates D if for each $Y \in D$ there is an $X \in C$ such that Sh $X \ge$ Sh Y. Čerin has studied several shape properties such that if a compactum X has the property for the class C, and C shape-dominates D, then X has the property for D. This is not the case for compression: let T be the class of compacta with trivial shape. Then S shape dominates T. If X is a compactum with infinitely many components, then X is S-compressed, but not T-compressed, by (3.4).

(3.7) *Remark*. One sees easily from (3.1) that every member of T is compressed. However, in general not every C-trivial [C-S] compactum is C-compressed. If X is a compactum with infinitely many components, then X is T-trivial [Bx1, (4.3)], but not T-compressed (as seen in (3.6)).

Since solenoids are calm [Cl], the following shows that the compressed compacta form a proper subclass of the class of calm compacta.

(3.8) Example. No solenoid is compressed.

Proof. Let X be a solenoid. If X is compressed then the suspension SX of X has the shape of a finite CW complex [T, Thm. 2.6]. Therefore $H_2(SX)$ would be movable in the category of groups, a contradiction.

The author is indebted to an anonymous colleague for suggesting the proof above in place of the author's original, longer proof.

A continuous surjection of compacta f: X + Y is called *approximately right invertible* (ARI) [G, p. 293] if there is a null sequence of positive numbers ε_n such that for each n there is a map g_n : Y + X with $d^s(fg_n, l_Y) < \varepsilon_n$.

If there are AR-spaces M and N containing X and Y, respectively, such that the maps g_n above can be extended to $G_n: N \rightarrow M$ such that for every neighborhood U of X in M there is a neighborhood V of Y in N with $G_n(V) \subset U$ for almost all n, then f is called *strongly approximately right invertible* (SARI) [C2]. The choices of M and N are not significant.

It is known that ARI and SARI maps preserve a number of shape and e-shape invariants ([Bx2], [Bx3], [C2]).

We have:

(3.9) Theorem. Let X and Y be compacta, f: X + Y an SARI map. If X is C-compressed then Y is C-compressed.

Proof. We may assume $X \cup Y \subset Q$. Let U be a neighborhood of X in Q such that C-comp(U,X). Since $f \in SARI$, there is a sequence $\{G_n : (Q,Y) \rightarrow (Q,X)\}$ of maps of pairs as described above. There exist a positive integer n_1 and a neighborhood U' of Y in Q such that $n > n_1$ implies $G_n(U') \subset U$. Let F: $Q \rightarrow Q$ extend f.

Let V' be any compact ANR neighborhood of Y in U'. There is a neighborhood V of X in U such that $F(V) \subset V'$.

By (2.4), there is an $\varepsilon > 0$ such that if $h_1, h_2: Z_0 \to V'$ are ε -close maps of a closed subset Z_0 of a metric space Z into V' and h_1 extends to $H_1: Z \to V'$, then h_2 extends to $H_2: Z \to V'$. Let W be a closed neighborhood of X in V such that for each C-map u: $K \to U$ there is a map $u_1: K \to V$ with $u_1 | u^{-1}(W) = u | u^{-1}(W)$. There exist a positive integer n_2 and a closed neighborhood W' of Y in V' such that $n > n_2$ implies $G_n(W') \subseteq W$ and $FG_n | W'$ is ε -close to $i_{W',V'}$.

Fix $n > \max\{n_1, n_2\}$. Let r: K + U' be a C-map. Then $G_n r: K + U$. Our choice of W implies there is a map s: K + V such that $s|(G_n r)^{-1}(W) = G_n r|(G_n r)^{-1}(W)$. By choice of W', $s|r^{-1}(W') = G_n r|r^{-1}(W')$. By choice of V, Fs: K + V' and $Fs|r^{-1}(W') = FG_n r|r^{-1}(W')$. Since (by choices of W' and n_2) $FG_n r|r^{-1}(W')$ is ε -close to $r|r^{-1}(W')$, and since $Fs|r^{-1}(W')$ extends to Fs: K + V', it follows from our choice of ε that $r|r^{-1}(W')$ extends to R: K + V'. It follows that C-comp(U',Y). If f: X + Y is an SARI map of compacta such that (using notation as above) there is a sequence of maps of pairs { h_n : (M,X) + (N,Y)} such that $d^S(g_nh_n|X,l_X) < \varepsilon_n$, each $h_n(X) = Y$ for all n, and for every neighborhood U of Y in N there is a neighborhood V of X in M such that $h_n(V) \subset U$ for almost all n, then f is called *strongly approximately invertible* (SAI) [C2]. We have:

(3.10) Theorem. Let $f: X \rightarrow Y$ be an SAI map of compacta. Then X is C-compressed if and only if Y is C-compressed.

Proof. If X is C-compressed then so is Y, by (3.9), since f is SARI.

Suppose Y is C-compressed. Assume that M = N = Qand let F: Q \rightarrow Q extend f. Let $\{G_n: (Q,Y) \rightarrow (Q,X)\}$, $\{h_n: (Q,X) \rightarrow (Q,Y)\}$ be as above. Let U' be a neighborhood of Y in Q such that C-comp(U',Y). There exist a positive integer n_1 and a neighborhood U of X in Q such that $n > n_1$ implies $h_n(U) \subset U'$.

Let V be a compact ANR neighborhood of X in U. There exist a positive integer n_2 and a neighborhood V' of Y in U' such that $n > n_2$ implies $G_n(V') \subset V$. By choice of U', there is a neighborhood W' of Y in V' such that for each C-map b: K + U' there is a map c: K + V' with $c|b^{-1}(W') =$ $b|b^{-1}(W')$. By (2.4), there is an $\varepsilon > 0$ such that if u_1, u_2 : $Z_0 + V$ are ε -close maps of a closed subset Z_0 of a metric space Z into V and u_1 extends to U_1 : Z + V, then u_2 , extends to U_2 : Z + V. There exist a neighborhood W_0 of X in V and a positive integer n_3 such that $n > n_3$ implies $G_n h_n | X$ is ε -close to $i_{X,V}$ and $h_n(W_0) \subset W'$.

Fix $n > \max\{n_1, n_2, n_3\}$. There is a closed neighborhood W of X in W₀ such that $G_n h_n | W$ and $i_{W,V}$ are ε -close.

Let s: $K \neq U$ be a C-map. Then $h_n s: K \neq U'$. Hence there is a map c: $K \neq V'$ such that $c \mid (h_n s)^{-1}(W') =$ $h_n s \mid (h_n s)^{-1}(W')$. It follows that $c \mid s^{-1}(W) = h_n s \mid s^{-1}(W)$. Therefore $G_n c: K \neq V$ with $G_n c \mid s^{-1}(W) = G_n h_n s \mid s^{-1}(W)$. But $G_n h_n s \mid s^{-1}(W)$ is ε -close to $s \mid s^{-1}(W)$, and since the former extends to $G_n c: K \neq V$ and $s^{-1}(W)$ is closed in K, therefore $s \mid s^{-1}(W)$ extends (by choice of ε) to t: $K \neq V$. It follows that C-comp(U,X).

4. C-e-Compressed Compacta

As Čerin has observed, various open questions suggest the need for further characterizations of ANR's. For example, we find in [G, p. 294]:

(4.0) DO ARI maps or refinable maps [F-R] preserve ANR's?

(Partial answers are in [F-K] and [C2].) In this section we give a characterization of ANR's in terms of an e-shape version of compression and show how we may better understand (4.0). For the sake of convenience, we assume in this section that X and Y are compacta in Q.

For a family C of metric spaces, we say X is C-e-compressed if for every $\varepsilon > 0$ there is a neighborhood U of X in Q such that C^{ε} -comp(U,X): for every neighborhood V of X in U there is a neighborhood W of X in V such that for every C-map f: $K \neq U$ there is a map g: $K \neq V$ with $g|f^{-1}(W) = f|f^{-1}(W)$ and $d^{S}(f,g) < \varepsilon$.

It is easily seen that if U_1 is a neighborhood of X in U and C^{ε}-comp(U,X), then C^{ε}-comp(U₁,X). Also, every compactum is S-e-compressed.

If X is C-e-compressed when C is the family of compact ANR's, we say X is e-compressed.

We give a series of results relating C-e-compression to the e-shape properties C-e-movability [C3] and C-e-calmness [C2].

(4.1) Theorem. A C-e-compressed compactum is C-e-movable.

Proof. Let U be a neighborhood of the C-e-compressed compactum X in Q and let $\varepsilon > 0$. We may assume U is a compact ANR. There is a $\delta > 0$ such that δ -close maps into U are ε -homotopic in U. There is a neighborhood V of X in U such that C^{δ} -comp(V,X). Thus, for every neighborhood W of X in V and every C-map f: K + V there is a map g: K + W with $d^{S}(f,g) < \delta$. By choice of δ , f and g are ε -homotopic in U. It follows that X is C-e-movable.

(4.2) Theorem. Let C be an I-closed class of metricspaces and let X be C-e-compressed. Then X is C-e-calm.

Proof. Let $\varepsilon > 0$. There is a compact ANR neighborhood U of X in Q such that $C^{\varepsilon/3}$ -comp(U,X). Let $\delta > 0$ be such that δ -close maps into U are ($\varepsilon/3$)-homotopic.

Let V be a neighborhood of X in U. By choice of U, there is a neighborhood W of X in V such that for every

C-map f: $K \rightarrow U$ there is a map g: $K \rightarrow V$ such that $g | f^{-1}(W) = f | f^{-1}(W)$ and $d^{s}(f,g) < \epsilon/3$.

Suppose $h_0, h_1: K \rightarrow W$ are δ -close. By choice of δ , there is a map F: K × I \rightarrow U such that for all x \in K,

```
F(x,0) = h_0(x),

F(x,1) = h_1(x) and

diam F({x} \times I) < \varepsilon/3.
```

Since K × I ∈ C, there is a map G: K × I → V such that $G|F^{-1}(W) = F|F^{-1}(W)$ and $d^{S}(F,G) < \varepsilon/3$.

For $x \in K$, it follows that $G(x,0) = h_0(x)$, $G(x,1) = h_1(x)$, and for all s,t \in I, $d(G(x,s),G(x,t)) \leq d(G(x,s),F(x,s)) + d(F(x,s),F(x,t)) + d(F(x,t),G(x,t)) < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$. Thus h_0 and h_1 are ε -homotopic in V. It follows from [C2, (4.2)] that X is C-e-calm.

(4.3) Theorem. $X \in ANR$ if and only if X is e-compressed.

Proof. Suppose X \in ANR. Let $\varepsilon > 0$. There is a compact ANR neighborhood U of X in Q and a retraction r: U \rightarrow X such that $d^{S}(r,l_{U}) < \varepsilon/2$. Let V be a neighborhood of X in U. We may assume V is a compact ANR. Then there is, by (2.4), a $\delta > 0$ such that if Z_{0} is a closed subset of a metric space Z, h_{0} and h_{1} are δ -close maps of Z_{0} into V, and h_{0} extends to H_{0} : Z \rightarrow V, then there is an extension H_{1} : Z \rightarrow V of h_{1} , such that $d^{S}(H_{0}, H_{1}) < \varepsilon/2$. There is a closed neighborhood W of X in V such that $d^{S}(r|W,i_{W},v) < \delta$.

Let f: $K \rightarrow U$ be an ANR-map. We have $d^{S}(rf|f^{-1}(W), f|f(W)) < \delta$. Since $f^{-1}(W)$ is closed in K and $rf|f^{-1}(W)$ extends to rf: $K \rightarrow X \subset V$, our choice of δ implies $f|f^{-1}(W)$

Boxer

extends to a map g: $K \rightarrow V$ with $d^{S}(rf,g) < \epsilon/2$. Hence $d^{S}(f,g) \leq d^{S}(f,rf) + d^{S}(rf,g) < \epsilon/2 + \epsilon/2 = \epsilon$. It follows that ANR^{ϵ} -comp(U,X), and thus X is e-compressed.

Conversely, if X is e-compressed then by (4.1) and (4.2), X is e-movable and e-calm. Hence $X \in ANR$, by [C2, (4.9a)].

Let f: X + Y be an SARI map and let F: Q + Q extend f. Let $\{G_n: (Q,Y) \rightarrow (Q,X)\}_{n=1}^{\infty}$ be a sequence of maps of pairs as in the previous section. We will say f is *extra strongly approximately right invertible* (ESARI) if for every $\varepsilon > 0$ there is a neighborhood U of Y in Q such that $d^{S}(FG_n|U,i_{U,Q}) < \varepsilon$ for almost all n. One sees easily that the choice of extension F of f is not important.

The following is suggested by [C2, (5.1)].

(4.4) Theorem. Let $Y \in ANR$ and suppose $f: X \rightarrow Y$ is an ARI map. Then f is an ESARI map.

Proof. We assume $F: Q \rightarrow Q$ extends f.

Since f is an ARI map, there is a sequence of maps $g_n: Y \rightarrow X$ such that $fg_n \xrightarrow[n \rightarrow \infty]{} l_Y$. Let Z be a neighborhood of Y in Q such that there is a retraction r: Z \rightarrow Y. Let $G_n: Q \rightarrow Q$ be an extension of $g_nr: Z \rightarrow X$.

Then for each n, given a neighborhood U of X in Q, Z is a neighborhood of Y in Q such that $G_n(Z) \subset U$. It follows easily that f is an SARI map. Further, let $\varepsilon > 0$ be given. There is a neighborhood V of Y in Z such that $d^{S}(r|V,i_{V,Z}) < \varepsilon/2$ and there is a positive integer z such that n > z implies $d^{S}(fg_n, l_v) < \varepsilon/2$. Hence for n > z,

$$\begin{split} \mathrm{d}^{\mathsf{S}}(\mathrm{FG}_{n} \big| \, \mathbb{V}, \mathrm{i}_{\mathrm{V}, \mathrm{Q}}) &\leq \mathrm{d}^{\mathsf{S}}(\mathrm{FG}_{n} \big| \, \mathbb{V}, \mathrm{r} \big| \, \mathbb{V}) + \mathrm{d}^{\mathsf{S}}(\mathrm{r} \big| \, \mathbb{V}, \mathrm{i}_{\mathrm{V}, \mathrm{Q}}) < \mathrm{d}^{\mathsf{S}}(\mathrm{fg}_{n} \mathrm{r} \big| \, \mathbb{V}, \mathrm{r} \big| \, \mathbb{V}) \\ \mathrm{r} \big| \, \mathbb{V}) &+ \varepsilon/2 < \varepsilon. \quad \text{It follows that f is ESARI.} \end{split}$$

The following, suggested by [C2, (5.2) and (5.3)], gives a converse to (4.4) when it is assumed X ε ANR.

(4.5) Theorem. Let $X \in ANR$ and suppose $f: X \rightarrow Y$ is ESARI. Then $Y \in ANR$.

Proof. By (4.3), it suffices to show Y is e-compressed. Let F: Q + Q extend f and let $\{G_n: (Q,Y) + (Q,X)\}_{n=1}^{\infty}$ be a sequence of maps of pairs satisfying the definition of ESARI.

Let $\varepsilon > 0$. Since $X \in ANR$, there is a neighborhood U' of X in Q and a retraction r: U' \rightarrow X such that $d^{S}(F|U',Fr)$ < $\varepsilon/3$. Since f is ESARI, there exist a neighborhood U of Y in Q and a positive integer n_1 such that $n > n_1$ implies

> $G_n(U) \subset U' \text{ and}$ $d^{S}(FG_n|U,i_{U,O}) < \varepsilon/3.$

Let V be a neighborhood of Y in U. We may assume V is a compact ANR. By (2.4), there is a $\delta > 0$ such that if $h_0, h_1: Z_0 + V$ are δ -close maps of a closed subset Z_0 of a metric space Z into V and h_0 extends to $H_0: Z + V$, then h_1 extends to $H_1: Z + V$ with $d^S(H_0, H_1) < \epsilon/3$. There is a neighborhood W' of X in U' such that $d^S(F|W', fr|W') < \delta/2$. There exist a closed neighborhood W of Y in V and a positive integer n_2 such that $n > n_2$ implies

$$G_n(W) \subset W',$$

 $FG_n(W) \subset V, \text{ and}$
 $d^s(FG_n|W, i_{W,V}) < \delta/2.$

Fix $n > \max\{n_1, n_2\}$. Let $q: K \neq U$ be an ANR-map. Then $G_n q: K \neq U'$, $rG_n q: K \neq X$, and we define $b = frG_n q:$ $K \neq Y \in V$. Note $d^{S}(b|q^{-1}(W), q|q^{-1}(W)) \leq d^{S}(frG_n q|q^{-1}(W))$, $FG_n q|q^{-1}(W)) + d^{S}(FG_n q|q^{-1}(W), q|q^{-1}(W)) < \delta/2 + \delta/2 = \delta$. Since $q^{-1}(W)$ is closed in K and $b|q^{-1}(W)$ extends to $b: K \neq V$, our choice of δ implies $q|q^{-1}(W)$ extends to $g: K \neq V$ with $d^{S}(b,g) < \epsilon/3$. Thus $d^{S}(q,g) \leq d^{S}(q,b) + d^{S}(b,g) <$ $d^{S}(q,FG_nq) + d^{S}(FG_nq,frG_nq) + \epsilon/3 <$ (by our choices of U and U') $\epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$. Thus ANR^{ϵ} -comp(U,Y), and the proof is complete.

It follows from [F-R, (3.3)] that a refinable ANR-map is ARI. In light of (4.4) and (4.5), it follows that the questions (4.0) are equivalent to the following:

(4.7) *Questions*. If f: $X \rightarrow Y$ is ARI (refinable) and X \in ANR, must f be ESARI?

References

[Bg]	S. A. Bogatyi, Approximative and fundamental
	retracts, Mat. Sbornik 93 (135) (1974), 91-103.
[Bk]	K. Borsuk, Theory of Retracts, Monografie Mate-
	matyczne 44, Warsaw (1967).
[Bxl]	L. Boxer, Some limit properties of C-movably regular
	convergence, Houston J. of Math. 6 (1980), 313-320.
[Bx2]	, AANR's and ARI maps, Topology Proceedings
	6 (1981), 219-226.
[Bx3]	, Maps related to calmness, Topology and its
	Applications 15 (1983), 11-17.

[Bx-S] _____ and R. B. Sher, Borsuk's fundamental metric and shape domination, Bull. Acad. Polon. Sci. 26 (1978), 849-853.

- [C1] Z. Čerin, Homotopy properties of locally compact spaces at infinity--calmness and smoothness, Pacific J. of Math. 78 (1978), 69-91.
- [C2] , C_p-e-movable and C-e-calm compacta and their images, Compositio Math. 45 (1982), 115-141.
- [C3] ____, C-e-movable and (C,D)-e-tame compacta, Houston J. of Math. 9 (1983), 9-27.
- [C-S] and A. P. Sostak, Some remarks on Borsuk's fundamental metric, in Topology, v. 1 (A. Czaszar, ed.), 233-252, North-Holland, New York (1980).
- [Ch] T. A. Chapman, Lectures on Hilbert cube manifolds, Regional conference series in mathematics No. 28, Providence (1976).
- [F-R] J. Ford and J. W. Rogers, Jr., Refinable maps, Colloquium Math. 39 (1978), 263-269.
- [F-K] J. Ford and G. Kozlowski, Refinable maps on ANR's, Topology and its Applications 11 (1980), 247-263.
- [G] R. Geoghagen, ed., Open problems in infinitedimensional topology, Topology Proceedings 4 (1979), 287-338.
- [H] S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
- [T] K. Tsuda, On AWNR-spaces in shape theory, Math. Japonica 22 (1977), 471-478.

Niagara University

Niagara University, New York 14109