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A HYPERSPACE RETRACTION THEOREM FOR A
CLASS OF HALF—LINE COMPACTIFICATIONS

D. W. Curtis

1. Hyperspace Retractions

For X a metric continuum, let 2X be the hyperspace of
all nonempty subcompacta, with the Hausdorff metric topology,
and let C(X) < 2% pe the hyperspace of subcontinua. If X
is locally connected, both C(X) and 2X are absolute
retracts [9], and in particular C(X) is a retract of 2X.

In the non-locally connected case, neither hyperspace is

an absolute retract, but we may still ask whether C(X) is

a retract of 2X. Until now, this question has been answered
in only two specific cases. In 1977, Goodykodntz [2] con-
structed a l-dimensional continuum X in E3 such that C(X)

is not a retract of 2X. And in 1983, Goodykoontz [3] showed
that for X the cone over a convergent sequence, C(X) <s a
retract of 2x. Thus, for X non-locally connected, C(X)

is not necessarily a retract of 2X, but it may be. (Nadler
[6] had earlier shown the existence of surjections from 2X
to C(X), in all cases.)

At present, a completely general answer for the hyper-
space retraction question seems out of reach. In this paper,
we answer the question for a certain class of non-locally
connected continua, large enough to be of interest, but
sufficiently delimited so as to be manageable. This class
will consist of those half-line compactifications with

locally connected remainder which are "regular" in the
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following sense. Let X = [0,») U K denote an arbitrary
half-line compactification with a nondegenerate locally
connected remainder K (which is therefore a Peano continuum).
In this situation, there always exists a retraction X -+ K.
We say that X is a regular compactification if there exists
a retraction r: X » K such that, for some homeomorphism
¢: [0,®) > [0,®), the map r o $: [0,») > K is a periodic
surjection, i.e., there exists p > 0 such that r(¢(t)) =
r(¢(t + p)) for all t. Our main result is that the only
regular half-line compactifications for which there exist
hyperspace retractions 2X *+ C(X) are the following: the
topologist's sine curve; the circle with a spiral; and a
sequence of other regular compactifications with a circle
as remainder, to be described below.

The case of the circle with a spiral (labelled below
as Xl) is of particular interest. It is known that Cone
Xl does not have the fixed point property [5], and that

C(Xl) is homeomorphic to Cone Xl [8]. Noting this, Nadler

X

[7] conjectured that 2 1

does not have the fixed point
property (which would make it the first such example to be

known), and that the way to prove this is to construct a

X
retraction from 2 1 to C(Xl). Our result confirms his

conjecture.

Every periodic surjection w: [0,®) = K onto a Peano
continuum induces a regular compactification X(w), which
may be defined as follows:

X(m) = {(t,m(t)): t > 0} u{(>,k): k € K} =

[0,=] x K.
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Alternatively, we may consider X(m) to be the disjoint
union [0,~) U K, with the topology defined by the open
base
{U: U open in [0,x)} U {V U (ﬂ—l(V) N (N,»)):
V open in K and N < =},

Clearly, every regular half-line compactification is homeo-
morphic to some X(w).

Let I = [-1,1], and S = {z: |z| = 1}, the unit circle

in the complex plane. Define Tyt [0,®) - I by no(t)
imt

sin m t; define ™ [0,°) ~ § by ﬂl(t) = e ; and for n > 1,
define L [0,®) = S by the formulas
einTTt , 0 <t <1l (mod 2),
"l = 71Tt 1 < £ <2 (mod 2).
Then XO = X(wo) is the topologist's sine curve; X1 = X(ﬂl)

is the circle with a spiral; and for n = 2,3,---,Xn = X(nn)
is the regular compactification obtained by alternately

"wrapping”" and "unwrapping" subintervals of [0,«) about S,
with each subinterval covering S n/2 times. Note that the

spaces XO,Xl,xz,-'- are topologically distinct.

000
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Theorem. For X a regular half-line compactification,
there exists a hyperspace retraction 2X + C(X) if and only

if X is homeomorphic to some X, n-= 0,1,2,¢e0,

Of course, no hyperspace retraction ZX + C(X) for non-
locally connected X can be quite as nice as those which may
be constructed in the locally connected case. For locally
connected X, we may use a convex metric d, and define a
retraction R: 2° + C(X) by taking R(A) = N&(A;t), where
t > 0 is the smallest value for which ﬁa(A;t) € C(X). Such
a retraction has the property that R(A) o A for each A € 2X.
Clearly, this is impossible for non-locally connected X.
However, there may exist a retraction R: 2X + C(X) such
that R(A) N A # g for each A (we say that R is conservative).
In the course of proving the above theorem, it will be shown
that only for X0 and Xl do there exist conservative hyper-
space retractions.

In the final section of the paper, we note the connec-
tion between the existence of a hyperspace retraction
2X + C(X) and the existence of a mean for C(X), and we give
examples of continua X (from the class of regular half-line
compactifications) for which C(X) does not admit a mean,

thereby answering a question of Nadler [7].

2. A Necessary Condition

Let X be any metric continuum, and let p denote the
Hausdorff metric on 2X. We say that X has the subcontinuum
approximation property if for each ¢ > 0 there exists § > 0

such that, for all L,M € C(X) with p(L,M) < §, and for
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every subcontinuum P < M, there exist P',M' € C(X) with
p(P,P') < e, p(M,M'") < g, and L U P' €« M'. (In the locally
connected case we may of course choose M' such that
L UMcM', but in general M and M' will be disjoint.)
We will show that this property is a necessary condition
for the existence of a hyperspace retraction Zx + C(X),
and that a regular half-line compactification has the pro-
perty if and only if the remainder is either an arc or a
simple closed curve.

In what follows, we shall have occasion to use order
arcs and segments in the hyperspaces 2x and C(X). An arc
o < 2X is an order are if for each E,F € o, either Ec F
or F ¢« E. For elements A,B € 2X, there exists an order arc
o with Ng = A and Up = B if and only if A € B and each com-
ponent of B intersects A. Every order arc o can be
uniquely parametrized as a segment o: [0,1] - 2% with
respect to a given Whitney map w: 2X + [0,»), i.e.,
a = {a(t): 0 < t <1}, with a(0) = na, a(l) = Vo, and
wla(t)) = (1 - t)w(a(0)) + tw(a(l)) for each t. (Order
arcs were first used by Borsuk and Mazurkiewicz [1l] to
show that C(X) and Zx are arcwise connected. Segments
were introduced by Kelley [4], who also formulated the
necessary and sufficient conditions given above for the
existence of an order arc, or segment, from A to B.) Let
r(x) = {a € c(2%): o is an order arc or a = {A} for A € 2x},
and let S(w) be the function space of all segments
a: [0,1] ~» 2X (including the constant maps), with the

topology of uniform convergence. Then the spaces T (X) and
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S(w) are compact, and the natural correspondence a + {a(t):
0 <t < 1} is a homeomorphism from S(w) to T'(X) (for a com-
plete discussion, see [7]). Henceforth, we implicitly use
this correspondence wherever convenient. Without confusion,
we let p denote both the Hausdorff metric on 2X and the

sup metric on S(w).

2.1. Lemma. Let P,M € C(X), with P « M. Then for
each € > 0 there exists 8§ > 0 such that, for every L € C(X)
with p(L,M) < 8, there exist order arcs a c 2X and B < C(X)
with a(l) = L, B(0) = P, B(l) = M, and p(a,B) < €.

Proof. Suppose that for some € > 0 there exists a
sequence {Li} in C(X) converging to M, with no L, satisfying
the required condition. Choose a finite subset F < P such
that p(F,P) < €. For each x € F and each i, choose Xy € Li

and an order arc a, < C(X) such that x; > x, a  (0) = {xi},
i i

and o (1) = L;-. Then for each i let oy be the order arc
i
in 2% defined by o, (t) = ufa, (t): x € F}. Thus a;(0) =
i
{xi: x € F} and ai(l) = Li. Since the space I'(X) is com-
pact, some subsequence of {ai} must converge to an order
arc A in 2X with A(0) = F and A(l) = M. Define an order

arc B in C(X) by B(t)

P U A(t). Thus B(0) = P and
B(l) = M. Since p(A,B) < €, we have p(ai,B) < ¢ for some
large i, contradicting our supposition about the sequence

{L.}.
1

2.2, Proposition. Let X be any continuum for which
there exists a hyperspace retraction X~ C(X). Then X

has the subcontinuum approximation property.
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Proof. Suppose X does not have the property. Then by
compactness of C(X), there exist P,M € C(X) with P « M, and
a sequence {Li} in C(X) converging to M such that, for some
€ > 0, there do not exist P',M' € C(X) with p(P,P') < ¢,

X,

p(M,M') < g, and Li UP' «cM' for some i. Let R: 2
be a retraction. Choose 0 < n < ¢ such that, for every

A € 2X with p(A,MO) < n for some subcontinuum M, < M,

0
p(R(A),MO) < €. By (2.1), for sufficiently large i there
exist order arcs a < 2% and B © C(X) with a(l) = Li’

B(0) = P, B(1) = M, and p(a,B) < n. Then the continua

P' = R(a(0)) and M' = U{R(a(t)): O <t < 1} satisfy the
conditions p(P,P') < g, p(M,M') < g, and Li U P' « M',

contradicting our supposition.

Note. The example constructed by Goodykoontz in [2]
does not have the subcontinuum approximation property;
our proof for (2.2) is a generalization of his argument

for the non-existence of a hyperspace retraction.

2.3. Lemma. Let m: I - K be a map of an arc onto a
Peano continuum which is neither an arc nor a simple closed
curve. Then for some subarc J < I, w(J) <s a proper sub-
continuum of K containing a simple triod.

Proof. Let [ denote the collection of all proper sub-
continua of K which are of the form 7n(J) for some subarc J.
Since K is neither an arc nor a simple closed curve, there
must be some L € /[ which is not an arc. Then the Peano
continuum L either contains a simple triod or is a simple
closed curve. In either case there exists E € [/ properly

containing L, and therefore containing a simple triod.
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2.4. Lemma. Let m: I - T be a map of an arc onto a
simple triod. Then there exists a subcontinuum p < T such
that P # w(J) for any subare J c I.

Proof. Choose a sequence {Tn} of triods in T such that
Tn c int Tn+1' Suppose that for each n there exists a
subarc Jn c I with n(Jn) = Tn' We may assume that each
endpoint of Jn is mapped to an endpoint of Tn' Since for
m < n, Tm c int Tn’ we must have either Jm n Jn = g or
Jm < J,. Choose § > 0 such that for each A < I with
diam A < § and each n, w(A) contains at most one endpoint
of Tn' Since one of the endpoints of Tn can be the image
only of interior points of Jn' it follows that diam Jn > 28
for each n. Also, if m < n and Jm c Jn' then diam Jn >
diam In t §. The sequence {Jn} in C(I) clusters at some
nondegenerate J. But for any pair of distinct arcs Jm’

Jn sufficiently close to J, it's impossible that either
Jm n Jn = g or Jm c Jn’ Thus some Tn must satisfy the con-

clusion of the lemma.

2.5. Proposition. A regular half-line compactifica-
tion has the subcontinuum approximation property if and
only if the remainder is either an arc or a simple closed
curve.

Proof. Let X = [0,») U K be the regular half-line
compactification corresponding to a periodic surjection
m: [0,») - K, and let I c [0,») be a subarc such that 7«
goes through at least two complete cycles over I.

Suppose first that K is neither an arc nor a simple

closed curve. Applying (2.3) to the restriction /I, we
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obtain a proper subcontinuum M < K such that M contains a
simple triod T and M = 7(J) for some subarc J < I. Thus,
there exists a sequence {Ji} of subarcs in [0,») converging
to M, and since M # K, every M' € C(X) sufficiently close
to M and containing some Ji must itself be a subarc of
[0,»). Let r: K - T be any retraction, and apply (2.4)

to the map r o m: I - T. We obtain a subcontinuum P < T

such that P # ﬂ(Io) for any subarc I, < I. Thus, every

0
P' € C(X) sufficiently close to P must lie in K. It fol-
lows that X does not have the subcontinuum approximation
property with respect to the pair (M,P).

Now suppose that K is either an arc or a simple closed
curve, and consider any P,M € C(X) with P « M. It suffices
to verify the subcontinuum approximation property with
respect to this pair (see the proof of (2.2)). The property
is obvious if either M <« [0,») or M o K, sO we may suppose
that M is a proper subcontinuum of K (and therefore an
arc). Each L € C(K) which is close to M intersects M, so
in this case we may take M' = L U M and P' = P. And for
any arc L < [0,») close to M, there is a subarc L0 c L
close to P, so we may take M' = L and P' = Lo. This
completes the argument that X has the subcontinuum approxi-
mation property.

It may be of interest to note that the subcontinuum
approximation property is implied by property [K], which
was introduced by Kelley [4] in the study of hyperspace
contractibility and which has been used extensively in

recent years (see [7]). 1In the class of regular half-line
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compactifications, the only spaces with property [K] are

the spaces X, and Xl which admit conservative hyperspace

0
retractions. Thus, the spaces Xn for n > 1 show that pro-
perty [K] is not necessary for the existence of hyperspace
retractions. Whether there is any general relationship

between property [K] and the existence of conservative

hyperspace retractions remains an open question.

3. A Monotonicity Requirement

Let X = [0,») U K be the regular half-line compactifi-
cation corresponding to a periodic surjection f: [0,x) -+ K,
and suppose there exists a hyperspace retraction X C(X).
By (2.2) and (2.5), the remainder K is either an arc or a
simple closed curve. In the case that K is an arc, we say
that 7 is interior monotone if, for each arc J < [0,«x) such
that 7(J) N 3K = ¢, the restriction 1/J is monotone (perhaps
nonstrictly). A similar definition is made in the case that
K is a simple closed curve, using a covering projection
(-w,©) + K. Specifically, let 7: [0,®) » (-»=,o) be a lift
of 7w, and set R = im T. We say that 7 is interior monotone
if %/J is monotone for each arc J < [0,») such that
T(I) n aE = ¢. We will show that 7, or %, must be interior
monotone. It follows easily that either X =~ XO (if XK is an
arc), or X = Xl (if K is a simple closed curve and E is un-
bounded), or X =~ Xn for some n > 1 (if % is bounded).

We will need the following result concerning the com-
position semigroup S of all self-maps of the interval [0,1]

which are fixed on the endpoints.
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3.1. Proposition. For every f f2 € § and € > 0, there

ll
exist 91+9, € S such that d(fl ° gy, f2 ° g2) < E.

Proof. For each pair (m,n) of positive integers with
m > n, let P(m,n) denote the finite set of piecewise-linear

maps f in S satisfying the following conditions:

1) for each 0 < j < m, £(j/m) = k/n for some 0 < k

A

and

2) for each 0 < j <m, [£((j + 1)/m) - £(j/m) |

A

1l/n,
and f is linear over the interval [j/m, (j + 1)/m].

Choose n such that 1/n < €/4, and choose m; ,m, such
that |£,(s) - £,(t)| < 1/n whenever |s - t| < 1/m;, i =1,2.
Then there exist maps ¢i € P(mi,n) with d(fi,¢i) < 1l/n +
1/2n + 1/2n < ¢/2, i = 1,2. We show that, for some

m > max{ml,m }, there exist g; € P(m,m;) and g, € P(m,m,)

2
with ¢l ° gy = ¢2 ° g, (note that the compositions are
members of P(m,n)). It then follows that d(fl ° g1, f2 ° 92)
< €.

The proof is by induction on m; + m,. If m, +m, = 2n
(the least possible value), then m; =m, =n and ¢l = ¢2 =
id. In this case take m = n and g1 =9, = id.

Now assume my + m, > 2n. Suppose first that for some
j <my, ¢;(3/my) = ¢;((3 + 1)/m;). Then we may consider the
corresponding $l € P(ml - 1,n), obtained topologically by
collapsing to a point the arc [j/m;, (3 + 1)/mj] x ¢, (j/m))
on the graph of ¢l. Application of the inductive hypothesis
to the pair $l’¢2 gives maps Yy € P(mo,ml - 1) and
}, such that

Y, € P(mo,mz), for some m, > max{ml - 1l,m

0 2
$l ° ¥, = ¢2 ° Y, It's not difficult to see that this

implies the corresponding result for the pair ¢l,¢2. of
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course, the same argument works if ¢2(j/m2) = ¢2((j + l)/mz)

for some j < m,.
Thus, we may suppose that neither ¢i is constant on

any subinterval. Then there exists a least integer k for

which ¢i(j/mi) = k/n and ¢i((j - l)/mi) = ¢i((j + 1)/mi) =

(k - 1)/n, for some 1 <3< m, and i = 1,2; suppose this

holds for i = 1. Consider the corresponding $1 € P(m1 - 2,n),

obtained topologically by identifying the points ((j - l)/ml,

(k = 1)/n) and ((j + l)/ml, (k - 1)/n) of the restriction

$1/00,(3 - 1)/m;] v [(§ + 1)/my,1]. Applying the inductive

hypothesis to the pair 51’¢2’ we obtain maps Y, € P(mo,ml - 2)

and Y, € P(mo,mz), for some my > max{ml - 2,m2}, such that

9 ° Y] = 6, © Y,. Note that by the choice of k, if

¢2(i/m2) = (k - 1)/n, then either ¢2((i - l)/mz) = k/n or

¢2((i + 1)/m2) = k/n. Clearly, the above implies the

corresponding result for the pair ¢l,¢2. This completes

the proof of the proposition.

3.2. Remark. If sup £51(0) < inf £;7(1) for each

i= 1,2, then there exists § > 0 (independent of ¢) such

-1

that the maps g,,g, may be chosen so that sup(f, o g.)
1’72 i i

([0,8]) < inf(£f; o g 1([1 - 6,11, i = 1,2.

3.3. Theorem. Let X = [0,®) U K be a regular half-
line compactification for which there exists a hyperspace
retraction 2% - C(X). Then X =~ Xn for some n = 0,1,2,%°-.

Proof. As observed at the beginning of this section,
K is either an arc or a simple closed curve. We consider
first the case that K is an arc. Suppose m is not interior

monotone. Then it's not difficult to see that there exists
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a proper subarc ¢ of K, with endpoints v and w, and points
tO,--v,tn in (0,«), with t0 < tl < eee < tn and n > 3, such

that:

1) n(to) n(tz) = eee = V;

2) ﬂ(tl) = ﬂ(t3) = e = W3

3) n([to,tn]) = g, and [to,tn] is a maximal subinterval
in [0,») with respect to this property; and

4) for each i = 1,+++,n, the subsets n-l(v) n [ti—l'ti]
and n_l(w) n [ti-l'ti] lie in disjoint subintervals.

An application of (3.1) to the maps n|[t0,tl] and
n|[tl,t2], suitably re-parametrized, shows that for every
€ > 0 there exist maps 9;¢ [0,1] ~ [to,tll and gyt [0,1] ~»
[tl,t2] such that gl(O) =t = g2(0), gl(l) =ty 92(1) =t,
and d(ngl(t), ngz(t)) < e for all 0 < t < 1. Furthermore,
we may assume by (3.2) and the above property 4) that,
independently of g, there exist neighborhoods N(v) and N(w)
in ¢ of v and w such that for each i =1,2,
sup(m o g;) "H(N(W)) < inf(r o g;)™h) (N(v)).

For maps 9; and g, as above, consider the path

a: [0,1] - 2% petween {tl} and {tO'tZ}’ defined by
X

a(t) {gl(t),gz(t)}. Let R: 2° -+ C(X) be a retraction.

If ¢ > 0 is sufficiently small and t, sufficiently large

0
(use the periodicity of 7), then for each 0 <t <1, mR(a(t))
is a small diameter continuum lying. in some neighborhood of
o which is a proper subset of K. Since U{R(oa(t)):

0 <t <1} is a continuum containing R(a(0)) = {tl}, this

implies that U{R(a(t))} < [0,«). Moreover, since

sup(7m o gi)-l(N(w)) < inf(m o gi)-l(N(v)), we may assume
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e sufficiently small and t0 sufficiently large so that
U{R(a(t))} < [0,t5). Thus R({ty,t,}) = R(a(l)) c [0,t,).
In fact, we claim that R({to,tz}) c [O,tl) for all suffi-

ciently large t Otherwise, the small diameter continuum

0°
R({to,tz}) would lie in the interval (tl,t3), hence

R([t,t5] v {t,}) < (t;,t3) for some t < t But by the

0°
maximal nature of [tO,tn], n([t,to]) # o, and since

R([t,to] U {tz}) is arbitrarily close to n([t,to]) for suf-

ficiently large t this leads to a contradiction.

O’
By another application of (3.1) we obtain maps
hlz [0,1] ~» [to,tl] and h2: [0,1] ~» [t2,t3] with

hl(O) =t hl(l) = tl’ h2(0) = t2, hz(l) = t3, and such

and 7 o h2 are arbitrarily close. As

0’
that the maps 7 ° hl

before, we may also assume that sup(w ° hi)_l(N(v)) <

inf(r o h)"h(N(w)). Consideration of the path g in 2%
between {to,tz} and {tl,t3}, defined by B(t) = {hl(t),
hz(t)}, shows that R({tl,t3}) c [O,tz). Continuing in this
fashion we obtain R({tn_z,tn}) < [0,t _,). But an argument
analogous to that given above for R({to,tz}) shows that

R({tn—Z’tn}) c (t »). This contradiction shows that 7

n-1"'

must be interior monotone. Clearly, this implies that

X ;:sXO.

In the case that K is a simple closed curve, the same
type of arguments show that the lift %: [0,«) + K, defined
at the beginning of this section, must be interior monotone.

If K = im T is unbounded, then in fact % is monotone and

X w5 Xl. And if K is bounded, then X w~ Xn for some n > 1.

Specifically, X ~ X if the interval K wraps around K

2n
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~

exactly n times, while X ~ X if K wraps around K n

2n+1
times plus a fraction.

4. Conservative Hyperspace Retractions

X

Recall that a retraction R: 2% » C(X) is comservative

if R(A) n A # @# for each A € ZX. We show that the topolo-
gist's sine curve and the circle with a spiral are the only

regular half-line compactifications admitting conservative

hyperspace retractions.

4.1. Theorem. Let X be a regular half-line compacti-
fication for which there exists a conservative retraction

X

R: 2© + C(X). Then either X ~ X, or X = Xl'

0

Proof. We assume that X = X(w), with 7 = L for some
n > 1, and show that this leads to a contradiction; the
result then follows from (3.3).

Suppose first that n is even. Then for every large
integer k, R({k,k + 1}) is a small diameter continuum con-
taining either k or k + 1, and therefore contained in a
small neighborhood in [0,~) of either k or k + 1. If k is
sufficiently large, then nR([k - ¢, k + €] U {k + 1}) must
be arbitrarily close to w([k - €, k + €]), for each € > 0.
Since for all sufficiently small ¢, w([k - ¢, k + €]) n

m([k + 1 -¢, k +1+ €]) = {p}, where p (1,0) € s,

consideration of an order arc in 2X between the elements
{k, k + 1} and [k - €, k + €] U {k + 1} shows that

R({k, k + 1}) cannot lie in a small neighborhood of k + 1.
An analogous argument involving an order arc between

{k, k + 1} and {k} U [k + 1 - ¢, Kk + 1 + €] shows that
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R({k, k + 1}) cannot lie in a small neighborhood of k. Thus
n cannot be even.

Now suppose n is odd. For any large integer k, set
kl = inf{t: t > k and #(t) = 7w(k)} and k2 = sup{t: t <k + 1
and n(t) = w(k + 1)}. Clearly, k < ki < k + 1 for each
i=1,2. 8Since 7 is locally l1l-1 at each ki’ but not at k
or k + 1, arguments analogous to those above show that, for
sufficiently large k, R({k,kl}) must lie in a small neigh-
borhood of k

and R({k k + 1}) must lie in a small neigh-

1’ 2’
borhood of k2. Let a: [0,1] -» X be the path between

{k,kl} and {kz, k + 1} defined by a(t) = {(1 - t)k + tk2,

(1 - t)kl + t(k + 1)}. Note that for each 0 <t< 1,
m(a(t)) is a singleton, and therefore R(a(t)) must lie in

a small neighborhood of one of the points of a(t). But
since for each t the points of o(t) remain a constant
distance apart, this is inconsistent with the noted proper-
ties of R(a(0)) and R(a(l)). Thus n cannot be odd, and this
completes the proof that X is homeomorphic to either X0 or

Xl.

5. Construction of Hyperspace Retractions

From this point through section 8, X = [0,») U K will
denote one of the regular compactifications Xn' n >0,
described in section 1. Thus, K is either the interval I
or the circle S. Let w: X + K be the retraction defined by
the periodic surjection L [0,») » K. The construction of
a retraction R: 2x + C(X) is based on the two propositions

stated next, whose proofs will be given in sections 7 and 8.
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5.1. Proposition., There exists a map G: PR C(X)
with the following properties:
i) G|C(K) = id;
ii) either G(A) > w(A) or G(A) < [0,x);
iii) G(A) c K if A n K # §;
iv) G(A) oK 2f A < [0,») and G(A) > w([inf A, sup A]);
and

v) G(A) n (K UuA) #4.

Remark. 1In the cases n = 0,1, the above property v)
may be strengthened by requiring that G(A) N A # #.

For a given subset # of C(K), let ) be the subset of
C(X) x C(X) defined by / = {(M,N): (M y K) NN # @, and

either M ; KoNeNorMnK-=g}.

5.2. Proposition. For some neighborhood N < C(K) of
K, there exists a map H: 0 x [0,1] » C(X) satisfying the
following conditions, for every (M:N) € ) and 0 <t <1
i) H(M,N,0) = M and H(M,N,1) = N;
ii) either H(M,N,t) o M or H(M,N,t) o5 N;
iii) H(M,N,t) < [r,») UK Zf M UN c [r,») U K; and

iv) H(M,N,t) < [r,s] Z¢f M UN < [r,s] and =n([r,s]) # K.

5.3. Theorem. For X = [0,x) U K as above, there

exists a hyperspace retraction X . C(X).

X_,K

Proof. Let F: 27\2" -+ C(X)~NC(K) denote the "smallest

continuum” retraction, defined by
[inf A, sup A] if A < [0,%),

F(A) =
[inf(A n [0,»)),») UK if A n K # #.
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Define a map 0O: X2k [0,1] by the formula
0(a) = min{(2/8) « inf(A n [0,)) « p(w(A), =w(F(A))),1},
where 0 < § < 1 is chosen such that {N € C(K): p(N,K)
< 8} « n, the neighborhood of K in C(K) given by (5.2).
Note that 0(M) = 0 for all M € C(X)~C(K).

Let ¥ = {(a ¢ 2%2X: either A c [0,=) or p(n(a), K) < &}.
Note that W is an open subset of 2X, and C(X)~NC(K) < /. Let

G: ZX

+ C(X) and H: J x [0,1] » C(X) be the maps given by
(5.1) and (5.2). The desired retraction R: 2X + C(X) is
defined by
H(F(A), G(A), ©(A)) if A e W,
R(A) = . X
G(A) if A € 2°\/.

We first verify that for each A € W, (F(A), G(A)) € 2,
so that R is well-defined. There are two cases to be con-
sidered:

1) Suppose A € 2X\2K with A n K # @ and p(w(A),K) < §.
Then F(A) ? K 2 G(A) o w(A), therefore p(G(A),K) < § and
G(a) e /. Thus (F(A), G(A)) € D.

2) Suppose A < [0,«). Then F(A) < [0,»), and
(F(A) UK) nG(A) o (A UK) nG(A) # #, so again (F(a),
G(a)) € J.

We next verify that R/C(X) = id. Since R/C(K) =
G/C(K) = id, we need only consider M € C(X)NC(K). Then
©(M) =0 and M € #/, so R(M) = H(F(M), G(M),0) = F(M) = M.

It remains to show that R is continuous. Since W is
open in 2X, we have only to verify continuity of R at each

A € bd W. Suppose to the contrary that R is not continuous

at some such A. Then there exists a sequence {Ai} in W
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converging to A, with no subsequence of {R(Ai)} converging
to R(A) = G(A). In particular, e(Ai) # 1 for almost all i.
There are two cases to be considered.

1) Suppose A € 2K. Then inf(Ai n [0,o)) +» o, which
together with O(Ai) # 1 implies that p(w(Ai), n(F(Ai))) + 0.
Thus F(Ai) + A € C(K), and G(Ai) + G(A) = A. If A =K,
then R(Ai) = H(F(Ai), G(Ai), O(Ai)) + K by the properties
ii) and iii) of H, contrary to our choice of {Ai}. Thus
A € C(K)~{K}, and Ai c [0,») for almost all i since F(Ai) -+ A,

If G(Ai) N K # @ for infinitely many i, then G(Ai) =)
n(Ai) by the property ii) of G, and since F(Ai) - A # K and
G(Ai) +~ A, it follows that G(Ai) ) n(F(Ai)) for infinitely
many i. By the property iv) of G, G(Ai) > K, contradicting
the convergence of {G(Ai)} to A.

On the other hand, if G(Ai) c [0,») for almost all i,
then F(Ai) n G(Ai) 2 AN G(Ai) #.ﬂ by the property v) of
G, so for almost all i, F(Ai) U G(Ai) = [ri,si], a subarc
of [0,®). Since both {F(Ai)} and {G(Ai)} converge to A # K,

n([ri,si]) # K for almost all i. Then the properties ii)

and iv) of H imply that R(Ai) + A R(A), again contrary to
our choice of {Ai}.

2) Suppose A € 2X\2K, with A n K # # and p(n(A),K) > 6.
Then for almost all i, n(F(Ai)) = K and p(n(Ai),K) > 8/2,
yielding O(Ai) = 1, which is impossible. This completes
the verification of continuity for R.

Finally, we note that the retraction R is conservative

if G is, since for each A € 2x, either R(A) o F(A) o A or

R(A) > G(A). Thus, in the cases n = 0,1 where a conservative
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map G may be chosen, we obtain a conservative hyperspace

retraction.

6. Admissible Expansions in K

As in the previous section, X = [0,») U K = Xn for
some n > 0, with ©: X » K the retraction defined by L
We call a map e: K x [0,o) » C(K) an expansion if it satis-
fies the following conditions (for A € 2x, e(A,t) = U{e(a,t):
a € A}):

1) e(x,t) 2 e(x,0) = {x} for all x and t;

2) for every 0 < s < t, there exists § > 0 such that
e(e(x,s),8) c e(x,t) for all x;

3) for every A € 2K and § > 0, e(B,§) o A for all
B € 2K sufficiently close to A; and

4) for every A € 2K, e(A,t) € C(K) for some t.

An expansion e is admissible if it permits an extension
to a map &: X x [0,») > C(X) satisfying the above condition
1) and such that, for all x € [l,») and all t, &(x,t) c
[x -1, x + 1] and n(&(x,t)) = e(n(x),t). We refer to & as

a "1lift" for e.

6.1. Lemma. There exists an admissible expansion
e: K x [0,») + C(K).

Proof. With d the arc-length metric on K, we may
obtain an expansion by simply setting e(x,t) = {y € K:
d(x,y) < t}. However, this "free" expansion is admissible
only if w/(0,») is an open map, i.e., only for n = 0,1.
Thus, for these cases the lemma is trivial, but for n > 1,

some type of "partial" expansion is required.
YP p P
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Suppose then that K = S and n > 1. Let y: (-o,®©) > S
be the covering projection defined by (r) = ezﬂir, and
let %¥: [0,») > (-»,o) be a lift of the periodic surjection
Tt [0,») - S. Then J = im 7 is a compact subinterval with
length n/2 > 1. Let p,q € J be the points for which
J=[p-1, g+ 1]. For each z ¢ S, let zp,zq € (0,1] be
the unique values for which w(p - zp) =2z = (g + zq).

Define maps ep,eq: S x [0,») + C(S) by the formulas

ep(z,t) w(lp - (1 + t)zp, p - zp] ndJ,

eq(z,t) w(lg + Zgr 9t (1 + t)zq] nJ.
Although the total image function z ~ ep(z x [0,o)) is dis-
continuous at z = y(p), the function ep is continuous;
similarly for eq. These maps may be viewed quite simply.
For z € S, the restriction ep]z x [0,») is clockwise
expansion around S from z to w(p), where w(p) =
m({0,2,4,¢++,}) = (1,0) is the p-projection of those
"turning points" in [0,») where the direction of travel
(towards «) changes from clockwise rotation about S to
counterclockwise rotation. Similarly, eq|z x [0,o) is
counterclockwise expansion from z to w(g), where

w(g) = 7({1,3,5,+++}) is the n-projection of those turning
points where the direction of travel changes from counter-
clockwise to clockwise. For even n, w(q) = (1,0), while
for odd n, w(g) = (-1,0).

We show that the map e: S x [0,=) » C(S), defined by
e(z,t) = ep(z,t) U eq(z,t), is an admissible expansion.
The admissibility of e should already be evident from the
above discussion of the maps e_ and eq. It remains to

p
verify the expansion conditions 1) through 4).
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Condition 1) is obvious. Condition 2) is satisfied
with § = t - s/(1 + s), since then (1 + s)(1 + §) = (1 + t).
The verification of condition 3) is more involved. The

basic observation is that, for all y,z € S and § > O,

A
=
A

zp/(l + §) < < zp implies z € ep(y,G);

i)

A
=

zg/ (1 + 8) <

A

2q implies z € eq(y,é).

Let d be the metric on S defined by d(y,z) =
min{|u - v|: u,v € (-»,») with w(u) =y and w(v) = z}.
The above observation i) implies that for all y,z,

ii) if d(y,2) < min{zp,zq} « §/(1 + §), then
z € e(y,§).

Let m = min{(w(p))q, (w(q))p}. Then i) also implies

“that for all vy,

if y

IA

m§/(1L + §), then e_(y,8) o wl(lg,qg + y_1):
iii) ! p q
if y

A

p mé/ (1 + &), then eq(y,é) > wl(lp - yp.p]).

Assuming § < 1, iii) implies that for all y,z,
if d(y,z) < zq/Z < m§/6, then

e (y,8) o wlla,q +.2_/21);

iv) P q

if d(y,z) < zp/2 < m§/6, then
eq(y,a) > wllp - zp/Z,p]).

S

We can now verify condition 3). Given A € 2" and § > O,

set Ap = xp/2, for some x € A such that either xp < m§/3 or
: A}; t A = 2, for some A such that

p p a € A}; se q yq/ ' s Yy €

ith < 3 = mi : A}. Let = min{A_,A .

either y < mé/3 or Yq mln{aq a € A} n (A, q}

§/(1L + §). We claim that for every B € 25 with o(A,B) < 7,

X = min{a

e(B,8) o A. There are three cases to be considered:
id A wi A . Th A = 2 6
a) Consider z € with zp < o en P xp/ < mé/

for some x € A. Choose y € B with d(y,x) < n < Ap = xp/2.
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By iv), eq(y,d) > w(lp - xp/2,p]). Since 25 < xp/2, we
have z = w(p - Zp) € w(lp - xp/Z,p]). Thus z € eq(y,é) c
e(B,§) .

b) An analogous argument shows that for z € A with
zq < Aq' z € e(B,§).

c) Consider z € A with zp > Ap and zq > Aq. Choose
y € B with d(y,z) < n < min{zp,zq} - &/(1 + §). By (ii),

z € e(y,8) < e(B,$).

We next verify condition 4). Note that for each z € S,
and sufficiently large t, ep(z,t) > w(lp -1, p - zp]),
the arc (possibly degenerate) traversed in the clockwise
direction from z to w(p). Similarly, for large t, eq(z,t) >
wl(lg + zq,q + 1]), the arc traversed in the counterclockwise
direction from z to w(g). If w(p) = w(g), then for every
A e 25 with A # {w(p)}, e(A,t) = S for large t. If
w(p) # w(g), let a =« S be the subarc traversed in the clock-
wise direction from w(q) to w(p). Then for each A € Zs with
ANo # @, e(A,t) = S for large t, and for A < a, e(A,t) = a
for large t. This completes the verification that e is an
expansion. And as remarked earlier, e is by its construction
admissible.

The above lemma will be used in section 8 for the con-
struction of a map H with the properties specified in (5.2).
At present, we apply (6.1l) in the case n > 1 to obtain a
result which will be essential for the construction in the

next section of a map G with the properties specified in

(5.1).
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6.2. Lemma. Let 7w = T [0,0) > S, n > 1. Then
there exists a retraction E: 2° - C(S) with the following
properties:

i) E(A) o A for each A € Zs; and

ii) for each A € 25

and subinterval L < [0,») such that
A < 1(L). € E(A), there exists a subinterval M c [0,x) with
L cMand n(M) = E(A).

Proof. Let e: § x [0,») » C(S) be an admissible
expansion given by (6.1). For each A € Zs, let t(A) denote
the smallest value of t for which e(A,t) € C(S), and define

E: ZS

+ C(S) by setting E(A) = e(A,7(A)). Then E|C(S) = idq,
and E(A) 2 A,

We establish continuity for E by verifying continuity
for the function t: ZS + [0,»). The lower semi-continuity

]

of 1 is automatic, since C(S) is closed in 2" and e is

continuous. Using the expansion properties 2) and 3) of e,

]

we show that 1 is upper semi-continuous. Given A € 2% and

€ > 0, there exists by property 2) & number § > 0 such that
e(e(B,t(A)),8) = e(B,T1(A) + €) for all B € 25, By continuity
of e and property 3), there exists a neighborhood (/ of A in

2S

such that e(e(B,1(a)),8) 2 e(A,1(A)) for every B € /(.
Thus, e(B,T(A) + ¢) 2 e(A,7(A)). Also, by application of
property 3) to each {a}, a € A, we may assume the neighbor-
hood ¢ is small enough that for each B € {/ and b € B,
e(b,T(A) + €) meets A. Thus, each component of e(B,T(A) + ¢)
meets A, and since A < e(A,T(A)) € e(B,T(A) + €) and
e(A,T(A)) € C(S), it follows that e(B,Tt(A) + €) € C(S).

Then 1(B) < 1(A) + ¢ for every B € {/, and 1 is upper semi-

continuous.
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It remains to verify the property ii). Given A € ZS
and a subinterval L < [0,») such that A c (L) < E(A), we
may assume that E(A) # S. Let M o L be a maxzimal subinter-
val of [0,») for which (M) < E(A). We show that n(M) = E(A).
Let &: X x [0,») » C(X) be a 1lift for e. Since A c (L) <
m(M), we may choose for each a € A an element & € M with
m(d) = a. Set N, = &(3,T(A)). Then N_ is a subinterval
of [0,®) containing 3, and T(N,) = m(e(a,T(A))) = e(a,T(r))
e(A,T(A)) = E(A). Since a € M n Na’ MU Na is a subinterval,
with (M U Na) c E(A). By the maximal character of M, we
must have Na < M. Thus E(A) = U{e(a,T(A)): a € A} =

U{n(Na): a € A} < (M), and (M) = E(A).

7. Construction of the Map G

We consider first the case n > 1. Thus, K = S and
™= Mg [0,») - S. As in the proof of (6.1), let
w: (=»,») > S be the covering projection defined by
27ir ~ .
w(r) =e , and let %: [0,®) + (-»,») be a lift of .
The desired map G: 2X + C(X) will be obtained as an exten-
sion of the retraction E: 2° - C(S) given by (6.2).

X which

Let { = 2% be the collection of those A € 2
satisfy the following conditions:

a) Ac [0,);

b) E(n(A)) # S; and

c) E(m(a)) > w([inf ¥#(A), sup #(A)]).
Although condition c) by itself defines a closed subspace
of 2x, { is an open subspace. This can be seen from the
fact that, since E(w(A)) > n(A) = w(¥(a)) = {w(inf T (A)),

w(sup T(A))} for each A € 2x, A satisfies conditions b) and



54 Curtis

c) if and only if E(m(A)) U w([inf %(A), sup %(A)]) # S.
Thus conditions b) and c) together define an open subspace
of 2X, as does condition a), and therefore (/ is open.

We claim that for each A € (/ and x € A, the continuum
E(m(A)) € S can be "lifted" through x, i.e., there exists
a continuum M c [0,») with X € M and 7(M) = E(n(4)).
Suppose x € [i,i + 1], for some integer i; let L < [i,i + 1]
be the subinterval such that % (L) = [inf %(A), sup #(A)]
(note that 7%|[i,i + 1] is a homeomorphism onto im %). Then
x € L, and nm(A) c w(L) = w(F(L)) < E(n(A)) since A € U. The
property ii) of the retraction E shows that L may be
expanded to6 an interval M < [i,i + 1] such that 7(M) =
E(m(a)).

In particular, if A € (/ and a = sup A is the point of
A nearest S, with a € [i,i + 1], then there exists a unique
interval Mi c [i,i + 1] with a € Mi and n(Mi) = E(m(a)).
This permits the construction of a map L: { » C(X) such
that for each A € /, L(A) is an "approximate lift" of
E(m(A)) through the point a = sup A. We may construct L

according to the following rules:

1) L(Aa) Mi if min{a - i,i + 1 - a} > 1l/a;

2) L(A) = [i, max Mi] if a - i =1/2a, and L(A) =
[min M., i+ 1] if i+ 1-a= 1/2a;

3) L(A) = Mi-l U Mi if a=1i >0, and L(A) = Mi u Mi+l
if a =1+ 1.
For 1/2a < a - i< l/aor 1/2a < i+ 1 - a < 1l/a, L(A) is
defined so that Mi c L(A) < [i, max Mi] or Mi c L(A) <

[min Mi’ i + 1], respectively, and for 0 < a - i < 1/2a or
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0 <i+1l~-a<1l/2a, [i, max Mi] c L{(A) < [min Mi- , max Mi]

1
or [min Mi’ i+ 1] € L(A) € [min Mi' max Mi+l]' respectively.
The key properties of the map L are that sup A € L(Aa) <
[0,) and w(L(A)) > E(n(A)) for each A € {, with inf L(A)
+ o and p(n(L(A)), E(n(A))) + 0 as sup A + o,
The desired map G: X, C(X) is defined over { by

modifying L as follows:

4) G(a) = L(d) if p(E(w(A)),S) > 1/sup A;
5) G(A) = [inf L(A),w) U S if p(E(w(A)),S) = 1/(2 sup A);
6) G(A) = S if p(E(w(a)),S) < 1/(4 sup A).

For 1/(2 sup A) < p(E(w(A)),S) < 1/sup A, G(A) is defined
so that L(A) < G(A) < [inf L(A),»), and for 1/(4 sup A) <
p(E(m(A)),S) < 1/(2 sup A), S € G(A) < [inf L(A),») U S.

Note that for A € {/, either G(A) N S = g or G(A) > S,
and G(A) N (A U S) # #.

Finally, G is defined over 2X~( by the formula G(A) =
E(n(A)). Since { is open, it suffices to verify continuity
of G at each B € bdl. Note that, since the condition c) in
the definition of (/ is automatically satisfied by each
B € bdl/, we must have either E(n(B)) = S or BN S # &,
otherwise B € (/. If G(B) = E(n(B)) = S, then for any A € (/
near B, eithér G(A) = S by virtue of rule 6) above, or
1/(4 sup A) < p(E(w(A)),S), in which case both L(A) and G(A)
are near S. If E(n(B)) # S and B N S # @, then for any
A € {/ near B, L(A) is near E(q(B)) and 1l/sup A < p(E(w(a)),s),
hence G(A) = L(A) is near G(B) = E(m(B)). Thus G is a map.

We next verify that G has the required properties i)
through v) of (5.1). Since G extends E, property i) is

clear. Since either G(A) N S =@, G(A) o S, or
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G(A) = E(n(A)) o w(A), property ii) is satisfied., Property
iii) is immediate from the definition of G over ZX\CL Pro-
perty iv) is clear if A ¢ (/. On the other hand, if A ¢ [0,w)
with A ¢ {/ and G(A) = E(n(A)) # S, then E(rn(A)) % w([inf
7(A), sup ¥(A)]). However, this contradicts the hypothesis
that G(A) 2 w([inf A, sup A]) = (% ([inf A, sup A])), since
%([inf A, sup A]) o [inf F%(A), supT(A)]. Finally, property
v) has been previously noted for A € {/, and is obvious for
A€ Zx\-ﬂ This completes the proof of (5.1) in the case

n> 1.

In the cases n = 0,1, a streamlined version of the
above construction yields a conservative map G: 2x + C(X)
with the required properties. For either K = I or K = S,
let E: 2K + C(K) be any retraction such that E(A) o A for
each A € 28, Let V = {A € X ac [0,0)}. As above, an
approximate lifting map L: /) »+ C(X) may be constructed
such that for each A € [/, sup A € L(A) < [0,») and
m(L(A)) @ E(n(A)), with inf L(A) » « and p(n(L(A)),
E(w(A))) » 0 as sup A + », In fact, for n = 0, L is
constructed in the same manner as above for n > 1. For
n =1, L is constructed such that L(A) < [0,») is the unique
1ift of E(n(A)) through a = sup A if p(E(n(Ad)),S) > 1/a;
a € L(A) € [a -2, a+ 2] with n(L(A)) o E(n(A)) if
0 < p(E(n(A)),S) < 1/a; and L(A) = [a - 2, a + 2] if
E(n(A)) = s.

In either case, L extends to a map G: 2X + C(X) by the

formula G(A) = E(n(A)) for A € ZX\Jﬂ Properties i) and iii)

are immediate from the definition of G. Property ii) is a
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consequence of the fact that E(n(d)) o w(A), and that

G(A) ¢ [0,») when A < [0,x), Property iv) is satisfied
vacuously. And finally, G(A) n A # @ for all A € 2X,

since G(A) = E(nw(A)) o w(A) if A n K # @#, and G(A) = L(A) 3

sup A if A n K = f.

8. Construction of the Map H

Let e: K x [0,») » C(K) be an admissible expansion
given by (6.1). Set # = {N € C(K): e(N,t) = K for some t}.
By the expansion property 3), # is a neighborhood of K.

The domain J c C(X) x C(X) of H can be partitioned

into four subdomains as follows:

Dy = {(MN): M ZK>NE€ N};

D, = {(M,N): M nK=gand N cK};

03 = {(M,N): M nK=g and N 2 K}; and

04 = {M,N): MNK=g=NnKand M NN # #}.

We will define H separately over each J x [0,1].
i

For (M,N) € Dl' set
HM,N,t) = M, 0 <tx< 1/4;
H(M,N,t) = K, 1/2 <t < 3/4; and
H(M,N,1) = N.

Use the natural path in C(X) from M to K to define H(M,N,t)

for 1/4 <t x< 1/2, and reverse the e-expansion {e(N,t):

0 <t < o} of N to K to define H(M,N,t) for 3/4 <t <1
For (M,N) € 02, let N* = e(N, sup M); then N c N* €

C(K). set
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H(M,N,0) = M;

H(M,N,1/4) = [inf M,) U K:
{HM,N,1/2) = K;
H(M,N,3/4) = N*; and

H(M,N,1) = N.
Use the natural paths in C(X) to define H(M,N,t) for
0 <t< 1/4 and 1/4 <tc< 1/2; reverse the free expansion
(via an arc-length metric) in C(K) from N* to K to define
H(M,N,t) for 1/2 <t< 3/4; and reverse the e-expansion
from N to N* to define H(M,N,t) for 3/4 < t < 1.

For (M,N) € 93, set

H(M,N,0) = M:

H(M,N,1/4) [inf M,») U K;
H(M,N,1/2) = [max{inf M, inf N},») U K; and
H(M,N,t) = N, 5/8 <t< 1.
Use the natural paths in C(X) to define H(M,N,t) for all
other t.
Define an index map t: 04 + [0,») by the formula
T(M,N) = max{inf N - inf M - 2,0} « p(w(N),K). For

(M,N) €2,, let N* = &(N,71(M,N)), where & is a lift for e.

4'
Then N* € C(X), with N €« N* < [inf N - 1, sup N + 1]. Set
H(M,N,0) = M;

H(M,N,1/4) [inf M, max{sup M, sup N*}];

H(M,N,1/2) [max{inf M, inf N*}, max{sup M,

d sup N*}];

H(M,N,5/8) [inf N*, max{sup M, sup N*}];

H(M,N,3/4) N*; and

[H(M,N,1) = N.
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Use the natural paths in C(X) to complete the definition
of H(M,N,t) for 0 <t < 3/4, and reverse the é-expansion
from N to N* to define H(M,N,t) for 3/4 <t < 1.

We now verify that H is a map. For i # j, Di n Bj # 9
only if (i,3j) = (1,2), (.,3), (1,4), (2,3), or (3,4).
Since each restriction H/[)i x [0,1] is continuous, it suf-
fices to check continuity of H at boundary points in the
above cases. Considering first the case (i,j) = (1,2),
let (Mk,Nk) be a sequence in 02 converging to (M,N) € Dl.
Then sup Mk + o, and since Nk + N € N, we have Nﬁ = K for
almost all k (use continuity of e, and the expansion pro-
perties 2) and 3)). It follows that H(Mk,Nk,tk) + H(M,N,t)
whenever tk + t. The cases (i,j) = (1,3) or (2,3) are rou-
tine. Consider a sequence (Mk,Nk) in 04 convgrging to
(M,N) € J;. Then if N # K, T(M ,N) > © and N} > K; if

k

N = K, obviously Ni + K. This implies that H(Mk,Nk,

H(M,N,t) whenever te > t. Finally, consider a sequence

tk) >

(M, Ny ) in 04 converging to (M,N) € 03. Then m(N,) = K
for almost all k, hence T(Mk,Nk) = 0 and NE = Nk' implying

that H(Mk,Nk,tk) + H(M,N,t) whenever t, -~ t. This completes

k
the verification of continuity for H: ) x [0,1] - C(X).
Clearly, H satisfies the required conditions i) and

ii) of (5.2). Conditions iii) and iv) are also clear,
except possibly for (M,N) € 04 with N* # N. However,

N* # N implies t(M,N) > 0, which implies that inf N >

inf M + 2. Then inf N* > inf N - 1 > inf M, and condition
iii) is satisfied. And, diam(M U N) > 2 implies that

m(M U N) = K, so condition iv) is satisfied vacuously.

This completes the proof of (5.2).
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9. Means and Pseudo-Means

Let Y be a continuum. A map A: Y x ¥ » Y is called a
mean if x(x,y) = A{y,x) and A(y,y) =y for all x,y € Y. A
map A: Y x Y > C(Y) with the same properties is called a
pseudo-mean for Y [7].

Every hyperspace 2X admits a mean: define A(A,B) =
A U B. If there exists a retraction 2X + C(X), then C(X)
also admits a mean, and X admits a pseudo-mean. Thus we
have yet another necessary condition for the existence of
a hyperspace retraction. 1In this section we describe
examples from the class of regular half-line compactifica-
tions which show that the existence of a pseudo-mean neither
implies nor is implied by the subcontinuum approximation
property of section 2, and that both conditions together
are still not sufficient for the existence of a hyperspace
retraction. Recall that a regular compactification
X = [0,») U K has the subcontinuum approximation property
if and only if the remainder K is either an arc or a simple
closed curve. We do not know in general which regular

compactifications admit pseudo-means,

9.1. Example. Let mw: [0,») » I be the periodic sur-
jection defined as follows:
i) w(k) = 0 if k is an odd integer;

ii) w(k) 1 if k = 2,4 (mod 6);

iii) w(k) = -1 if k = 6 (mod 6); and

iv) 7 is linear over each interval [k,k + 1].
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Then for X = X(m), no retraction 2X + C(X) exists, since
X # Xyi nonetheless, a pseudo-mean may be constructed for

X, and in fact C(X) admits a mean.

9.2. Example. Let 7w: [0,») » I be the periodic

surjection defined by:

i) m(k) = 0 if k is odd;
ii) w(k) =1 if k = 2,4 (mod 8);
iii) w(k) = -1 if k = 6,8 (mod 8); and

iv) m is linear over each interval [k,k + 1].
Then X = X(w) does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean i: X x X »
C(X). Let k denote an integer of the form 8n + 2. Then
consideration of A(k - t, k + t), for 0 < t < 1 and large
n, shows that either A(k - 1, k + 1) ~ (approximates)

{k =1} or x(k -1, k + 1) ~ {k + 1}. Similarly, either
Ak +1, k+3) ~{k + 1} or x(k +1, k + 3) ~ {k + 3}.

If A(k -1, k + 1) =~ {k - 1}, then A(k, k + 2) ~ {k}; if
Ak + 1, k + 3) ~ {k + 3}, then A(k, k + 2) ~ {k + 2}.
Thus, either A(k - 1, k + 1) ~ {k + 1} or A(k + 1, k + 3) ~
{k + 1}. Letting n + », we see by continuity of ) that,
for every s € I ¢ X and the point 0 € I, either X (0,s) c
[0,1] or 1 € A(0,s') for some s' between 0 and s. (Suppose
that A(k - 1, k + 1) ~ {k + 1} for infinitely many k as
above. Then for every r € [k -~ 2, k], either A(r, k + 1) <
[k, k + 2] or A(r', k + 1) n {k, k + 2} # @§ for some r'
between k - 1 and r. Note that w(k - 2) = -1, w(k - 1) =
m(k + 1) = 0, and n(k) = w(k + 2) = 1). An analogous

argument shows that either A(k + 3, k + 5) » {k + 5} or
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Ak + 5, k+ 7) ~ {k + 5}, which implies that for every

s € I, either A(0,s) < [-1,0] or -1 ¢ A(0,s') for some s'
between 0 and s. Consequently, A(0,s) = {0} for every

s € I. However, this implies that A(k - 1, k) ~ {k - 1} ~
Ak = 1, k + 1) and also that a(k, k + 1) ~ {k + 1} ~

Ak - 1, k + 1), a contradiction. Thus X does not admit

a pseudo-mean.

9.3. Example. Let T be a triod, with branch point v
and endpoints STAPY and ez, and let 7: [0,x) - T be the
periodic surjection defined as follows:

i) w(k) = v if k is odd;

ii) w(k) = e if k = 4 (mod 8);
iii) w(k) = e, if k = 2,6 (mod 8);
iv) w(k) = ey if k = 8 (mod 8); and

»

v) 7w is linear over each interval [k, k + 1].

Let X = X(w). It can be shown that C(X) admits a mean.

9.4. Ezample. For T as above, let 7: [0,») » T be the
periodic surjection defined by:

i) w(k) = v if k is odd;

"

ii) w(k)

e, if k = 2 (mod 6);
e, if k = 4 (mod 6);

iv) w(k) = ey if k = 6 (mod 6); and

iii) w(k)

v) 7 is linear over each interval [k, k + 1].
Then X = X(w) does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean )A. Let k
denote an integer of the form 6n + 1. Consideration of

Ak, k + t) and A(k + 2, k + 2 - t), for 0 < t < 1 and
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large n, shows that )\ must have the following property

with respect to e for each x € [v,el], either

13
Av,x) < [v,el] or e € A(v,x') for some x' between v and

X. Of course, ) has the analogous properties with respect

2 and e3.

Now, consideration of A(k + 1 - t, k + 1 + t), for

to e

0 <tx< 1l and k = 6n + 1 as above, shows that for large n,
either x(k, k + 2) ~ {k} or Ax(k, k + 2) ~ {k + 2}. We may
suppose the former (for infinitely many n). Then considera-
tion of Ax(k, k + 2 + t), for O < t < 1, together with the

above property of A with respect to e shows that

27
A(v,x) = {v} for each x ¢ [V,e2]. But this implies that
Ak + 2, k+3) ~{k + 2} ~ Ak + 2, k + 4) and also that
Ak + 4, k + 3) ~ {k + 4} ~» A(k + 4, kK + 2), a contradic-
tion. Thus X does not admit a pseudo-mean.
There also exist regular compactifications

X = [0,») U S similar to the above examples. Let
m: [0,%) > S be the periodic surjection defined by
m(t) = ei“t, 0 <t <3 (mod 4), and m(t) = e_i“t, 3<t< 4
(mod 4). Then for X = X(w), C(X) admits a mean. On the
other hand, there exist periodic surjections [0,x) - S for
which the corresponding compactifications do not admit
pseudo-means. An example is the map 7 defined by
m(t) = ™™, 0 <t < 2 (mod 3), and m(t) = e F2TE,
2 <t<3 (mod 3).

If there exists a comnservative retraction 2X - C(X),
then there exists a conservative pseudo-mean A: X x X » C(X),

i.e., A({x,y) n {x,y} # @ for all x,y. It can be shown that
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a regular compactification X = [0,») U K admits a conserva-

tive pseudo-mean only if X is homeomorphic to either X, or

0

X Thus, in the class of regular half-line compactifica-

1°
tions, the existence of a conservative pseudo-mean is
equivalent to the existence of a conservative hyperspace
retraction. It seems unlikely that this would hold in

general, but we do not have a counterexample,
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