TOPOLOGY PROCEEDINGS

Volume 11, 1986

Pages 29-64

http://topology.auburn.edu/tp/

A HYPERSPACE RETRACTION THEOREM FOR A CLASS OF HALF-LINE COMPACTIFICATIONS

by D. W. Curtis

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A HYPERSPACE RETRACTION THEOREM FOR A CLASS OF HALF-LINE COMPACTIFICATIONS

D. W. Curtis

1. Hyperspace Retractions

For X a metric continuum, let 2^{X} be the hyperspace of all nonempty subcompacta, with the Hausdorff metric topology, and let $C(X) \subset 2^X$ be the hyperspace of subcontinua. is locally connected, both C(X) and 2^{X} are absolute retracts [9], and in particular C(X) is a retract of 2^{X} . In the non-locally connected case, neither hyperspace is an absolute retract, but we may still ask whether C(X) is a retract of 2^X. Until now, this question has been answered in only two specific cases. In 1977, Goodykoontz [2] constructed a 1-dimensional continuum X in E^3 such that C(X)is not a retract of 2^{X} . And in 1983, Goodykoontz [3] showed that for X the cone over a convergent sequence, C(X) is a retract of 2^{X} . Thus, for X non-locally connected, C(X)is not necessarily a retract of 2^X, but it may be. (Nadler [6] had earlier shown the existence of surjections from 2^{X} to C(X), in all cases.)

At present, a completely general answer for the hyperspace retraction question seems out of reach. In this paper, we answer the question for a certain class of non-locally connected continua, large enough to be of interest, but sufficiently delimited so as to be manageable. This class will consist of those half-line compactifications with locally connected remainder which are "regular" in the

following sense. Let $X=[0,\infty)$ U K denote an arbitrary half-line compactification with a nondegenerate locally connected remainder K (which is therefore a Peano continuum). In this situation, there always exists a retraction $X \neq K$. We say that X is a regular compactification if there exists a retraction $r: X \neq K$ such that, for some homeomorphism $\varphi: [0,\infty) \neq [0,\infty)$, the map $r \circ \varphi: [0,\infty) \neq K$ is a periodic surjection, i.e., there exists p > 0 such that $r(\varphi(t)) = r(\varphi(t+p))$ for all t. Our main result is that the only regular half-line compactifications for which there exist hyperspace retractions $2^X \neq C(X)$ are the following: the topologist's sine curve; the circle with a spiral; and a sequence of other regular compactifications with a circle as remainder, to be described below.

The case of the circle with a spiral (labelled below as X_1) is of particular interest. It is known that Cone X_1 does not have the fixed point property [5], and that $C(X_1)$ is homeomorphic to Cone X_1 [8]. Noting this, Nadler [7] conjectured that 2^{X_1} does not have the fixed point property (which would make it the first such example to be known), and that the way to prove this is to construct a retraction from 2^{X_1} to $C(X_1)$. Our result confirms his conjecture.

Every periodic surjection $\pi\colon [0,\infty)\to K$ onto a Peano continuum induces a regular compactification $X(\pi)$, which may be defined as follows:

$$X(\pi) = \{(t,\pi(t)): t \ge 0\} \cup \{(\infty,k): k \in K\} \subset [0,\infty] \times K.$$

Alternatively, we may consider $X(\pi)$ to be the disjoint union $[0,\infty)$ U K, with the topology defined by the open base

{U: U open in
$$[0,\infty)$$
} U {V U $(\pi^{-1}(V) \cap (N,\infty))$:
V open in K and N < ∞ }.

Clearly, every regular half-line compactification is homeomorphic to some $X(\pi)$.

Let I = [-1,1], and S = {z: |z| = 1}, the unit circle in the complex plane. Define $\pi_0\colon [0,\infty)\to I$ by $\pi_0(t)$ = $\sin\pi t$; define $\pi_1\colon [0,\infty)\to S$ by $\pi_1(t)=e^{i\pi t}$; and for n > 1, define $\pi_n\colon [0,\infty)\to S$ by the formulas

$$\pi_{n}(t) = \begin{cases} e^{in\pi t}, & 0 \le t \le 1 \pmod{2}, \\ e^{-in\pi t}, & 1 \le t \le 2 \pmod{2}. \end{cases}$$

Then $X_0 = X(\pi_0)$ is the topologist's sine curve; $X_1 = X(\pi_1)$ is the circle with a spiral; and for $n = 2, 3, \dots, X_n = X(\pi_n)$ is the regular compactification obtained by alternately "wrapping" and "unwrapping" subintervals of $[0,\infty)$ about S, with each subinterval covering S n/2 times. Note that the spaces X_0, X_1, X_2, \cdots are topologically distinct.

 x_0 x_1 x_2 x_3

Theorem. For X a regular half-line compactification, there exists a hyperspace retraction $2^X \to C(X)$ if and only if X is homeomorphic to some X_n , $n=0,1,2,\cdots$.

Of course, no hyperspace retraction $2^X \to C(X)$ for non-locally connected X can be quite as nice as those which may be constructed in the locally connected case. For locally connected X, we may use a convex metric d, and define a retraction R: $2^X \to C(X)$ by taking $R(A) = \overline{N}_d(A;t)$, where $t \ge 0$ is the smallest value for which $\overline{N}_d(A;t) \in C(X)$. Such a retraction has the property that $R(A) \supset A$ for each $A \in 2^X$. Clearly, this is impossible for non-locally connected X. However, there may exist a retraction R: $2^X \to C(X)$ such that $R(A) \cap A \ne \emptyset$ for each A (we say that R is conservative). In the course of proving the above theorem, it will be shown that only for X_0 and X_1 do there exist conservative hyperspace retractions.

In the final section of the paper, we note the connection between the existence of a hyperspace retraction $2^X \to C(X)$ and the existence of a mean for C(X), and we give examples of continua X (from the class of regular half-line compactifications) for which C(X) does not admit a mean, thereby answering a question of Nadler [7].

2. A Necessary Condition

Let X be any metric continuum, and let ρ denote the Hausdorff metric on 2^X . We say that X has the *subcontinuum* approximation property if for each $\varepsilon > 0$ there exists $\delta > 0$ such that, for all L,M \in C(X) with ρ (L,M) $< \delta$, and for

every subcontinuum $P \subset M$, there exist $P',M' \in C(X)$ with $\rho(P,P') < \varepsilon$, $\rho(M,M') < \varepsilon$, and L U $P' \subset M'$. (In the locally connected case we may of course choose M' such that L U M \subset M', but in general M and M' will be disjoint.) We will show that this property is a necessary condition for the existence of a hyperspace retraction $2^X \to C(X)$, and that a regular half-line compactification has the property if and only if the remainder is either an arc or a simple closed curve.

In what follows, we shall have occasion to use order arcs and segments in the hyperspaces 2^{X} and C(X). An arc $\alpha \subseteq 2^{X}$ is an order arc if for each E,F $\in \alpha$, either E \subseteq F or $F \subset E$. For elements A,B $\in 2^X$, there exists an order arc α with $\Omega\alpha$ = A and $U\alpha$ = B if and only if A \subset B and each component of B intersects A. Every order arc α can be uniquely parametrized as a segment $\alpha: [0,1] \rightarrow 2^X$ with respect to a given Whitney map $\omega: 2^X \to [0,\infty)$, i.e., $\alpha = {\alpha(t): 0 < t < 1}$, with $\alpha(0) = n\alpha$, $\alpha(1) = u\alpha$, and $\omega(\alpha(t)) = (1 - t)\omega(\alpha(0)) + t\omega(\alpha(1))$ for each t. (Order arcs were first used by Borsuk and Mazurkiewicz [1] to show that C(X) and 2^{X} are arcwise connected. Segments were introduced by Kelley [4], who also formulated the necessary and sufficient conditions given above for the existence of an order arc, or segment, from A to B.) Let $\Gamma(X) = \{\alpha \in C(2^X) : \alpha \text{ is an order arc or } \alpha = \{A\} \text{ for } A \in 2^X\}.$ and let $S(\omega)$ be the function space of all segments $\alpha: [0,1] \rightarrow 2^{X}$ (including the constant maps), with the topology of uniform convergence. Then the spaces $\Gamma(X)$ and

 $S(\omega)$ are compact, and the natural correspondence $\alpha \to \{\alpha(t): 0 \le t \le 1\}$ is a homeomorphism from $S(\omega)$ to $\Gamma(X)$ (for a complete discussion, see [7]). Henceforth, we implicitly use this correspondence wherever convenient. Without confusion, we let ρ denote both the Hausdorff metric on 2^X and the sup metric on $S(\omega)$.

2.1. Lemma. Let P,M \in C(X), with P \subset M. Then for each ε > 0 there exists δ > 0 such that, for every L \in C(X) with $\rho(L,M)$ < δ , there exist order arcs $\alpha \subset 2^X$ and $\beta \subset$ C(X) with $\alpha(1) = L$, $\beta(0) = P$, $\beta(1) = M$, and $\rho(\alpha,\beta) < \varepsilon$.

Proof. Suppose that for some $\epsilon > 0$ there exists a sequence $\{L_i\}$ in C(X) converging to M, with no L_i satisfying the required condition. Choose a finite subset $F \subset P$ such that $\rho(F,P) < \epsilon$. For each $x \in F$ and each i, choose $x_i \in L_i$ and an order arc $\alpha_{x_i} \subset C(X)$ such that $x_i \to x$, $\alpha_{x_i}(0) = \{x_i\}$, and $\alpha_{x_i}(1) = L_i$. Then for each i let α_i be the order arc in 2^X defined by $\alpha_i(t) = U\{\alpha_{x_i}(t) \colon x \in F\}$. Thus $\alpha_i(0) = \{x_i \colon x \in F\}$ and $\alpha_i(1) = L_i$. Since the space $\Gamma(X)$ is compact, some subsequence of $\{\alpha_i\}$ must converge to an order arc λ in 2^X with $\lambda(0) = F$ and $\lambda(1) = M$. Define an order arc β in C(X) by $\beta(t) = P$ U $\lambda(t)$. Thus $\beta(0) = P$ and $\beta(1) = M$. Since $\rho(\lambda,\beta) < \epsilon$, we have $\rho(\alpha_i,\beta) < \epsilon$ for some large i, contradicting our supposition about the sequence $\{L_i\}$.

2.2. Proposition. Let X be any continuum for which there exists a hyperspace retraction $2^X \to C(X)$. Then X has the subcontinuum approximation property.

Proof. Suppose X does not have the property. Then by compactness of C(X), there exist $P,M \in C(X)$ with $P \subset M$, and a sequence $\{L_i\}$ in C(X) converging to M such that, for some $\epsilon > 0$, there do not exist $P',M' \in C(X)$ with $\rho(P,P') < \epsilon$, $\rho(M,M') < \epsilon$, and $L_i \cup P' \subset M'$ for some i. Let $R: 2^X \to C(X)$ be a retraction. Choose $0 < \eta < \epsilon$ such that, for every $A \in 2^X$ with $\rho(A,M_0) < \eta$ for some subcontinuum $M_0 \subset M$, $\rho(R(A),M_0) < \epsilon$. By (2.1), for sufficiently large i there exist order arcs $\alpha \subset 2^X$ and $\beta \subset C(X)$ with $\alpha(1) = L_i$, $\beta(0) = P$, $\beta(1) = M$, and $\rho(\alpha,\beta) < \eta$. Then the continua $P' = R(\alpha(0))$ and $M' = U\{R(\alpha(t)): 0 \le t \le 1\}$ satisfy the conditions $\rho(P,P') < \epsilon$, $\rho(M,M') < \epsilon$, and $L_i \cup P' \subset M'$, contradicting our supposition.

- Note. The example constructed by Goodykoontz in [2] does not have the subcontinuum approximation property; our proof for (2.2) is a generalization of his argument for the non-existence of a hyperspace retraction.
- 2.3. Lemma. Let $\pi\colon I\to K$ be a map of an arc onto a Peano continuum which is neither an arc nor a simple closed curve. Then for some subarc $J\subset I$, $\pi(J)$ is a proper subcontinuum of K containing a simple triod.

Proof. Let ℓ denote the collection of all proper subcontinua of K which are of the form $\pi(J)$ for some subarc J. Since K is neither an arc nor a simple closed curve, there must be some L $\in \ell$ which is not an arc. Then the Peano continuum L either contains a simple triod or is a simple closed curve. In either case there exists $\tilde{L} \in \ell$ properly containing L, and therefore containing a simple triod.

2.4. Lemma. Let $\pi\colon I\to T$ be a map of an arc onto a simple triod. Then there exists a subcontinuum $P\subset T$ such that $P\neq \pi(J)$ for any subarc $J\subset I$.

Proof. Choose a sequence $\{T_n\}$ of triods in T such that $T_n \subset \operatorname{int} T_{n+1}$. Suppose that for each n there exists a subarc $J_n \subset I$ with $\pi(J_n) = T_n$. We may assume that each endpoint of J_n is mapped to an endpoint of T_n . Since for m < n, $T_m \subset \operatorname{int} T_n$, we must have either $J_m \cap J_n = \emptyset$ or $J_m \subset J_n$. Choose $\delta > 0$ such that for each $A \subset I$ with diam $A < \delta$ and each n, $\pi(A)$ contains at most one endpoint of T_n . Since one of the endpoints of T_n can be the image only of interior points of J_n , it follows that diam $J_n \geq 2\delta$ for each n. Also, if m < n and $J_m \subset J_n$, then diam $J_n \geq 0$ diam $J_m + \delta$. The sequence $\{J_n\}$ in C(I) clusters at some nondegenerate J. But for any pair of distinct arcs J_m , J_n sufficiently close to J, it's impossible that either $J_m \cap J_n = \emptyset$ or $J_m \subset J_n$. Thus some T_n must satisfy the conclusion of the lemma.

2.5. Proposition. A regular half-line compactification has the subcontinuum approximation property if and only if the remainder is either an arc or a simple closed curve.

Proof. Let $X=[0,\infty)$ U K be the regular half-line compactification corresponding to a periodic surjection $\pi\colon [0,\infty) \to K$, and let $I\subset [0,\infty)$ be a subarc such that π goes through at least two complete cycles over I.

Suppose first that K is neither an arc nor a simple closed curve. Applying (2.3) to the restriction π/I , we

obtain a proper subcontinuum $M \subset K$ such that M contains a simple triod T and $M = \pi(J)$ for some subarc $J \subset I$. Thus, there exists a sequence $\{J_i\}$ of subarcs in $[0,\infty)$ converging to M, and since $M \neq K$, every $M' \in C(X)$ sufficiently close to M and containing some J_i must itself be a subarc of $[0,\infty)$. Let $r\colon K \to T$ be any retraction, and apply (2.4) to the map $r \circ \pi\colon I \to T$. We obtain a subcontinuum $P \subset T$ such that $P \neq \pi(I_0)$ for any subarc $I_0 \subset I$. Thus, every $P' \in C(X)$ sufficiently close to P must lie in K. It follows that X does not have the subcontinuum approximation property with respect to the pair (M,P).

Now suppose that K is either an arc or a simple closed curve, and consider any P,M \in C(X) with P \subset M. It suffices to verify the subcontinuum approximation property with respect to this pair (see the proof of (2.2)). The property is obvious if either M \subset [0, ∞) or M \supset K, so we may suppose that M is a proper subcontinuum of K (and therefore an arc). Each L \in C(K) which is close to M intersects M, so in this case we may take M' = L U M and P' = P. And for any arc L \subset [0, ∞) close to M, there is a subarc L₀ \subset L close to P, so we may take M' = L and P' = L₀. This completes the argument that X has the subcontinuum approximation property.

It may be of interest to note that the subcontinuum approximation property is implied by property [K], which was introduced by Kelley [4] in the study of hyperspace contractibility and which has been used extensively in recent years (see [7]). In the class of regular half-line

compactifications, the only spaces with property [K] are the spaces \mathbf{X}_0 and \mathbf{X}_1 which admit conservative hyperspace retractions. Thus, the spaces \mathbf{X}_n for n>1 show that property [K] is *not* necessary for the existence of hyperspace retractions. Whether there is any general relationship between property [K] and the existence of conservative hyperspace retractions remains an open question.

3. A Monotonicity Requirement

Let $X = [0,\infty)$ U K be the regular half-line compactification corresponding to a periodic surjection π : $[0,\infty) \to K$, and suppose there exists a hyperspace retraction $2^{X} \rightarrow C(X)$. By (2.2) and (2.5), the remainder K is either an arc or a simple closed curve. In the case that K is an arc, we say that π is interior monotone if, for each arc $J \subset [0,\infty)$ such that $\pi(J) \cap \partial K = \phi$, the restriction π/J is monotone (perhaps nonstrictly). A similar definition is made in the case that K is a simple closed curve, using a covering projection $(-\infty,\infty)$ \rightarrow K. Specifically, let $\widetilde{\pi}\colon$ $[0,\infty)$ \rightarrow $(-\infty,\infty)$ be a lift of π , and set K = im $\tilde{\pi}$. We say that $\tilde{\pi}$ is interior monotone if $\tilde{\pi}/J$ is monotone for each arc $J \subset [0,\infty)$ such that $\tilde{\pi}(J)$ \cap $\partial K = \phi$. We will show that π , or $\tilde{\pi}$, must be interior monotone. It follows easily that either X \approx $\rm X_{\cap}$ (if K is an arc), or $X \approx X_1$ (if K is a simple closed curve and K is unbounded), or $X \approx X_n$ for some n > 1 (if K is bounded).

We will need the following result concerning the composition semigroup S of all self-maps of the interval [0,1] which are fixed on the endpoints.

3.1. Proposition. For every $f_1, f_2 \in S$ and $\epsilon > 0$, there exist $g_1, g_2 \in S$ such that $d(f_1 \circ g_1, f_2 \circ g_2) < \epsilon$.

Proof. For each pair (m,n) of positive integers with $m \ge n$, let P(m,n) denote the finite set of piecewise-linear maps f in S satisfying the following conditions:

- 1) for each $0 \le j \le m$, f(j/m) = k/n for some $0 \le k \le n$; and
- 2) for each $0 \le j < m$, $|f((j + 1)/m) f(j/m)| \le 1/n$, and f is linear over the interval [j/m, (j + 1)/m].

Choose n such that $1/n < \varepsilon/4$, and choose m_1, m_2 such that $|f_i(s) - f_i(t)| \le 1/n$ whenever $|s - t| \le 1/m_i$, i = 1, 2. Then there exist maps $\phi_i \in P(m_i, n)$ with $d(f_i, \phi_i) \le 1/n + 1/2n + 1/2n < \varepsilon/2$, i = 1, 2. We show that, for some $m \ge \max\{m_1, m_2\}$, there exist $g_1 \in P(m, m_1)$ and $g_2 \in P(m, m_2)$ with $\phi_1 \circ g_1 = \phi_2 \circ g_2$ (note that the compositions are members of P(m, n)). It then follows that $d(f_1 \circ g_1, f_2 \circ g_2) < \varepsilon$.

The proof is by induction on m_1 + m_2 . If m_1 + m_2 = 2n (the least possible value), then m_1 = m_2 = n and ϕ_1 = ϕ_2 = id. In this case take m = n and g_1 = g_2 = id.

Now assume $m_1+m_2>2n$. Suppose first that for some $j< m_1$, $\phi_1(j/m_1)=\phi_1((j+1)/m_1)$. Then we may consider the corresponding $\widetilde{\phi}_1\in P(m_1-1,n)$, obtained topologically by collapsing to a point the arc $[j/m_1,\ (j+1)/m_1]\times \phi_1(j/m_1)$ on the graph of ϕ_1 . Application of the inductive hypothesis to the pair $\widetilde{\phi}_1,\phi_2$ gives maps $\gamma_1\in P(m_0,m_1-1)$ and $\gamma_2\in P(m_0,m_2)$, for some $m_0\geq \max\{m_1-1,m_2\}$, such that $\widetilde{\phi}_1\circ\gamma_1=\phi_2\circ\gamma_2$. It's not difficult to see that this implies the corresponding result for the pair ϕ_1,ϕ_2 . Of

course, the same argument works if $\phi_2(j/m_2) = \phi_2((j+1)/m_2)$ for some $j < m_2$.

Thus, we may suppose that neither ϕ_i is constant on any subinterval. Then there exists a least integer k for which $\phi_i(j/m_i) = k/n$ and $\phi_i((j-1)/m_i) = \phi_i((j+1)/m_i) = (k-1)/n$, for some $1 \le j < m_i$ and i=1,2; suppose this holds for i=1. Consider the corresponding $\widetilde{\phi}_1 \in P(m_1-2,n)$, obtained topologically by identifying the points $((j-1)/m_1, (k-1)/n)$ and $((j+1)/m_1, (k-1)/n)$ of the restriction $\phi_1/[0,(j-1)/m_1] \cup [(j+1)/m_1,1]$. Applying the inductive hypothesis to the pair $\widetilde{\phi}_1,\phi_2$, we obtain maps $\gamma_1 \in P(m_0,m_1-2)$ and $\gamma_2 \in P(m_0,m_2)$, for some $m_0 \ge \max\{m_1-2,m_2\}$, such that $\widetilde{\phi}_1 \circ \gamma_1 = \phi_2 \circ \gamma_2$. Note that by the choice of k, if $\phi_2(i/m_2) = (k-1)/n$, then either $\phi_2((i-1)/m_2) = k/n$ or $\phi_2((i+1)/m_2) = k/n$. Clearly, the above implies the corresponding result for the pair ϕ_1,ϕ_2 . This completes the proof of the proposition.

- 3.2. Remark. If $\sup_{i} f_{i}^{-1}(0) < \inf_{i} f_{i}^{-1}(1)$ for each i = 1, 2, then there exists $\delta > 0$ (independent of ϵ) such that the maps g_{1}, g_{2} may be chosen so that $\sup_{i} (f_{i} \circ g_{i})^{-1}([0, \delta]) < \inf_{i} (f_{i} \circ g_{i})^{-1}([1 \delta, 1]), i = 1, 2.$
- 3.3. Theorem. Let $X=[0,\infty)$ U K be a regular half-line compactification for which there exists a hyperspace retraction $2^X \to C(X)$. Then $X \approx X_n$ for some $n=0,1,2,\cdots$.

Proof. As observed at the beginning of this section, K is either an arc or a simple closed curve. We consider first the case that K is an arc. Suppose π is *not* interior monotone. Then it's not difficult to see that there exists

a proper subarc σ of K, with endpoints v and w, and points t_0, \dots, t_n in $(0, \infty)$, with $t_0 < t_1 < \dots < t_n$ and $n \ge 3$, such that:

- 1) $\pi(t_0) = \pi(t_2) = \cdots = v;$
- 2) $\pi(t_1) = \pi(t_3) = \cdots = w;$
- 3) $\pi([t_0,t_n])=\sigma$, and $[t_0,t_n]$ is a maximal subinterval in $[0,\infty)$ with respect to this property; and
- 4) for each $i=1,\cdots,n$, the subsets $\pi^{-1}(v) \cap [t_{i-1},t_i]$ and $\pi^{-1}(w) \cap [t_{i-1},t_i]$ lie in disjoint subintervals.

For maps g_1 and g_2 as above, consider the path $\alpha\colon [0,1]\to 2^X$ between $\{t_1\}$ and $\{t_0,t_2\}$, defined by $\alpha(t)=\{g_1(t),g_2(t)\}$. Let $R\colon 2^X\to C(X)$ be a retraction. If $\epsilon>0$ is sufficiently small and t_0 sufficiently large (use the periodicity of π), then for each $0\le t\le 1$, $\pi R(\alpha(t))$ is a small diameter continuum lying in some neighborhood of σ which is a proper subset of K. Since $U\{R(\alpha(t)): 0\le t\le 1\}$ is a continuum containing $R(\alpha(0))=\{t_1\}$, this implies that $U\{R(\alpha(t))\}\subset [0,\infty)$. Moreover, since $\sup(\pi\circ g_1)^{-1}(N(w))<\inf(\pi\circ g_1)^{-1}(N(v))$, we may assume

By another application of (3.1) we obtain maps $h_1\colon [0,1]\to [t_0,t_1] \text{ and } h_2\colon [0,1]\to [t_2,t_3] \text{ with } \\ h_1(0)=t_0,\ h_1(1)=t_1,\ h_2(0)=t_2,\ h_2(1)=t_3,\ \text{and such } \\ \text{that the maps } \pi\circ h_1 \text{ and } \pi\circ h_2 \text{ are arbitrarily close. As } \\ \text{before, we may also assume that } \sup(\pi\circ h_1)^{-1}(N(v))<\\ \text{inf}(\pi\circ h_1)^{-1}(N(w)). \text{ Consideration of the path } \beta\text{ in } 2^X\\ \text{between } \{t_0,t_2\} \text{ and } \{t_1,t_3\},\ \text{defined by } \beta(t)=\{h_1(t),\ h_2(t)\},\ \text{shows that } R(\{t_1,t_3\})\subset [0,t_2). \text{ Continuing in this } \\ \text{fashion we obtain } R(\{t_{n-2},t_n\})\subset [0,t_{n-1}). \text{ But an argument } \\ \text{analogous to that given above for } R(\{t_0,t_2\}) \text{ shows that } \\ R(\{t_{n-2},t_n\})\subset (t_{n-1},\infty). \text{ This contradiction shows that } \\ \text{must be interior monotone. Clearly, this implies that } \\ X \approx X_0. \\ \\ \\$

In the case that K is a simple closed curve, the same type of arguments show that the lift $\tilde{\pi}\colon [0,\infty)\to \tilde{K}$, defined at the beginning of this section, must be interior monotone. If $\tilde{K}=\text{im }\tilde{\pi}$ is unbounded, then in fact $\tilde{\pi}$ is monotone and $X\approx X_1$. And if \tilde{K} is bounded, then $X\approx X_n$ for some n>1. Specifically, $X\approx X_{2n}$ if the interval \tilde{K} wraps around K

exactly n times, while $X \approx X_{2n+1}$ if K wraps around K n times plus a fraction.

4. Conservative Hyperspace Retractions

Recall that a retraction R: $2^{X} \rightarrow C(X)$ is conservative if R(A) \cap A \neq Ø for each A \in 2^X. We show that the topologist's sine curve and the circle with a spiral are the only regular half-line compactifications admitting conservative hyperspace retractions.

4.1. Theorem. Let X be a regular half-line compactification for which there exists a conservative retraction R: $2^{X} + C(X)$. Then either $X \approx X_{0}$ or $X \approx X_{1}$.

Proof. We assume that $X = X(\pi)$, with $\pi = \pi_n$ for some n > 1, and show that this leads to a contradiction; the result then follows from (3.3).

Suppose first that n is even. Then for every large integer k, $R(\{k,k+1\})$ is a small diameter continuum containing either k or k + 1, and therefore contained in a small neighborhood in $[0,\infty)$ of either k or k + 1. If k is sufficiently large, then $\pi R([k - \epsilon, k + \epsilon] \cup \{k + 1\})$ must be arbitrarily close to $\pi([k - \epsilon, k + \epsilon])$, for each $\epsilon > 0$. Since for all sufficiently small ϵ , $\pi([k - \epsilon, k + \epsilon])$ \cap $\pi([k+1-\epsilon, k+1+\epsilon]) = \{p\}, \text{ where } p = (1,0) \in S,$ consideration of an order arc in 2^{X} between the elements $\{k, k+1\}$ and $[k-\epsilon, k+\epsilon] \cup \{k+1\}$ shows that $R(\{k, k+1\})$ cannot lie in a small neighborhood of k+1. An analogous argument involving an order arc between $\{k, k+1\}$ and $\{k\}$ U $[k+1-\epsilon, k+1+\epsilon]$ shows that

 $R(\{k, k+1\})$ cannot lie in a small neighborhood of k. Thus n cannot be even.

Now suppose n is odd. For any large integer k, set $k_1 = \inf\{t: t > k \text{ and } \pi(t) = \pi(k)\} \text{ and } k_2 = \sup\{t: t < k + 1\}$ and $\pi(t) = \pi(k + 1)$. Clearly, $k < k_i < k + 1$ for each i = 1,2. Since π is locally 1-1 at each k_i , but not at kor k + 1, arguments analogous to those above show that, for sufficiently large k, $R(\{k,k_1\})$ must lie in a small neighborhood of k_1 , and $R(\{k_2, k + 1\})$ must lie in a small neighborhood of k_2 . Let $\alpha: [0,1] \rightarrow 2^X$ be the path between $\{k, k_1\}$ and $\{k_2, k+1\}$ defined by $\alpha(t) = \{(1-t)k + tk_2, k+1\}$ $(1 - t)k_1 + t(k + 1)$. Note that for each 0 < t < 1, $\pi(\alpha(t))$ is a singleton, and therefore $R(\alpha(t))$ must lie in a small neighborhood of one of the points of $\alpha(t)$. But since for each t the points of $\alpha(t)$ remain a constant distance apart, this is inconsistent with the noted properties of $R(\alpha(0))$ and $R(\alpha(1))$. Thus n cannot be odd, and this completes the proof that \mathbf{X} is homeomorphic to either \mathbf{X}_0 or х1.

5. Construction of Hyperspace Retractions

From this point through section 8, $X = [0,\infty)$ U K will denote one of the regular compactifications X_n , $n \geq 0$, described in section 1. Thus, K is either the interval I or the circle S. Let $\pi\colon X \to K$ be the retraction defined by the periodic surjection $\pi_n\colon [0,\infty) \to K$. The construction of a retraction R: $2^X \to C(X)$ is based on the two propositions stated next, whose proofs will be given in sections 7 and 8.

- 5.1. Proposition. There exists a map $G: 2^X \to C(X)$ with the following properties:
 - i) G|C(K) = id;
 - ii) either $G(A) \supset \pi(A)$ or $G(A) \subset [0,\infty)$;
 - iii) $G(A) \subset K \ if A \cap K \neq \emptyset$;
- iv) G(A) \supset K if A \subset [0, ∞) and G(A) \supset π ([inf A, sup A]); and
 - v) $G(A) \cap (K \cup A) \neq \emptyset$.

Remark. In the cases n = 0,1, the above property v) may be strengthened by requiring that $G(A) \cap A \neq \emptyset$.

For a given subset \mathbb{N} of C(K), let \widehat{D} be the subset of $C(X) \times C(X)$ defined by $\widehat{D} = \{(M,N): (M \cup K) \cap N \neq \emptyset, \text{ and either } M \supseteq K \supset N \in \mathbb{N} \text{ or } M \cap K = \emptyset\}.$

- 5.2. Proposition. For some neighborhood $N \subset C(K)$ of K, there exists a map $H: D \times [0,1] \to C(X)$ satisfying the following conditions, for every $(M,N) \in D$ and $0 \le t \le 1$:
 - i) H(M,N,0) = M and H(M,N,1) = N;
 - ii) either $H(M,N,t) \supset M$ or $H(M,N,t) \supset N$;
 - iii) $H(M,N,t) \subset [r,\infty) \cup K \text{ if } M \cup N \subset [r,\infty) \cup K; \text{ and }$
 - iv) $H(M,N,t) \subset [r,s]$ if $M \cup N \subset [r,s]$ and $\pi([r,s]) \neq K$.
- 5.3. Theorem. For $X = [0,\infty) \cup K$ as above, there exists a hyperspace retraction $2^X + C(X)$.

Proof. Let $F: 2^{X} \rightarrow C(X) \setminus C(K)$ denote the "smallest continuum" retraction, defined by

$$F(A) = \begin{cases} [\inf A, \sup A] & \text{if } A \subset [0, \infty), \\ [\inf(A \cap [0, \infty)), \infty) \cup K \text{ if } A \cap K \neq \emptyset. \end{cases}$$

Define a map $\Theta: 2^{X} \cdot 2^{K} \rightarrow [0,1]$ by the formula $\Theta(A) = \min\{(2/\delta) \cdot \inf(A \cap [0,\infty)) \cdot \rho(\pi(A), \pi(F(A))), 1\},$ where $0 < \delta < 1$ is chosen such that $\{N \in C(K): \rho(N,K) < \delta\} \subset \Pi$, the neighborhood of K in C(K) given by (5.2). Note that $\Theta(M) = 0$ for all $M \in C(X) \setminus C(K)$.

Let $\mathcal{W} = \{A \in 2^X \setminus 2^K : \text{ either } A \subset [0,\infty) \text{ or } \rho(\pi(A), K) < \delta\}$. Note that \mathcal{W} is an open subset of 2^X , and $C(X) \setminus C(K) \subset \mathcal{W}$. Let $G: 2^X \to C(X)$ and $H: \hat{\mathcal{D}} \times [0,1] \to C(X)$ be the maps given by (5.1) and (5.2). The desired retraction $R: 2^X \to C(X)$ is defined by

$$R(A) = \begin{cases} H(F(A), G(A), \Theta(A)) & \text{if } A \in W, \\ G(A) & \text{if } A \in 2^{X} \setminus W. \end{cases}$$

We first verify that for each $A \in \mathcal{W}$, $(F(A), G(A)) \in \mathcal{D}$, so that R is well-defined. There are two cases to be considered:

- 1) Suppose $A \in 2^{X} \setminus 2^{K}$ with $A \cap K \neq \emptyset$ and $\rho(\pi(A),K) < \delta$. Then $F(A) \not\supseteq K \supset G(A) \supset \pi(A)$, therefore $\rho(G(A),K) < \delta$ and $G(A) \in \mathcal{N}$. Thus $(F(A), G(A)) \in \mathcal{D}$.
- 2) Suppose $A\subset [0,\infty)$. Then $F(A)\subset [0,\infty)$, and $(F(A)\ \cup\ K)\ \cap\ G(A)\ \supset\ (A\ \cup\ K)\ \cap\ G(A)\ \neq\ \emptyset \ , \ \mbox{so again } (F(A)\ ,$ $G(A)\ \in\ \hat{D}$.

We next verify that R/C(X) = id. Since R/C(K) = G/C(K) = id, we need only consider $M \in C(X) \setminus C(K)$. Then $\Theta(M) = 0$ and $M \in W$, so R(M) = H(F(M), G(M), 0) = F(M) = M.

It remains to show that R is continuous. Since W is open in 2^X , we have only to verify continuity of R at each A \in bd W. Suppose to the contrary that R is *not* continuous at some such A. Then there exists a sequence $\{A_i\}$ in W

converging to A, with no subsequence of $\{R(A_i)\}$ converging to R(A) = G(A). In particular, $\Theta(A_i) \neq 1$ for almost all i. There are two cases to be considered.

1) Suppose $A \in 2^K$. Then $\inf(A_i \cap [0,\infty)) \to \infty$, which together with $\Theta(A_i) \neq 1$ implies that $\rho(\pi(A_i), \pi(F(A_i))) \rightarrow 0$. Thus $F(A_i) \rightarrow A \in C(K)$, and $G(A_i) \rightarrow G(A) = A$. If A = K, then $R(A_i) = H(F(A_i), G(A_i), \Theta(A_i)) \rightarrow K$ by the properties ii) and iii) of H, contrary to our choice of $\{A_i\}$. Thus $A \in C(K) \setminus \{K\}$, and $A_i \subset [0,\infty)$ for almost all i since $F(A_i) \to A$.

If $G(A_i) \cap K \neq \emptyset$ for infinitely many i, then $G(A_i) \supset$ $\pi(A_i)$ by the property ii) of G, and since $F(A_i) \rightarrow A \neq K$ and $G(A_i) \rightarrow A$, it follows that $G(A_i) \supset \pi(F(A_i))$ for infinitely many i. By the property iv) of G, $G(A_i) \supset K$, contradicting the convergence of $\{G(A_i)\}$ to A.

On the other hand, if $G(A_i) \subset [0,\infty)$ for almost all i, then $F(A_i) \cap G(A_i) \supset A_i \cap G(A_i) \neq \emptyset$ by the property v) of G, so for almost all i, $F(A_i) \cup G(A_i) = [r_i, s_i]$, a subarc of $[0,\infty)$. Since both $\{F(A_i)\}$ and $\{G(A_i)\}$ converge to $A \neq K$, $\pi([r_i,s_i]) \neq K$ for almost all i. Then the properties ii) and iv) of H imply that $R(A_i) \rightarrow A = R(A)$, again contrary to our choice of {A;}.

2) Suppose A \in 2^X \searrow 2^K, with A \cap K \neq \emptyset and $\rho(\pi(A),K) \geq \delta$. Then for almost all i, $\pi(F(A_i)) = K$ and $\rho(\pi(A_i),K) \ge \delta/2$, yielding $\Theta(A_i) = 1$, which is impossible. This completes the verification of continuity for R.

Finally, we note that the retraction R is conservative if G is, since for each $A \in 2^X$, either $R(A) \supset F(A) \supset A$ or $R(A) \supset G(A)$. Thus, in the cases n = 0,1 where a conservative

map G may be chosen, we obtain a conservative hyperspace retraction.

6. Admissible Expansions in K

As in the previous section, $X = [0,\infty)$ U $K = X_n$ for some $n \ge 0$, with $\pi \colon X \to K$ the retraction defined by π_n . We call a map e: $K \times [0,\infty) \to C(K)$ an *expansion* if it satisfies the following conditions (for $A \in 2^X$, $e(A,t) = U\{e(a,t): a \in A\}$):

- 1) $e(x,t) \supset e(x,0) = \{x\}$ for all x and t;
- 2) for every $0 \le s < t$, there exists $\delta > 0$ such that $e(e(x,s),\delta) \subseteq e(x,t)$ for all x;
- 3) for every A \in 2^K and δ > 0, e(B, δ) \supset A for all B \in 2^K sufficiently close to A; and
 - 4) for every $A \in 2^K$, $e(A,t) \in C(K)$ for some t.

An expansion e is admissible if it permits an extension to a map \tilde{e} : $X \times [0,\infty) \to C(X)$ satisfying the above condition 1) and such that, for all $x \in [1,\infty)$ and all t, $\tilde{e}(x,t) \subset [x-1,x+1]$ and $\pi(\tilde{e}(x,t)) = e(\pi(x),t)$. We refer to \tilde{e} as a "lift" for e.

6.1. Lemma. There exists an admissible expansion e: $K \times [0,\infty) \to C(K)$.

Proof. With d the arc-length metric on K, we may obtain an expansion by simply setting $e(x,t)=\{y\in K:d(x,y)\leq t\}$. However, this "free" expansion is admissible only if $\pi/(0,\infty)$ is an open map, i.e., only for n=0,1. Thus, for these cases the lemma is trivial, but for n>1, some type of "partial" expansion is required.

Suppose then that K = S and n > 1. Let ω : $(-\infty,\infty) \to S$ be the covering projection defined by $\omega(r) = e^{2\pi i r}$, and let $\widetilde{\pi}$: $[0,\infty) \to (-\infty,\infty)$ be a lift of the periodic surjection π_n : $[0,\infty) \to S$. Then J = im $\widetilde{\pi}$ is a compact subinterval with length $n/2 \ge 1$. Let p,q \in J be the points for which J = [p-1, q+1]. For each $z \in S$, let $z_p, z_q \in (0,1]$ be the unique values for which $\omega(p-z_p) = z = \omega(q+z_q)$.

Define maps e_p, e_q : $S \times [0, \infty) \to C(S)$ by the formulas $\begin{cases} e_p(z,t) = \omega([p - (1 + t)z_p, p - z_p] \cap J), \\ e_q(z,t) = \omega([q + z_q, q + (1 + t)z_q] \cap J). \end{cases}$

Although the total image function $z \to e_p(z \times [0,\infty))$ is discontinuous at $z = \omega(p)$, the function e_p is continuous; similarly for e_q . These maps may be viewed quite simply. For $z \in S$, the restriction $e_p|z \times [0,\infty)$ is clockwise expansion around S from z to $\omega(p)$, where $\omega(p) = \pi(\{0,2,4,\cdots,\}) = (1,0)$ is the π -projection of those "turning points" in $[0,\infty)$ where the direction of travel (towards ∞) changes from clockwise rotation about S to counterclockwise rotation. Similarly, $e_q|z \times [0,\infty)$ is counterclockwise expansion from z to $\omega(q)$, where $\omega(q) = \pi(\{1,3,5,\cdots\})$ is the π -projection of those turning points where the direction of travel changes from counterclockwise to clockwise. For even n, $\omega(q) = (1,0)$, while for odd n, $\omega(q) = (-1,0)$.

We show that the map e: $S \times [0,\infty) \to C(S)$, defined by $e(z,t) = e_p(z,t) \cup e_q(z,t)$, is an admissible expansion. The admissibility of e should already be evident from the above discussion of the maps e_p and e_q . It remains to verify the expansion conditions 1) through 4).

Condition 1) is obvious. Condition 2) is satisfied with δ = t - s/(1 + s), since then (1 + s)(1 + δ) = (1 + t). The verification of condition 3) is more involved. The basic observation is that, for all y,z \in S and δ > 0,

i)
$$\begin{cases} z_p/(1+\delta) \le y_p \le z_p \text{ implies } z \in e_p(y,\delta); \\ z_q/(1+\delta) \le y_q \le z_q \text{ implies } z \in e_q(y,\delta). \end{cases}$$

Let d be the metric on S defined by $d(y,z) = \min\{|u - v|: u, v \in (-\infty, \infty) \text{ with } \omega(u) = y \text{ and } \omega(v) = z\}.$ The above observation i) implies that for all y, z, z

ii) if
$$d(y,z) \le \min\{z_p, z_q\} \cdot \delta/(1 + \delta)$$
, then $z \in e(y, \delta)$.

Let m = min{ $(\omega(p))_q$, $(\omega(q))_p$ }. Then i) also implies that for all y,

Assuming $\delta < 1$, iii) implies that for all y,z,

$$\text{iv)} \begin{cases} \text{if } d(y,z) \leq z_q/2 \leq m\delta/6, \text{ then} \\ e_p(y,\delta) \supset \omega([q,q+z_q/2]); \\ \text{if } d(y,z) \leq z_p/2 \leq m\delta/6, \text{ then} \\ e_q(y,\delta) \supset \omega([p-z_p/2,p]). \end{cases}$$

We can now verify condition 3). Given $A \in 2^S$ and $\delta > 0$, set $A_p = x_p/2$, for some $x \in A$ such that either $x_p \le m\delta/3$ or $x_p = \min\{a_p \colon a \in A\}$; set $A_q = y_q/2$, for some $y \in A$ such that either $y_q \le m\delta/3$ or $y_q = \min\{a_q \colon a \in A\}$. Let $\eta = \min\{A_p, A_q\}$. $\delta/(1+\delta)$. We claim that for every $B \in 2^S$ with $\rho(A,B) < \eta$, $e(B,\delta) \supset A$. There are three cases to be considered:

a) Consider $z \in A$ with $z_p \le A_p$. Then $A_p = x_p/2 \le m\delta/6$ for some $x \in A$. Choose $y \in B$ with $d(y,x) < \eta < A_p = x_p/2$.

By iv), $e_q(y,\delta) \supset \omega([p-x_p/2,p])$. Since $z_p \le x_p/2$, we have $z = \omega(p-z_p) \in \omega([p-x_p/2,p])$. Thus $z \in e_q(y,\delta) \subset e(B,\delta)$.

- b) An analogous argument shows that for z \in A with $z_{_{\hbox{\scriptsize C}}} \, \le \, A_{_{\hbox{\scriptsize C}}}, \, z \, \in \, e \, (B \, , \delta) \, .$
- c) Consider $z \in A$ with $z_p \ge A_p$ and $z_q \ge A_q$. Choose $y \in B \text{ with } d(y,z) < \eta \le \min\{z_p,z_q\} \cdot \delta/(1+\delta). \text{ By (ii),}$ $z \in e(y,\delta) \subset e(B,\delta).$

We next verify condition 4). Note that for each $z \in S$, and sufficiently large t, $e_p(z,t) \supset \omega([p-1,p-z_p])$, the arc (possibly degenerate) traversed in the clockwise direction from z to $\omega(p)$. Similarly, for large t, $e_q(z,t) \supset \omega([q+z_q,q+1])$, the arc traversed in the counterclockwise direction from z to $\omega(q)$. If $\omega(p) = \omega(q)$, then for every $A \in 2^S$ with $A \neq \{\omega(p)\}$, e(A,t) = S for large t. If $\omega(p) \neq \omega(q)$, let $\alpha \subset S$ be the subarc traversed in the clockwise direction from $\omega(q)$ to $\omega(p)$. Then for each $A \in 2^S$ with $A \bowtie \alpha \neq \emptyset$, e(A,t) = S for large t, and for $A \subset \alpha$, $e(A,t) = \alpha$ for large t. This completes the verification that e is an expansion. And as remarked earlier, e is by its construction admissible.

The above lemma will be used in section 8 for the construction of a map H with the properties specified in (5.2). At present, we apply (6.1) in the case n > 1 to obtain a result which will be essential for the construction in the next section of a map G with the properties specified in (5.1).

6.2. Lemma. Let $\pi=\pi_n\colon [0,\infty)\to S$, n>1. Then there exists a retraction $E\colon 2^S\to C(S)$ with the following properties:

- i) $E(A) \supset A$ for each $A \in 2^S$; and
- ii) for each $A \in 2^S$ and subinterval $L \subset [0,\infty)$ such that $A \subset \pi(L) \subset E(A)$, there exists a subinterval $M \subset [0,\infty)$ with $L \subset M$ and $\pi(M) = E(A)$.

Proof. Let e: $S \times [0,\infty) \to C(S)$ be an admissible expansion given by (6.1). For each $A \in 2^S$, let $\tau(A)$ denote the smallest value of t for which $e(A,t) \in C(S)$, and define E: $2^S \to C(S)$ by setting $E(A) = e(A,\tau(A))$. Then E|C(S) = id, and $E(A) \supset A$.

We establish continuity for E by verifying continuity for the function $\tau: 2^S \to [0,\infty)$. The lower semi-continuity of τ is automatic, since C(S) is closed in 2^{S} and e is continuous. Using the expansion properties 2) and 3) of e, we show that τ is upper semi-continuous. Given A $\in~2^{\textstyle {\rm S}}$ and $\varepsilon > 0$, there exists by property 2) a number $\delta > 0$ such that $e(e(B,\tau(A)),\delta) \subseteq e(B,\tau(A) + \varepsilon)$ for all $B \in 2^{S}$. By continuity of e and property 3), there exists a neighborhood U of A in 2^{S} such that $e(e(B,\tau(A)),\delta) \supset e(A,\tau(A))$ for every $B \in U$. Thus, $e(B,\tau(A) + \varepsilon) \supset e(A,\tau(A))$. Also, by application of property 3) to each {a}, a ∈ A, we may assume the neighborhood U is small enough that for each $B \in U$ and $b \in B$, $e(b,\tau(A) + \varepsilon)$ meets A. Thus, each component of $e(B,\tau(A) + \varepsilon)$ meets A, and since $A \subseteq e(A, \tau(A)) \subseteq e(B, \tau(A) + \varepsilon)$ and $e(A,\tau(A)) \in C(S)$, it follows that $e(B,\tau(A) + \varepsilon) \in C(S)$. Then $\tau(B) < \tau(A) + \varepsilon$ for every $B \in U$, and τ is upper semicontinuous.

It remains to verify the property ii). Given A \in 2^S and a subinterval $L \subset [0,\infty)$ such that $A \subset \pi(L) \subset E(A)$, we may assume that $E(A) \neq S$. Let $M \supset L$ be a maximal subinterval of $[0,\infty)$ for which $\pi(M) \subset E(A)$. We show that $\pi(M) = E(A)$. Let $\tilde{e}: X \times [0,\infty) \to C(X)$ be a lift for e. Since $A \subset \pi(L) \subset$ π (M), we may choose for each a \in A an element \tilde{a} \in M with $\pi(\tilde{a}) = a$. Set $N_a = \tilde{e}(\tilde{a}, \tau(A))$. Then N_a is a subinterval of $[0,\infty)$ containing \tilde{a} , and $\pi(N_a) = \pi(\tilde{e}(\tilde{a},\tau(A))) = e(a,\tau(A)) \subset$ $e(A, \tau(A)) = E(A)$. Since $\tilde{a} \in M \cap N_a$, $M \cup N_a$ is a subinterval, with $\pi(M\ U\ N_a)$ \subset E(A). By the maximal character of M, we must have $N_a \subset M$. Thus $E(A) = U\{e(a,\tau(A)): a \in A\} =$ $U\{\pi(N_a): a \in A\} \subset \pi(M), \text{ and } \pi(M) = E(A).$

7. Construction of the Map G

We consider first the case n > 1. Thus, K = S and $\pi = \pi_n : [0,\infty) \to S$. As in the proof of (6.1), let ω : $(-\infty,\infty) \rightarrow S$ be the covering projection defined by $\omega(r) = e^{2\pi i r}$, and let $\tilde{\pi}$: $[0,\infty) \to (-\infty,\infty)$ be a lift of π . The desired map G: $2^{X} \rightarrow C(X)$ will be obtained as an extension of the retraction E: $2^S \rightarrow C(S)$ given by (6.2).

Let $U \subset 2^X$ be the collection of those A $\in 2^X$ which satisfy the following conditions:

- a) $A \subset [0, \infty)$;
- b) $E(\pi(A)) \neq S$; and
- c) $E(\pi(A)) \supset \omega([\inf \tilde{\pi}(A), \sup \tilde{\pi}(A)])$.

Although condition c) by itself defines a closed subspace of 2^{X} , \mathcal{U} is an open subspace. This can be seen from the fact that, since $E(\pi(A)) \supset \pi(A) = \omega(\tilde{\pi}(A)) \supset \{\omega(\inf \tilde{\pi}(A)), \}$ $\omega(\sup \tilde{\pi}(A))$ for each $A \in 2^X$, A satisfies conditions b) and

c) if and only if $E(\pi(A)) \cup \omega([\inf \tilde{\pi}(A), \sup \tilde{\pi}(A)]) \neq S$. Thus conditions b) and c) together define an open subspace of 2^X , as does condition a), and therefore ℓ is open.

We claim that for each $A \in \mathcal{U}$ and $x \in A$, the continuum $E(\pi(A)) \subset S$ can be "lifted" through x, i.e., there exists a continuum $M \subset [0,\infty)$ with $x \in M$ and $\pi(M) = E(\pi(A))$. Suppose $x \in [i,i+1]$, for some integer i; let $L \subset [i,i+1]$ be the subinterval such that $\tilde{\pi}(L) = [\inf \tilde{\pi}(A), \sup \tilde{\pi}(A)]$ (note that $\tilde{\pi}|[i,i+1]$ is a homeomorphism onto $\operatorname{im} \tilde{\pi}$). Then $x \in L$, and $\pi(A) \subset \pi(L) = \omega(\tilde{\pi}(L)) \subset E(\pi(A))$ since $A \in \mathcal{U}$. The property ii) of the retraction E shows that L may be expanded to an interval $M \subset [i,i+1]$ such that $\pi(M) = E(\pi(A))$.

In particular, if $A \in \mathcal{U}$ and $a = \sup A$ is the point of A nearest S, with $a \in [i,i+1]$, then there exists a unique interval $M_i \subset [i,i+1]$ with $a \in M_i$ and $\pi(M_i) = E(\pi(A))$. This permits the construction of a map $L \colon \mathcal{U} \to C(X)$ such that for each $A \in \mathcal{U}$, L(A) is an "approximate lift" of $E(\pi(A))$ through the point $a = \sup A$. We may construct L according to the following rules:

- 1) $L(A) = M_i \text{ if } min\{a i, i + 1 a\} \ge 1/a;$
- 2) $L(A) = [i, \max M_i]$ if a i = 1/2a, and $L(A) = [\min M_i, i + 1]$ if i + 1 a = 1/2a;
- 3) $L(A) = M_{i-1} \cup M_i$ if a = i > 0, and $L(A) = M_i \cup M_{i+1}$ if a = i + 1.

For 1/2a < a - i < 1/a or 1/2a < i + 1 - a < 1/a, L(A) is defined so that $M_i \subset L(A) \subset [i, \max M_i]$ or $M_i \subset L(A) \subset [\min M_i, i + 1]$, respectively, and for 0 < a - i < 1/2a or

0 < i + 1 - a < 1/2a, [i, max M_i] $\subset L(A) \subset [\min M_{i-1}, \max M_i]$ or $[\min M_i, i + 1] \subset L(A) \subset [\min M_i, \max M_{i+1}]$, respectively.

The key properties of the map L are that sup A \in L(A) \subset $[0,\infty)$ and $\pi(L(A)) \supset E(\pi(A))$ for each A \in \mathcal{U} , with inf L(A) $\rightarrow \infty$ and $\rho(\pi(L(A)), E(\pi(A))) \rightarrow 0$ as sup A $\rightarrow \infty$.

The desired map $G: 2^X \to C(X)$ is defined over U by modifying L as follows:

- 4) G(A) = L(A) if $\rho(E(\pi(A)),S) > 1/\sup A;$
- 5) $G(A) = [\inf L(A), \infty) \cup S \inf \rho(E(\pi(A)), S) = 1/(2 \sup A);$
- 6) $G(A) = S \text{ if } \rho(E(\pi(A)), S) < 1/(4 \text{ sup } A)$.

For $1/(2 \sup A) < \rho(E(\pi(A)),S) < 1/\sup A$, G(A) is defined so that $L(A) \subseteq G(A) \subseteq [\inf L(A),\infty)$, and for $1/(4 \sup A) < \rho(E(\pi(A)),S) < 1/(2 \sup A)$, $S \subseteq G(A) \subseteq [\inf L(A),\infty)$ U S.

Note that for $A \in \mathcal{U}$, either $G(A) \cap S = \emptyset$ or $G(A) \supset S$, and $G(A) \cap (A \cup S) \neq \emptyset$.

Finally, G is defined over $2^{X} \setminus \mathcal{U}$ by the formula $G(A) = E(\pi(A))$. Since \mathcal{U} is open, it suffices to verify continuity of G at each $B \in \text{bd}\mathcal{U}$. Note that, since the condition c) in the definition of \mathcal{U} is automatically satisfied by each $B \in \text{bd}\mathcal{U}$, we must have either $E(\pi(B)) = S$ or $B \cap S \neq \emptyset$, otherwise $B \in \mathcal{U}$. If $G(B) = E(\pi(B)) = S$, then for any $A \in \mathcal{U}$ near B, either G(A) = S by virtue of rule 6) above, or $1/(4 \text{ sup } A) < \rho(E(\pi(A)), S)$, in which case both L(A) and G(A) are near S. If $E(\pi(B)) \neq S$ and $B \cap S \neq \emptyset$, then for any $A \in \mathcal{U}$ near B, L(A) is near $E(\pi(B))$ and $1/\sup A \leq \rho(E(\pi(A)), S)$, hence G(A) = L(A) is near $G(B) = E(\pi(B))$. Thus G is a map.

We next verify that G has the required properties i) through v) of (5.1). Since G extends E, property i) is clear. Since either $G(A) \cap S = \emptyset$, $G(A) \supset S$, or

 $G(A) = E(\pi(A)) \supset \pi(A)$, property ii) is satisfied. Property iii) is immediate from the definition of G over $2^X \setminus \mathcal{U}$. Property iv) is clear if $A \in \mathcal{U}$. On the other hand, if $A \subset [0,\infty)$ with $A \notin \mathcal{U}$ and $G(A) = E(\pi(A)) \neq S$, then $E(\pi(A)) \not\supset \omega([\inf \widetilde{\pi}(A), \sup \widetilde{\pi}(A)])$. However, this contradicts the hypothesis that $G(A) \supset \pi([\inf A, \sup A]) = \omega(\widetilde{\pi}([\inf A, \sup A]))$, since $\widetilde{\pi}([\inf A, \sup A]) \supset [\inf \widetilde{\pi}(A), \sup \widetilde{\pi}(A)]$. Finally, property v) has been previously noted for $A \in \mathcal{U}$, and is obvious for $A \in 2^X \setminus \mathcal{U}$. This completes the proof of (5.1) in the case n > 1.

In the cases n=0,1, a streamlined version of the above construction yields a conservative map $G\colon 2^X\to C(X)$ with the required properties. For either K=I or K=S, let $E\colon 2^K\to C(K)$ be any retraction such that $E(A)\supset A$ for each $A\in 2^K$. Let $V=\{A\in 2^X\colon A\subset [0,\infty)\}$. As above, an approximate lifting map $L\colon V\to C(X)$ may be constructed such that for each $A\in V$, sup $A\in L(A)\subset [0,\infty)$ and $\pi(L(A))\supset E(\pi(A))$, with inf $L(A)\to\infty$ and $\rho(\pi(L(A)),E(\pi(A)))\to 0$ as sup $A\to\infty$. In fact, for n=0, L is constructed in the same manner as above for n>1. For n=1, L is constructed such that $L(A)\subset [0,\infty)$ is the unique lift of $E(\pi(A))$ through $a=\sup A$ if $\rho(E(\pi(A)),S)\geq 1/a$; $a\in L(A)\subset [a-2,a+2]$ with $\pi(L(A))\supset E(\pi(A))$ if $0<\rho(E(\pi(A)),S)<1/a$; and L(A)=[a-2,a+2] if $E(\pi(A))=S$.

In either case, L extends to a map G: $2^X \to C(X)$ by the formula $G(A) = E(\pi(A))$ for $A \in 2^X \setminus V$. Properties i) and iii) are immediate from the definition of G. Property ii) is a

consequence of the fact that $E(\pi(A)) \supset \pi(A)$, and that $G(A) \subset [0,\infty)$ when $A \subset [0,\infty)$. Property iv) is satisfied vacuously. And finally, $G(A) \cap A \neq \emptyset$ for all $A \in 2^X$, since $G(A) = E(\pi(A)) \supset \pi(A)$ if $A \cap K \neq \emptyset$, and $G(A) = L(A) \ni \sup A$ if $A \cap K = \emptyset$.

8. Construction of the Map H

Let e: $K \times [0,\infty) \to C(K)$ be an admissible expansion given by (6.1). Set $N = \{N \in C(K) : e(N,t) = K \text{ for some } t\}$. By the expansion property 3), N is a neighborhood of K.

The domain $\hat{D}\subset C(X)\times C(X)$ of H can be partitioned into four subdomains as follows:

$$\begin{array}{l} \partial_1 = \{ (M,N) : M \not\supseteq K \supset N \in N \}; \\ \partial_2 = \{ (M,N) : M \cap K = \emptyset \text{ and } N \subset K \}; \\ \partial_3 = \{ (M,N) : M \cap K = \emptyset \text{ and } N \not\supseteq K \}; \text{ and } \\ \partial_4 = \{ (M,N) : M \cap K = \emptyset = N \cap K \text{ and } M \cap N \neq \emptyset \}. \end{array}$$

We will define H separately over each $\hat{\theta}_{i}$ × [0,1].

$$\begin{cases} H(M,N,t) = M, & 0 \le t \le 1/4; \\ H(M,N,t) = K, & 1/2 \le t \le 3/4; \text{ and} \end{cases}$$

 $\left\{ H\left(M,N,1\right) \right. = N.$

For (M,N) $\in \partial_1$, set

Use the natural path in C(X) from M to K to define H(M,N,t) for $1/4 \le t \le 1/2$, and reverse the e-expansion $\{e(N,t):$

For (M,N) $\in \mathcal{D}_2$, let N* = e(N, sup M); then N \subset N* \in C(K). Set

 $0 \le t < \infty$ of N to K to define H(M,N,t) for $3/4 \le t \le 1$.

```
\begin{cases} H(M,N,0) = M; \\ H(M,N,1/4) = [\inf M,\infty) \cup K; \\ H(M,N,1/2) = K; \\ H(M,N,3/4) = N*; \text{ and } \\ H(M,N,1) = N. \end{cases}
```

Use the natural paths in C(X) to define H(M,N,t) for $0 \le t \le 1/4$ and $1/4 \le t \le 1/2$; reverse the free expansion (via an arc-length metric) in C(K) from N^* to K to define H(M,N,t) for $1/2 \le t \le 3/4$; and reverse the e-expansion from N to N^* to define H(M,N,t) for 3/4 < t < 1.

For
$$(M,N) \in \partial_3$$
, set
$$\begin{cases} H(M,N,0) &= M: \\ H(M,N,1/4) &= [\inf M,\infty) \cup K; \\ H(M,N,1/2) &= [\max\{\inf M,\inf N\},\infty) \cup K; \text{ and } \\ H(M,N,t) &= N, 5/8 < t < 1. \end{cases}$$

Use the natural paths in C(X) to define H(M,N,t) for all other t.

Define an index map $\tau\colon \hat{\mathcal{D}}_4 \to [0,\infty)$ by the formula $\tau(M,N) = \max\{\inf N - \inf M - 2,0\} \cdot \rho(\pi(N),K). \text{ For } (M,N) \in \hat{\mathcal{D}}_4, \text{ let } N^* = \tilde{e}(N,\tau(M,N)), \text{ where } \tilde{e} \text{ is a lift for e.}$ Then $N^* \in C(X)$, with $N \subset N^* \subset [\inf N - 1, \sup N + 1]. Set$

Use the natural paths in C(X) to complete the definition of H(M,N,t) for $0 \le t \le 3/4$, and reverse the \tilde{e} -expansion from N to N* to define H(M,N,t) for 3/4 < t < 1.

We now verify that H is a map. For $i \neq j$, $\partial_i \cap \overline{\partial}_i \neq \emptyset$ only if (i,j) = (1,2), (1,3), (1,4), (2,3), or (3,4). Since each restriction H/\hat{D}_{i} × [0,1] is continuous, it suffices to check continuity of H at boundary points in the above cases. Considering first the case (i,j) = (1,2), let (M_k, N_k) be a sequence in θ_2 converging to $(M,N) \in \theta_1$. Then sup $M_k \to \infty$, and since $N_k \to N \in N$, we have $N_k^* = K$ for almost all k (use continuity of e, and the expansion properties 2) and 3)). It follows that $H(M_k, N_k, t_k) \rightarrow H(M, N, t)$ whenever $t_k \rightarrow t$. The cases (i,j) = (1,3) or (2,3) are routine. Consider a sequence (M_k, N_k) in ∂_A converging to $(M,N) \in \partial_1$. Then if $N \neq K$, $\tau(M_k,N_k) \rightarrow \infty$ and $N_k^* \rightarrow K$; if N = K, obviously $N_k^* \to K$. This implies that $H(M_k, N_k, t_k) \to M_k$ H(M,N,t) whenever $t_k \rightarrow t$. Finally, consider a sequence (M_k, N_k) in ∂_A converging to $(M, N) \in \partial_A$. Then $\pi(N_k) = K$ for almost all k, hence $\tau(M_k, N_k) = 0$ and $N_k^* = N_k^*$, implying that $H(M_k, N_k, t_k) \rightarrow H(M, N, t)$ whenever $t_k \rightarrow t$. This completes the verification of continuity for $H: \mathcal{D} \times [0,1] \rightarrow C(X)$.

Clearly, H satisfies the required conditions i) and ii) of (5.2). Conditions iii) and iv) are also clear, except possibly for (M,N) $\in \hat{\mathcal{D}}_4$ with N* \neq N. However, N* \neq N implies τ (M,N) > 0, which implies that inf N \geq inf M + 2. Then inf N* \geq inf N - 1 \geq inf M, and condition iii) is satisfied. And, diam(M U N) \geq 2 implies that π (M U N) = K, so condition iv) is satisfied vacuously. This completes the proof of (5.2).

9. Means and Pseudo-Means

Let Y be a continuum. A map λ : Y × Y → Y is called a mean if $\lambda(x,y) = \lambda(y,x)$ and $\lambda(y,y) = y$ for all $x,y \in Y$. A map λ : Y × Y → C(Y) with the same properties is called a pseudo-mean for Y [7].

Every hyperspace 2^X admits a mean: define $\lambda(A,B) = A \cup B$. If there exists a retraction $2^X + C(X)$, then C(X) also admits a mean, and X admits a pseudo-mean. Thus we have yet another necessary condition for the existence of a hyperspace retraction. In this section we describe examples from the class of regular half-line compactifications which show that the existence of a pseudo-mean neither implies nor is implied by the subcontinuum approximation property of section 2, and that both conditions together are still not sufficient for the existence of a hyperspace retraction. Recall that a regular compactification $X = [0,\infty) \cup K$ has the subcontinuum approximation property if and only if the remainder K is either an arc or a simple closed curve. We do not know in general which regular compactifications admit pseudo-means.

- 9.1. Example. Let $\pi \colon [0,\infty) \to I$ be the periodic surjection defined as follows:
 - i) $\pi(k) = 0$ if k is an odd integer;
 - ii) $\pi(k) = 1$ if $k \equiv 2,4 \pmod{6}$;
 - iii) $\pi(k) = -1$ if $k \equiv 6 \pmod{6}$; and
 - iv) π is linear over each interval [k, k + 1].

Then for $X = X(\pi)$, no retraction $2^X \to C(X)$ exists, since $X \not\approx X_0$; nonetheless, a pseudo-mean may be constructed for X, and in fact C(X) admits a mean.

- 9.2. Example. Let $\pi\colon [0,\infty) \to I$ be the periodic surjection defined by:
 - i) $\pi(k) = 0$ if k is odd;
 - ii) $\pi(k) = 1$ if $k \equiv 2,4 \pmod{8}$;
 - iii) $\pi(k) = -1$ if $k \equiv 6.8 \pmod{8}$; and
- iv) π is linear over each interval [k,k + 1].

Then $X = X(\pi)$ does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean $\lambda: X \times X \rightarrow$ C(X). Let k denote an integer of the form 8n + 2. Then consideration of $\lambda(k-t, k+t)$, for 0 < t < 1 and large n, shows that either $\lambda(k-1, k+1) \approx (approximates)$ $\{k-1\}$ or $\lambda(k-1, k+1) \approx \{k+1\}$. Similarly, either $\lambda(k+1, k+3) \approx \{k+1\} \text{ or } \lambda(k+1, k+3) \approx \{k+3\}.$ If $\lambda(k-1, k+1) \approx \{k-1\}$, then $\lambda(k, k+2) \approx \{k\}$; if $\lambda(k + 1, k + 3) \approx \{k + 3\}, \text{ then } \lambda(k, k + 2) \approx \{k + 2\}.$ Thus, either $\lambda(k-1, k+1) \approx \{k+1\}$ or $\lambda(k+1, k+3) \approx$ $\{k + 1\}$. Letting $n \to \infty$, we see by continuity of λ that, for every $s \in I \subset X$ and the point $0 \in I$, either $\lambda(0,s) \subset$ [0,1] or $1 \in \lambda(0,s')$ for some s' between 0 and s. (Suppose that $\lambda(k-1, k+1) \approx \{k+1\}$ for infinitely many k as above. Then for every $r \in [k-2, k]$, either $\lambda(r, k+1) \subset$ [k, k+2] or $\lambda(r', k+1) \cap \{k, k+2\} \neq \emptyset$ for some r' between k - 1 and r. Note that $\pi(k - 2) = -1$, $\pi(k - 1) =$ $\pi(k + 1) = 0$, and $\pi(k) = \pi(k + 2) = 1$. An analogous argument shows that either $\lambda(k + 3, k + 5) \approx \{k + 5\}$ or

 $\lambda(k+5, k+7) \approx \{k+5\}$, which implies that for every $s \in I$, either $\lambda(0,s) \subset [-1,0]$ or $-1 \in \lambda(0,s')$ for some s' between 0 and s. Consequently, $\lambda(0,s) = \{0\}$ for every $s \in I$. However, this implies that $\lambda(k-1, k) \approx \{k-1\} \approx \lambda(k-1, k+1)$ and also that $\lambda(k, k+1) \approx \{k+1\} \approx \lambda(k-1, k+1)$, a contradiction. Thus X does not admit a pseudo-mean.

- 9.3. Example. Let T be a triod, with branch point v and endpoints e_1 , e_2 , and e_3 , and let $\pi\colon [0,\infty)\to T$ be the periodic surjection defined as follows:
 - i) $\pi(k) = v$ if k is odd;
 - ii) $\pi(k) = e_1$ if $k \equiv 4 \pmod{8}$;
 - iii) $\pi(k) = e_2$ if $k \equiv 2,6 \pmod{8}$;
 - iv) $\pi(k) = e_3$ if $k \equiv 8 \pmod{8}$; and
- v) π is linear over each interval [k, k + 1]. Let X = X(π). It can be shown that C(X) admits a mean.
- 9.4. Example. For T as above, let $\pi\colon [0,\infty)\to T$ be the periodic surjection defined by:
 - i) $\pi(k) = v$ if k is odd;
 - ii) $\pi(k) = e_1$ if $k \equiv 2 \pmod{6}$;
 - iii) $\pi(k) = e_2$ if $k \equiv 4 \pmod{6}$;
 - iv) $\pi(k) = e_3$ if $k \equiv 6 \pmod{6}$; and
 - v) π is linear over each interval [k, k + 1].

Then $X = X(\pi)$ does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean λ . Let k denote an integer of the form 6n+1. Consideration of $\lambda(k, k+t)$ and $\lambda(k+2, k+2-t)$, for $0 \le t \le 1$ and

large n, shows that λ must have the following property with respect to e_1 : for each $x \in [v,e_1]$, either $\lambda(v,x) \subset [v,e_1]$ or $e_1 \in \lambda(v,x')$ for some x' between v and x. Of course, λ has the analogous properties with respect to e_2 and e_3 .

Now, consideration of $\lambda(k+1-t,k+1+t)$, for $0 \le t \le 1$ and k=6n+1 as above, shows that for large n, either $\lambda(k,k+2) \approx \{k\}$ or $\lambda(k,k+2) \approx \{k+2\}$. We may suppose the former (for infinitely many n). Then consideration of $\lambda(k,k+2+t)$, for $0 \le t \le 1$, together with the above property of λ with respect to e_2 , shows that $\lambda(v,x)=\{v\}$ for each $x\in [v,e_2]$. But this implies that $\lambda(k+2,k+3) \approx \{k+2\} \approx \lambda(k+2,k+4)$ and also that $\lambda(k+4,k+3) \approx \{k+4\} \approx \lambda(k+4,k+2)$, a contradiction. Thus X does not admit a pseudo-mean.

There also exist regular compactifications $X = [0,\infty) \cup S$ similar to the above examples. Let $\pi\colon [0,\infty) \to S$ be the periodic surjection defined by $\pi(t) = e^{i\pi t}$, $0 \le t \le 3 \pmod 4$, and $\pi(t) = e^{-i\pi t}$, $3 \le t \le 4 \pmod 4$. Then for $X = X(\pi)$, C(X) admits a mean. On the other hand, there exist periodic surjections $[0,\infty) \to S$ for which the corresponding compactifications do not admit pseudo-means. An example is the map π defined by $\pi(t) = e^{i2\pi t}$, $0 \le t \le 2 \pmod 3$, and $\pi(t) = e^{-i2\pi t}$, $2 < t < 3 \pmod 3$.

If there exists a *conservative* retraction $2^X \to C(X)$, then there exists a *conservative* pseudo-mean $\lambda: X \times X \to C(X)$, i.e., $\lambda(x,y) \cap \{x,y\} \neq \emptyset$ for all x,y. It can be shown that

a regular compactification $X = [0,\infty)$ U K admits a conservative pseudo-mean only if X is homeomorphic to either X_0 or X_1 . Thus, in the class of regular half-line compactifications, the existence of a conservative pseudo-mean is equivalent to the existence of a conservative hyperspace retraction. It seems unlikely that this would hold in general, but we do not have a counterexample.

References

- [1] K. Borsuk and S. Mazurkiewicz, Sur l'hyperespace d'un continu, C. R. Soc. Sc. Varsovie 24 (1931), 149-152.
- [2] J. T. Goodykoontz, Jr., C(X) is not necessarily a retract of 2^X, Proc. Amer. Math. Soc. 67 (1977), 177-178.
- [3] _____, A nonlocally connected continuum X such that C(X) is a retract of 2^X , Proc. Amer. Math. Soc. 91 (1984), 319-322.
- [4] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- [5] R. J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967), 35-46.
- [6] S. B. Nadler, Jr., Some problems concerning hyperspaces, Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, pp. 190-197.
- [7] _____, Hyperspaces of sets, Monographs in Pure and Applied Math., vol. 49, Dekker, New York, 1978.
- [8] J. T. Rogers, Jr., The cone = hyperspace property, Canad. J. Math. 24 (1972), 279-285.
- [9] M. Wojdyslawski, Retractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.

Louisiana State University
Baton Rouge, Louisiana 70803