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A HYPERSPACE RETRACTION THEOREM FOR A
CLASS OF HALF—LINE COMPACTIFICATIONS

D. W. Curtis

1. Hyperspace Retractions

For X a metric continuum, let 2X be the hyperspace of
all nonempty subcompacta, with the Hausdorff metric topology,
and let C(X) < 2% be the hyperspace of subcontinua. If X
is locally connected, both C(X) and 2X are absolute
retracts [9], and in particular C(X) is a retract of 2X.

In the non~locally connected case, neither hyperspace is

an absolute retract, but we may still ask whether C(X) is

a retract of 2X. Until now, this question has been answered
in only two specific cases. In 1977, Goodykodntz [2] con-
structed a l-dimensional continuum X in E3 such that C(X)

is not a retract of 2X. And in 1983, Goodykoontz [3] showed
that for X the cone over a convergent sequence, C(X) Zs a
retract of 2X. 'Thus, for X non-locally connected, C(X)

is not necessarily a retract of 2X, but it may be. (Nadler
[6] had earlier shown the existence of surjections from 2X
to C(X), in all cases.)

At present, a completely general answer for the hyper-
space retraction question seems out of reach. In this paper,
we answer the question for a certain class of non-locally
connected continua, large enough to be of interest, but
sufficiently delimited so as to be manageable. This class
will consist of those half-line compactifications with

locally connected remainder which are "regular"” in the
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following sense. Let X = [0,x») Uy K denote an arbitrary
half-line compactification with a nondegenerate locally
connected remainder K (which is therefore a Peano continuum).
In this situation, there always exists a retraction X - K.
We say that X is a regular compactification if there exists
a retraction r: X = K such that, for some homeomorphism
¢: [0,®) > [0,~), the map r o $: [0,») » K is a periodic
surjection, i.e., there exists p > 0 such that r{(¢(t)) =
r(¢(t + p)) for all t. Our main result is that the only
regular half-line compactifications for which there exist
hyperspace retractions 2X + C(X) are the following: the
topologist's sine curve; the circle with a spiral; and a
sequence of other regular compactifications with a circle
as remainder, to be described below.

The case of the circle with a spiral (labelled below
as Xl) is of particular interest. It is known that Cone
Xl does not have the fixed point property [5], and that

C(Xl) is homeomorphic to Cone Xl [8]. ©Noting this, Nadler

X
[7] conjectured that 2 1 does not have the fixed point

property (which would make it the first such example to be

known), and that the way to prove this is to construct a

X
retraction from 2 1 to C(Xl). Our result confirms his

conjecture.

Every periodic surjection m: [0,«) =+ K onto a Peano
continuum induces a regular compactification X{(w), which
may be defined as follows:

X(m) = {(t,m(t)): t > 0} u{(»,k): k € K} <

[0,°] x K.
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Alternatively, we may consider X (m) to be the disjoint
union [0,«) U K, with the topology defined by the open
base
{U: U open in [0,*)} u {V U (n_l(V) n (N,»)):
V open in K and N < =},

Clearly, every regular half-line compactification is homeo-
morphic to some X(w).

Let I = [-1,1], and S = {z: |z| = 1}, the unit circle
in the complex plane. Define Tot [0,©) - I by ﬂo(t) =
sin 7 t; define Lo [0,») » § by nl(t) = ei“t; and for n > 1,

define L [0,) = S by the formulas

e 5 <t <1 (mod 2),
m o(t) = .
n eI 1 <t <2 (mod 2).
Then X0 = X(no) is the topologist's sine curve; Xl = X(nl)

is the circle with a spiral; and for n = 2,3,-~-,Xn = X(nn)
is the regular compactification obtained by alternately
"wrapping” and "unwrapping" subintervals of [0,«) about S,

with each subinterval covering S n/2 times. Note that the

spaces XO’Xl’XZ’... are topologically distinct.
X, Xl X, X3
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Theorem. For X a regular half-line compactification,
there exists a hyperspace retraction 2X + C(X) if and only

i1f X is homeomorphic to some X, n= 0,1,2,+«.,

Of course, no hyperspace retraction 2X + C(X) for non-
locally connected X can be guite as nice as those which may
be constructed in the locally connected case. For locally
connected X, we may use a convex metric d, and define a
retraction R: 2% C(X) by taking R(A) = N&(A;t), where

t > 0 is the smallest value for which Nd

a retraction has the property that R(A) > A for each A € 2X.

(A;t) € C(X). Such

Clearly, this is impossible for non-locally connected X.
However, there may exist a retraction R: 2X + C(X) such
that R(A) n A # g for each A (we say that R is conservative).
In the course of proving the above theorem, it will be shown
that only for X0 and Xl do there exist conservative hyper-
space retractions.

In the final section of the paper, we note the connec-
tion between the existence of a hyperspace retraction
2X + C(X) and the existence of a mean for C(X), and we give
examples of continua X (from the class of regular half-line

compactifications) for which C(X) does not admit a mean,

thereby answering a question of Nadler [7].

2. A Necessary Condition

Let X be any metric continuum, and let p denote the
Hausdorff metric on 2X. We say that X has the subcontinuum
approximation property if for each ¢ > 0 there exists 6§ > 0

such that, for all L,M € C(X) with p(L,M) < &, and for
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every subcontinuum P ¢ M, there exist P',M' € C(X) with
p(P,P') < ¢, p(M,M') < g, and L U P' « M'. (In the locally
connected case we may of course choose M' such that
L UMcM', but in general M and M' will be disjoint.)
We will show that this property is a necessary condition
for the existence of a hyperspace retraction 2X + C(X),
and that a regular half-line compactification has the pro-
perty if and only if the remainder is either an arc or a
simple closed curve.

In what follows, we shall have occasion to use order
arcs and segments in the hyperspaces ZX and C(X). An arc
o < 2X is an order are if for each E,F € o, either Ec F
or F « E. For elements A,B € 2X, there exists an order arc
o with Ng = A and Ug = B if and only if A < B and each com-
ponent of B intersects A. Every order arc o can be
uniquely parametrized as a segment o: [0,1] - ZX with
respect to a given Whitney map w: ZX + [0,°), 1.e.,
o = {a(t): 0 < t <1}, with a(0) = na, a(l) = Ua, and
wla(t)) = (1 - t)wl(a(0)) + tw(a(l})) for each t. (Order
arcs were first used by Borsuk and Mazurkiewicz [l]‘to
show that C(X) and 2X are arcwise connected. Segments
were introduced by Kelley [4], who also formulated the
necessary and sufficient conditions given above for the
existence of an order arc, or segment, from A to B.) Let
T(X) = {a € C(2X): o is an order arc or o = {A} for A € 2X},
and let S{(w) be the function space of all segments
a: [0,1] - 2X (including the constant maps), with the

topology of uniform convergence. Then the spaces [ (X) and
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S(w) are compact, and the natural correspondence o + {a(t):
0 <t < 1} is a homeomorphism from S(w) to T(X) (for a com-
plete discussion, see [7]). Henceforth, we implicitly use
this correspondence wherever convenient. Without confusion,
we let p denote both the Hausdorff metric on 2X and the

sup metric on S(w).

2.1. Lemma. Let P,M € C(X), with P <« M. Then for
each € > 0 there exists § > 0 such that, for every L € C(X)
with p(L,M) < 8, there exist order arcs o c 2X and B < C(X)
with a(l) = L, B(0) = P, B(l) = M, and o(a,B) < E.

Proof. Suppose that for some € > 0 there exists a
sequence {Li} in C(X) converging to M, with no L, satisfying
the required condition. Choose a finite subset F < P such
that p(F,P) < €. For each x € F and each i, choose x5 € Li
and an order arc o, < C(X) such that x; + x, a  (0) = {xi},

i i
and a_ (1) = Li’ Then for each i let ay be the order arc

in 2% defined by o, (t) = Ufa, (t): x € F}. Thus a,(0) =
i
{xi: x € F} and ai(l) = Li. Since the space T (X) is com-

pact, some subsequence of {ai} must converge to an order

arc A in 2X with A(0Q) F and A(l) = M. Define an order
arc B in C(X) by B(t) =P U A(t). Thus B(0) = P and
B(l) = M. Since p(A,B) < €, we have o(ai,B) < £ for some

large i, contradicting our supposition about the sequence

{L.1}.
1

2.2. Proposition. Let X be any continuum for which
there exists a hyperspace retraction P C(X). Then X

has the subcontinuum approzximation property.



TOPOLOGY PROCEEDINGS Volume 11 1986 35

Proof. Suppose X does not have the property. Then by
compactness of C(X), there exist P,M € C(X) with P <« M, and
a sequence {Li} in C(X) converging to M such that, for some
¢ > 0, there do not exist P',M' € C(X) with p(P,P') < ¢,
p(M,M') < ¢, and Li U P' ¢« M'" for some i. Let R: 2X + C(X)
be a retraction. Choose 0 < n < ¢ such that, for every

A€ 2X with p(A,MO) < 1 for some subcontinuum M, < M,

0
p(R(A),MO) < €. By (2.1), for sufficiently large i there

exist order arcs g < 2x and 8 < C(X) with o(l) = Li'
g(0) = P, B(1l) = M, and p{a,B) < n. Then the continua
P! = R(a(0)) and M' = U{R(a(t)): 0 < t < 1} satisfy the

conditions p(P,P') < g, p(M,M') < ¢, and Li U P' c M,

contradicting our supposition.

Note. The example constructed by Goodykoontz in [2]
does not have the subcontinuum approximation property;
our proof for (2.2) is a generalization of his argument

for the non-existence of a hyperspace retraction.

2.3. Lemma. Let m: I - K be a map of an arc onto a
Peano continuum which is neither an arc nor a simple closed
curve. Then for some subarec J < I, w(J) <s a proper sub-
continuum of K containing a simple triod.

Proof. Let [ denote the collection of all proper sub-
continua of K which are of the form 7n(J) for some subarc J.
Since K is neither an arc nor a simple closed curve, there
must be some L € / which is not an arc. Then the Peano
continuum L either contains a simple triod or is a simple
closed curve. In either case there exists E € [ properly

containing L, and therefore containing a simple triod.
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2.4. Lemma. Let w; I > T be a map of an are onto a
simple triod. Then there exists a subcontinuum p c T such
that P # w(J) for any subare J c I.

Proof, Choose a sequence {Tn} of triods in T such that
Tn < int Tn+l' Suppose that for each n there exists a
subarc Jn c I with n(Jn) = Tn' We may assume that each
endpoint of Jn is mapped to an endpoint of Tn' Since for
m < n, Tm < int Tn’ we must have either Jm n Jn =g or
Jn < Jn' Choose § > 0 such that for each A <« I with
diam A < § and each n, w(A)} contains at most one endpoint
of Tn‘ Since one of the endpoints of Tn can be the image
only of interior points of Jn’ it follows that diam Jn > 28
for each n. Also, if m < n and Jm < Jn’ then diam Jn >
diam I * 8. The sequence {Jn} in C(I) clusters at some
nondegenerate J. But for any pair of distinct arcs I
Jn sufficiently close to J, it's impossible that either
Jm n Jn =g or Jm c Jn' Thus some Tn must satisfy the con-

clusion of the lemma.

2.5, Proposition. A regular half-line compactifica-
tion has the subcontinuum approximation property if and
only 1f the remainder is either an arc or a simple closed
curve.

Proof. Let X = [0,®) U K be the regular half-line
compactification corresponding to a periodic surjection
w: [0,») +» K, and let I < [0,») be a subarc such that 7
goes through at least two complete cycles over I.

Suppose first that K is neither an arc nor a simple

closed curve. Applying (2.3) to the restriction n/I, we
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obtain a proper subcontinuum M < K such that M contains a
simple triod T and M = 1(J) for some subarc J « I. Thus,
there exists a sequence {Ji} of subarcs in [0,=) converging
to M, and since M # K, every M' € C(X) sufficiently close
to M and containing some Ji must itself be a subarc of
[0,2). Let r: K + T be any retraction, and apply (2.4)
to the map r ¢ m: I - T. We obtain a subcontinuum P < T
such that P # n(IO) for any subarc I, = 1. Thus, every
P' € C(X) sufficiently close to P must lie in K. It fol-
lows that X does not have the subcontinuum approximation
property with respect to the pair (M,P).

Now suppose that K is either an arc or a simple closed
curve, and consider any P,M € C(X) with P « M. It suffices
to verify the subcontinuum approximation property with
respect to this pair (see the proof of (2.2)). The property
is obvious if either M < [0,») or M > K, so we may suppose
that M is a proper subcontinuum of K (and therefore an
arc). Each L € C(K) which is close to M intersects M, so
in this case we may take M' = L UM and P' = P. And for
any arc L < [0,») close to M, there is a subarc L0 c L

close to P, so we may take M' = L and P' = L This

0°
completes the argument that X has the subcontinuum approxi-
mation property.

It may be of interest to note that the subcontinuum
approximation property is implied by property [K], which
was introduced by Kelley [4] in the study of hyperspace

contractibility and which has been used extensively in

recent years (see [7]). In the class of regular half-line
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compactifications, the only spaces with property [K] are
the spaces X0 and Xl which admit conservative hyperspace
retractions. Thus, the spaces xn for n > 1 show that pro-
perty [K] is not necessary for the existence of hyperspace
retractions. Whether there is any general relationship
between property [K] and the existence of conservative

hyperspace retractions remains an open question.

3. A Monotonicity Requirement

Let X = [0,») U K be the regular half-line compactifi-
cation corresponding to a periodic surjection w: [0,x) » K,
and suppose there exists a hyperspace retraction X . C(X).
By (2.2) and (2.5), the remainder K is either an arc or a
simple closed curve. In the case that K is an arc, we say
that 7 is interior monotone if, for each arc J < [0,x) such
that n(J) N 3K = ¢, the restriction n/J is monotone (perhaps
nonstrictly). A similar definition is made in the case that
K is a simple closed curve, using a covering projection
(-»,») » K, Specifically, let 7: [0,») » (-»,o) be a lift
of 7, and set R = im T. We say that % is interior monotone
if T/J is monotone for each arc J < [0,«) such that
T{(J) n aﬁ = ¢. We will show that n, or %, must be interior
monotone. It follows easily that either X =~ XO (if K is an
arc), or X s Xl (if K is a simple closed curve and i is un-
bounded), or X =~ Xn for some n > 1 (if % is bounded).

We will need the following result concerning the com-

position semigroup S of all self-maps of the interval [0,1]

which are fixed on the endpoints.
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3.1. Proposition. For every fl,f2 € 5§ and ¢ > 0, there
exist 9,:9, € S such that d(fl ° gy, f2 ° 92) < €.

Proof. For each pair (m,n) of positive integers with
m > n, let P(m,n) denote the finite set of piecewise-linear
maps f in 5 satisfying the following conditions:

1) for each 0 < j < m, £(j/m) = k/n for some 0 < k

A

and

2) for each 0 < j <m, |[£((j + 1)/m) - £(j/m) |

iA

1/n,
and f is linear over the interval [j/m, (j + 1)/m].

Choose n such that 1/n < €/4, and choose m, ,m, such
that |£;(s) - £;(t)| < 1/n whenever |s - t| < 1/m;, i =1,2.
Then there exist maps ¢i € P(mi,n) with d(fi,¢i) < 1l/n +
1/2n + 1/2n < ¢/2, i = 1,2. We show that, for some
m > max{ml,mz}, there exist g, € P(m,m,;) and g, € P(m,m,)
with ¢l ° g, = ¢2 ° g, (note that the compositions are
members of P(m,n)). It then follows that d(fl ° gy, f2 ° 92)
< €,

The proof is by induction on my + m,. If m +m, = 2n

(the least possible value), then m, m, = n and ¢l = ¢2 =
id. In this case take m = n and gy =9, = id.

Now assume m; + m, > 2n. Suppose first that for some
j <my, ¢;(3/m) = ¢;((3 + 1)/m)). Then we may consider the
corresponding ¢l € P(ml - 1,n), obtained topologically by
collapsing to a point the arc [j/ml, (j + l)/ml] X ¢l(j/m1)
on the graph of ¢1. Application of the inductive hypothesis
to the pair ¢1,¢2 gives maps Y, € P(mo,ml - 1) and
Y, € P(mo,mz), for some m; > max{ml - l,mz}, such that

¢1 ° ¥, = ¢2 ° Y,. It's not difficult to see that this

implies the corresponding result for the pair ¢1’¢2' of
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course, the same argument works if ¢2(j/m2) = ¢2((j + l)/m2)
for some j < m, .
Thus, we may suppose that neither b is constant on
any subinterval. Then there exists a least integer k for
which ¢i(j/mi) = k/n and ¢i((j - l)/mi) = ¢i((j + l)/mi) =
(k = 1)/n, for some 1 < j < m, and i = 1,2; suppose this
holds for i = 1. Consider the corresponding 51 € P(ml - 2,n),
obtained topologically by identifying the points ((j - l)/ml,
(k = 1)/n) and ((j + l)/ml, (k - 1)/n) of the restriction
¢1/00,(3 - 1)/m] v [(J + 1)/m;,1]. Applying the inductive
hypothesis to the pair $l’¢2’ we obtain maps Y, € P(mo,ml - 2)

and Y, € P(mo,mz), for some m, > max{ml - 2,m2}, such that

0
$l °© Yy, = ¢, o Y,. Note that by the choice of k, if
¢2(i/m2) = (k - 1)/n, then either ¢2((i - l)/m2) = k/n or
¢2((i + 1)/m2) = k/n. Clearly, the above implies the

corresponding result for the pair IEAZE This completes

the proof of the proposition.

3.2. Remark. If sup £71(0) < inf £;1(1) for each
i =1,2, then there exists § > 0 (independent of g) such
that the maps g1:9, may be chosen so that sup(fi ° gi)_l

(10,8]) < inf(f; o g ™h([1 - §,11), i = 1,2.

3.3. Theorem. Let X = [0,») U K be a regular half-
line compactification for which there exists a hyperspace
retraction 2x + C(X). Then X w~ Xn for some n = 0,1,2,¢°-.

Proof. As observed at the beginning of this section,
K is either an arc or a simple closed curve. We consider
first the case that K is an arc. Suppose 7 is not interior

monotone. Then it's not difficult to see that there exists
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a proper subarc ¢ of K, with endpoints v and w, and points

---,tn in (0

,®), with t, < t

< see < tn and n > 3, such

o0 0<%
that:
1) ﬂ(to) = 1T(tz) = see = y;
2) -n-(tl) = 1T(t3) = eee = W;
3) n([to,tn]) = g, and [tO’tn] is a maximal subinterval

in [0,») with respect to this property; and
4) for each i = 1,+++,n, the subsets n_l(v) n [ti_l,ti]

and n-l(w) n [t;_;,t;] lie in disjoint subintervals.

-1
An application of (3.1) to the maps n|[t0,tl] and

n|[tl,t2], suitably re-parametrized, shows that for every

¢ > 0 there exist maps g, [0,1] ~» [to,tl] and gyt [0,1] ~»

[tl’tZ] such that gl(O) =t = 92(0), gl(l) =ty gz(l) =ty

and d(ngl(t), ngz(t)) < ¢ for all 0 < t < 1. Furthermore,

we may assume by (3.2) and the above property 4) that,

independently of ¢, there exist neighborhoods N(v) and N(w)

in ¢ of v and w such that for each i 1,2,

sup (T o gi)-l(N(w)) < inf (7 o gi)—l)(N(v)).

For maps 9, and g, as above, consider the path

a: [0,1] ~ 2X between {tl} and {to,tz}, defined by

Let R: 2X

a(t) {gl(t),gz(t)}. + C(X) be a retraction.

If ¢ > 0 is sufficiently small and t, sufficiently large

0

(use the periodicity of w), then for each 0 <t <1, m1R{a(t))

is a small diameter continuum lying in some neighborhood of

¢ which is a proper subset of K. Since U{R(a(t)):
0 <t < 1} is a continuum containing R(a(0)) = {tl}, this
implies that U{R(a(t))} < [0,=).

Moreover, since

sup(m o gi)-l(N(w)) < inf(m o gi)_l(N(v)), we may assume
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e sufficiently small and t0 sufficiently large so that
UIR(a(t))} < [0,t5). Thus R({ty,t,}) = Rla(1)) c [0,t;).
In fact, we claim that R({to,tz}) c [O,tl) for all suffi-

ciently large t Otherwise, the small diameter continuum

0°
R({to,tz}) would lie in the interval (tl,t3), hence

R([t,t5] v {t, D) < (t;,t3) for some t < t But by the

0°
maximal nature of [to,tn], n([t,tol) # o, and since

R([t,tol U {tz}) is arbitrarily close to n([t,tol) for suf-

ficiently large t this leads to a contradiction,

ol
By another application of (3.1) we obtain maps

h [0,1] » [to,tl] and h [0,1] -» [t2,t3] with

Pk
h2(0) =t

l:

hl(O) =t hl(l) =t h2(l) =t and such

2’ 3’

are arbitrarily close. As

'y 1’
that the maps 7 © hl and 1 e h2
before, we may also assume that sup(rm ° hi)-l(N(v)) <

inf(m o hi)_l(N(w)). Consideration of the path g in 2X
between {tO’tZ} and {tl,t3}, defined by B(t) = {hl(t),
h2(t)}, shows that R({tl,t3}) c [0,t2). Continuing in this
fashion we obtain R({t _,,t }) < [0,t _;). But an argument
analogous to that given above for R({to,tz}) shows that
R({tn—Z'tn}) < (tn_l,w). This contradiction shows that 7
must be interior monotone. Clearly, this implies that

X %Xo.

In the case that K is a simple closed curve, the same
type of arguments show that the lift %: [0,») - E, defined
at the beginning of this section, must be interior monotone.
If E = im § is unbounded, then in fact % is monotone and
X~ Xl. And if E is bounded, then X w xn for some n > 1.

Specifically, X ~ X n if the interval K wraps around K

2
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~

exactly n times, while X w~ X if K wraps around K n

2n+1l

times plus a fraction.

4. Conservative Hyperspace Retractions

Recall that a retraction R: ZX +» C(X) 1is conservative

if R(A) n A # g for each A € ZX. We show that the topolo-
gist's sine curve and the circle with a spiral are the only
regular half-~line compactifications admitting conservative

hyperspace retractions.

4.1. Theorem. Let X be a regular half-line compacti-
fiecation for which there exists a conservative retraction

R: ZX + C(X). Then either X 8 X, or X » Xl'

0

Proof. We assume that X = X(w), with 7 = L for some
n > 1, and show that this leads to a contradiction; the
result then follows from (3.3).

Suppose first that n is even. Then for every large
integer k, R({k,k + 1}) is a small diameter continuum con-
taining either k or k + 1, and therefore contained in a
small neighborhood in [0,«) of either k or k + 1. If k is
sufficiently large, then nR([k - €, k + €] U {k + 1}) must
be arbitrarily close to w([k - ¢, k + €]), for each € > 0.
Since for all sufficiently small ¢, n(lk - €, k + €l) n

m({[k + 1 - e, k+ 1+ €]l) = {p}, where p (1,0) € s,

fl

consideration of an order arc in 2% between the elements
{k, k + 1} and [k - ¢, k + €] U {k + 1} shows that

R({k, k + 1}) cannot lie in a small neighborhood of k + 1.
An analogous argument involving an order arc between

{k, k + 1} and {k} U [k + 1 - ¢, k + 1 + €] shows that
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R({k, k + 1}) cannot lie in a small neighborhood of k. Thus
n cannot be even,

Now suppose n is odd. For any large integer k, set
kl = inf{t: t > k and n(t) = ¢(k)} and k2 = sup{t: t <k + 1
and 7(t) = 7w(k + 1)}. Clearly, k < ki < k + 1 for each
i=1,2. Since 7 is locally 1-1 at each ki, but not at k

or k + 1, arguments analogous to those above show that, for

sufficiently large k, R({k,kl}) must lie in a small neigh-

borhood of kl, and R({kz, k + 1}) must lie in a small neigh-
borhood of k,. Let a: [0,1] » 2% be the path between
{k,kl} and {k2, k + 1} defined by o(t) = {(1 - t)k + tk2,

(1 ~ t)kl + t(k + 1)}. Note that for each 0 <t < 1,
m{a(t)) is a singleton, and therefore R(a(t)) must lie in

a small neighborhood of one of the points of a(t). But
since for each t the points of a(t) remain a constant
distance apart, this is inconsistent with the noted proper-
ties of R{(a(0)) and R(a(l)). Thus n cannot be odd, and this
completes the proof that X is homeomorphic to either X0 or

Xl.

5. Construction of Hyperspace Retractions

From this point through section 8, X = [0,») U K will
denote one of the regular compactifications xn, n>o0,
described in section 1. Thus, K is either the interval I
or the circle S. Let m: X -+ K be the‘retraction defined by
the periodic surjection Tt [0,o) - K., The construction of
a retraction R: 2X + C(X) is based on the two propositions

stated next, whose proofs will be given in sections 7 and 8.
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5.1. Proposition. There exists a map G: ZX + C(X)
with the following properties:
i) G|C(K) = id;
ii) either G(A) o5 w(A) or G(A) c [0,=);
iii) G(A) <« K if A nK # ¢;
iv) G(A) oK Z¢f A c [0,x) and G(A) > 7w([inf A, sup A]l);

and

v) G(A) n (K U A) # 6.

Remark. 1In the cases n = 0,1, the above property v)
may be strengthened by requiring that G(A) n A # g.

For a given subset # of C(K), let J be the subset of
C(X) x C(X) defined by J = {(M,N): (M Uy K) NN # &, and

either M 2 KoNelNorMnkKk-=g}.

5.2. Proposition. For some neighborhood N < C(K) of
K, there exists a map H: 0 x [0,1] + C(X) satisfying the
following conditions, for every (M;N) € 0 and © <t <1
i) H(M,N,0) = M and H(M,N,1) = N;
ii) either H(M,N,t) o M or H(M,N,t) o N;
iii) HM,N,t) < [r,») UK Zf M UN c [r,«=) U K; and

iv) H(M,N,t) < [r,s] Zf M U N < [r,s] and w(lr,s]) # K.

5.3. Theorem. For X = [0,x) U K as above, there
exists a hyperspace retraction 2X C(X).
Proof. Let F: ZX\ZK + C(X)~C(K) denote the "smallest

continuum" retraction, defined by

[inf A, sup A] if A ¢ [0,x),
F(A) =

[inf(A n [0,=)),») UK if A n K # #.

45
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Define a map O: 2x\2K

+ [0,1] by the formula

0(A) = min{(2/8) - inf(A n [0,»)) + p(w(A), w(F(A))),1l},
where 0 < § < 1 is chosen such that {N € C(K): p(N,K)

< 8} « n, the neighborhood of K in C(K) given by (5.2).
Note that (M) = 0 for all M € C(X)~C(K).

K

Let W = (A ¢ 2X 2 either A < [0,x) or p(w(A), K) < §}.

Note that ¥ is an open subset of 2x, and C(X)~C(K) c /. Let

X

G: 27 » C(X) and H: J x [0,1] » C(X) be the maps given by

(5.1) and (5.2). The desired retraction R: 2x + C(X) is
defined by
H(F(A), G(A), ©0(A)) if A € W,
R(a) = . X
G(a) if A € 2°\/.

We first verify that for each A € W/, (F(A), G(A)) € 1,
so that R is well-defined. There are two cases to be con-
sidered:

1) Suppose A € 252X with A n K # @ and p(n(A),K) < 5.
Then F(A) ; K 2 G(A) o m(A), therefore p(G(A),K) < § and
G(a) e /. Thus (F(A), G(A)) € D.

2) Suppose A < [0,»). Then F(A) < [0,«x), and
(F(A) UK) nG(A) > (A UK) nG(A) # ¢, so again (F(a),
G(n)) €.

We next verify that R/C(X) = id. Since R/C(K) =
G/C(K) = id, we need only consider M € C(X)~C(K). Then
6(M) = 0 and M € ¥/, so R(M) = H(F(M), G(M),0) = F(M) = M,

It remains to show that R is continuous. Since ¥ is
open in 2x, we have only to verify continuity of R at each

A € ba #. Suppose to the contrary that R is not continuous

at some such A. Then there exists a sequence {Ai} in W
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converging to A, with no subsequence of {R(Ai)} converging
to R(A) = G(A). In particular, o(Ai) # 1 for almost all i.
There are two cases to be considered.

1) Suppose A € 2. Then inf(A, n [0,%)) » =, which
together with O(Ai) # 1 implies that p(ﬂ(Ai), n(F(Ai))) + 0.
Thus F(Ai) + A € C(K), and G(Ai) + G(A) = A. If A =K,
then R(Ai) = H(F(Ai), G(Ai), O(Ai)) + K by the properties
ii) and iii) of H, contrary to cur choice of {Ai}. Thus
A € C(K)~{K}, and Ai c [0,») for almost all i since F(Ai) + A.

If G(Ai) N K # @ for infinitely many i, then G(Ai) >
ﬂ(Ai) by the property ii) of G, and since F(Ai) > A # K and
G(Ai) + A, it follows that G(Ai) = n(F(Ai)) for infinitely
many i. By the property iv) of G, G(Ai) > K, contradicting
the convergence of {G(Ai)} to A.

On the other hand, if G(Ai) c [0,») for almost all i,
then F(Ai) n G(Ai) > Ai n G(Ai) #.ﬂ by the property v) of
G, so for almost all i, F(Ai) U G(Ai) = [ri,si], a subarc
of [0,«). Since both {F(Ai)} and {G(Ai)} converge to A # K,
n([ri,si]) # K for almost all i. Then the properties ii)
and iv) of H imply that R(Ai) + A = R(A), again contrary to
our choice of {Ai}.

2) Suppose A € 2°~2%, with A n K # g and p(n(A),K) > 6.
Then for almost all i, ﬂ(F(Ai)) = K and p(n(Ai),K) > §8/2,
yielding O(Ai) = 1, which is impossible. This completes
the verification of continuity for R.

Finally, we note that the retraction R is conservative
if G is, since for each A € ZX, either R(A) o F(A) o A or

R(A) o G(A). Thus, in the cases n = 0,1 where a conservative
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map G may be chosen, we obtain a conservative hyperspace

retraction.

6. Admissible Expansions in K
As in the previous section, X = [0,x) U K = Xn for
some n > 0, with 7: X » K the retraction defined by Mo

We call a map e: K x [0,») » C(K) an expansion if it satis-

fies the following conditions (for A € 2X, e(A,t) = U{e(a,t):
a € A}):
l) e(x,t) o e(x,0) = {x} for all x and t;

2) for every 0 < s < t, there exists § > 0 such that
e(e(x,s),8) < e(x,t) for all x;

3) for every A € 2K and § > 0, e(B,8) » A for all
B € 2K sufficiently close to A; and

4) for every A € ZK, e(A,t) € C(K) for some t.

An expansion e is admissible if it permits an extension
to a map &: X x [0,®) » C(X) satisfying the above condition
1) and such that, for all x € [l,») and all t, &(x,t) c
[x -— 1, x + 1] and 7m(&8(x,t)) = e(n(x),t). We refer to & as

a "lift" for e.

6.1, Lemma. There exists an admissible expansion
e: K x [0,®) » C(K).

Proof. With d the arc-length metric on K, we may
obtain an expansion by simply setting e(x,t) = {y € K:
d(x,y) < t}. However, this "free"” expansion is admissible
only if w/(0,») is an open map, i.e., only for n = 0,1.
Thus, for these cases the lemma is trivial, but for n > 1,

some type of "partial" expansion is required.
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Suppose then that K = S and n > 1. Let y: (~»,©) + S
be the covering projection defined by y(r) = eZnir, and
let %: [0,®) + (-»,») be a 1lift of the periodic surjection
L [0,o) - S. Then J = im 7 is a compact subinterval with
length n/2 > 1. Let p,q € J be the points for which
J=[p~-1, g+ 1l]. For each z € S, let zp,zq € (0,1] be
the unique values for which w(p - zp) =2z = u(gq + zq).

Define maps ep,eq: S x [0,o) » C(S) by the formulas

ep(zlt) w([P - (1 + t)zpl p - zp] nJ,

i

eq(z,t) w(lg + zq, g+ (1 + t)zq] ndJae.
Although the total image function z - ep(z x [0,»)) is dis-
continuous at z = (p), the function ep is continuous;
similarly for eq. These maps may be viewed quite simply.
For z € S, the restriction ep[z x [0,») is clockwise
expansion around S from z to w(p), where w(p) =
n({0,2,4,+++,}) = (1,0) is the p-projection of those
"turning points" in [0,») where the direction of travel
(towards «) changes from clockwise rotation about S to
counterclockwise rotation. Similarly, eq|z x [0,x) is
counterclockwise expansion from z to w(g), where

w(gq) = n({1,3,5,°++}) 1s the g-projection of those turning
points where the direction of travel changes from counter-
clockwise to clockwise. For even n, w(q) = (1,0), while
for odd n, w(gq) = (-1,0).

We show that the map e: S x [0,») > C(S), defined by
e(z,t) = ep(z,t) U eq(z,t), is an admissible expansion.
The admissibility of e should already be evident from the
above discussion of the maps e_ and eq. It remains to

p
verify the expansion conditions 1) through 4).
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Condition 1) is obvious. Condition 2) is satisfied
with § = t - s/(1 + s), since then (1 + s) (1 + §) = (1 + t).
The verification of condition 3) is more involved. The
basic observation is that, for all y,z € S and § > 0,

Zp/(l + §)

A
[+
A

i 1ol i € Y H
.) 4 implies 2z e ( ’6)
Z 1+

A
l<
I A

Zg implies 2z € eq(y,é).

Let d be the metric on S defined by d(y,z) =
min{|u - v|: u,v € (-=,o) with w(u) = y and w(v) = z}.
The above observation i) implies that for all y,z,

ii) if d{(y,z) < min{zp,zq} + 6/(1 + §), then
z € e(y,8).

Let m = min{(m(p))q, (w(q))p}. Then i) also implies

‘that for all y,

if y

|A

{it) q m§/(1 + §), then ep(y,d) > wl(lg,qg + yq]);
if y

A

b m§/ (1 + &), then eq(y,é) > wllp - Yprp])-

Assuming § < 1, iii) implies that for all y,z,
if d(y,z) < zq/2 < m§/6, then
e (y,8) o wllg,qg +.2_/21);
iv) P q

if d(y,z) < zp/2 < m§/6, then
eq(y,é) > wllp - zp/2,p])-

We can now verify condition 3). Given A € ZS and § > 0,

set Ap = x /2, for some x € A such that either xp < m§/3 or

p
either Yq <m§/3 or y

P
X = min{ap: a € A}; set Aq = yq/2, for some y € A such that
= min{a_: a A}. Let = min{A_,A .
q {q € A} n {plq}
6/(1 + §). We claim that for every B ¢ ZS with p(A,B) < n,
e(B,8) o A. There are three cases to be considered:

C id A with A . Th A = 2 6
a) Consider z € wi zp < b en o xp/ < m§/

for some x € A. Choose y € B with d(y,x) < n < Ap = xp/2.
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By iv), eq(y,&) > wl(lp - xp/2,p]). Since zp < xp/2, we
have z = w(p - zp) € w(lp - xp/2,p]). Thus z € eq(y,é) c
e(B,§).

b) An analogous argument shows that for z € A with
, 2 € e(B,§).

q
c) Consider z € A with z_ > A and z_ > A_. Choose
Pp— P qg-—- 9g

zq < A
y € B with d(y,z) < n < min{zp,zq} « &/(1 + §). By (ii),
z € e(y,8) < e(B,§).

We next verify condition 4). Note that for each z € S,
and sufficiently large t, ep(z,t) > wl(lp -1, p - zp]),
the arc (possibly degenerate) traversed in the clockwise
direction from z to w(p). Similarly, for large t, eq(z,t) =]
w(lg + zq,q + 1]), the arc traversed in the counterclockwise
direction from z to w(g). If w(p) = w(g), then for every
A€ ZS with A # {w(p)}, e(A,t) = S for large t. 1If
w(p) # w(qg), let o = S be the subarc traversed in the clock-~
wise direction from w(g) to w(p). Then for each A € Zs with
A~o # @, e(A,t) = S for large t, and for A < o, e(A,t) = o
for large t. This completes the verification that e is an
expansion. And as remarked earlier, e is by its construction
admissible.

The above lemma will be used in section 8 for the con-
struction of a map H with the properties specified in (5.2).
At present, we apply (6.1) in the case n > 1 to obtain a
result which will be essential for the construction in the
next section of a map G with the properties specified in

(5.1).
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6.2. Lemma. Let m = L [0,°) » S, n > 1. Then
there exists a retraction E: 2° » C(8) with the following
properties:

i) E(A) > A for each A € ZS; and

ii) for each A € 25 and subinterval L < [0,x) such that
A © 1(L) =« E(A), there exists a subinterval M c [0,x) with
L cMand n(M) = E(A).

Proof. Let e: S x [0,») » C(S) be an admissible
expansion given by (6.1). For each A € ZS, let 1(A) denote
the smallest value of t for which e(A,t) € C(S), and define
E: 2° > C(S) by setting E(A) = e(A,1(A)). Then E|C(S) = id,
and E(A) 2 A,

We establish continuity for E by verifying continuity
for the function t: ZS + [0,»). The lower semi-continuity
of v is automatic, since C(S) is closed in ZS and e is
continuous. Using the expansion properties 2) and 3) of e,
we show that 1 is upper semi-continuous. Given A € 25 ana
€ > 0, there exists by property 2) & number § > 0 such that
e(e(B,T1(A)),8) < e(B,T(A) + ) for all B € 25, By continuity
of e and property 3), there exists a neighborhood {/ of A in

2S

such that e(e(B,t(Aa)),8) = e(A,1(A)) for every B € /.
Thus, e(B,T(A) + ¢) 2 e(A,7(A)). Also, by application of
property 3) to each {a}l, a € A, we may assume the neighbor-
hood ¢ is small enough that for each B € {/ and b € B,
e(b,T7(A) + €) meets A. Thus, each component of e(B,T(A) + ¢)
meets A, and since A < e(A,T(A)) <€ e(B,T(A) + €) and
e(A,1(A)) € C(S), it follows that e(B,T(A) + €) € C(S).

Then T(B) < T(A) + € for every B € {/, and 1 is upper semi-

continuous.
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It remains to verify the property ii). Given A ¢ ZS

and a subinterval L € [0,») such that A ¢ n(L) < E(4), we

may assume that E(A) # S. Let M o L be a maximal subinter-

val of [0,») for which (M) < E(A). We show that n(M) = E(A).

Let &: X x [0,») + C(X) be a lift for e. Since A c g (L) <

7(M), we may choose for each a € A an element &3 € M with

m(a) = a. Set N, = €(a,t(A)). Then N, is a subinterval

of [0,®) containing a, and T(N,) = m(e(a,T(a))) = e(a,t(a)) c

e(A,T(A)) = E(A). Since 8 € M n Na’ MU Na is a subinterval,

with t(M U Na) c E(A). By the maximal character of M, we

must have Na < M. Thus E(A) = U{e(a,T(A)): a € A} =

U{n(Na): a € Al < t(M), and (M) = E(a).

7. Construction of the Map G

We consider first the case n > 1. Thus, K = § and

L [0,») + S. As in the proof of (6.1l), let

w: (=w,») + S be the covering projection defined by

w(r) = e2™TF, and let ¥: [0,o) + (-=,®) be a lift of 7.

X, C(X) will be obtained as an exten-

S

The desired map G: 2
sion of the retraction E: 2% -+ C(S) given by (6.2).

Let U < 2X be the collection of those A € 2X which
satisfy the following conditions:

a) Ac [0,x);

b) E(m(A)) # S; and

c) E(nm(A)) @ w([inf F(A), sup F(A)]).
Although condition c) by itself defines a closed subspace
of 2X, U is an open subspace. This can be seen from the
fact that, since E(n(A)) 2 w(a) = w((a)) » {w(inf T(a)),

w(sup T(A))} for each A € 2x, A satisfies conditions b) and
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¢) if and only if E(n(A)) U w([inf F(A), sup F(A)]) # S.
Thus conditions b) and c¢) together define an open subspace
of 2X, as does condition a), and therefore {/ is open.

We claim that for each A ¢ {/ and x € A, the continuum
E(w(A)) = S can be "lifted" through x, i.e., there exists
a continuum M ¢ [0,x) with x € M and (M) = E(n(A)).
Suppose x € [i,i + 1], for some integer i; let L < [i,i + 1]
be the subinterval such that %(L) = [inf %(A), sup F(A)]
(note that #|[i,i + 1] is a homeomorphism onto im 7%). Then
x € L, and 7(A) < (L) = w(F(L)) < E(n(A)) since A ¢ {. The
property ii) of the retraction E shows that L may be
expanded to6 an interval M < [i,i + 1] such that #(M) =
E(m(a)).

In particular, if A € {/ and a = sup A is the point of
A nearest S, with a € [i,i + 1], then there exists a unique
interval Mi < [i,i + 1] with a € Mi and n(Mi) = E(m(A)).
This permits the construction of a map L: { + C(X) such
that for each A ¢ ¢, L(A) is an "approximate 1ift" of
E(m(A)) through the point a = sup A. We may construct L

according to the following rules:

1) L(A) Mi if min{a - i,i + 1 - a} > 1l/a;

2) L(A) = [i, max Mi] if a - i = 1/2a, and L(A) =
[min Mi’ i+ 1] if i+ 1 - a = 1/2a;

3) L(A) = Mi—l u Mi if a=1i > 0, and L(A) = Mi u Mi+l
ifa=1i+ 1.
For 1l/2a < a -1 < 1l/aor 1/2a <1+ 1 -a < 1l/a, L(A) is
defined so that Mi < L(A) < [i, max Mi] or Mi c L(A) <

[min Mi’ i + 1], respectively, and for 0 < a - i < 1/2a or
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0 <i+1l~-a<1l/2a, [i, max Mi] c L(A) < [min Mi- , Wmax Mi]

1
or [min Mi' i+ 1l] € L(A) < [min Mi' max Mi+l]’ respectively.
The key properties of the map L are that sup A € L(A) <
[0,*) and @w(L(A)) 2 E(n(A)) for each A € {/, with inf L(a)
+ o and p(w(L(A)), E(n(A))) - 0 as sup A » o,
The desired map G: 2% . C(X) is defined over U by

modifying L as follows:

4) G(a) = L(A) if p(E(n(A)),S) > 1l/sup A;
5) G(A) = [inf L(A),) U S if p(E(w(A)),S) = 1/(2 sup A);
6) G(A) = 5 if p(E(w(A)),S) < 1/(4 sup A).

For 1/(2 sup A) < p(E(w(A)),S) < 1l/sup A, G(A) is defined
so that L(A) <« G(A) <« (inf L(A),»), and for 1/(4 sup A) <
p(E(m(A)),S) < 1/(2 sup A), S « G(A) < [inf L(A),») U S.

Note that for A € (/, either G(A) N S = g or G(A) o S,
and G(A) N (A U S) # 4.

Finally, G is defined over 2%\ by the formula G(A) =
E(m(A)). Since (/ is open, it suffices to verify continuity
of G at each B € bdll. Note that, since the condition c) in
the definition of ( is automatically satisfied by each
B € bdl/, we must have either E(n(B)) = Sor B n S # #,
otherwise B € (/. If G(B) = E(n(B)) = S, then for any A € (/
near B, either G(A) = S by virtue of rule 6) above, or
1/(4 sup A) < p(E(w(A)),S), in which case both L(A) and G(A)
are near S. If E(m(B)) # S and B N S # @, then for any
A € (/ near B, L(A) is near E(n(B)) and l/sup A < p(E(n(a)),s),
hence G(A) = L(A) is near G(B) = E(n(B)). Thus G is a map.

We next verify that G has the required properties i)
through v) of (5.1). Since G extends E, property i) is

clear. Since either G(A) N S = @, G(A) o S, or
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G(A) = E(n(A)) o w(A), property ii) is satisfied, Property
iii) is immediate from the definition of G over ZX\CL Pro-
perty iv) is clear if A ¢ {/. On the other hand, if A < [0,w)
with A ¢ { and G(A) = E(n(A)) # S, then E(n(a)) # w([inf
T(A), sup T(A)]). However, this contradicts the hypothesis
that G(A) 2 «w([inf A, sup A]) = (% ([inf A, sup A])), since
T([inf A, sup Al) o [inf T (A), supT(A)]. Finally, property
v) has been previously noted for A € {/, and is obvious for
A€ ZX\.Q This completes the proof of (5.1) in the case

n > 1.

In the cases n = 0,1, a streamlined version of the
above construction yields a conservative map G: 2X + C(X)
with the required properties. For either K = I or K = §,
let E: 2K + C(K) be any retraction such that E(A) o A for
each A € 28X, Let V = {A € 2. ac [0,)}. As above, an
approximate lifting map L: V » C(X) may be constructed
such that for each A € /), sup A € L(A) < [0,») and
m(L(A)) 2 E(n(A)), with inf L(A) + « and p(n(L(a)),
E(r(A))) - 0 as sup A + », In fact, for n = 0, L is
constructed in the same manner as above for n > l. For
n =1, L is constructed such that L(A) < [0,x) is the unique
lift of E(w(A)) through a = sup A if p(E(w(A)),S) > 1/a;
a € L(A) €« [a - 2, a + 2] with n(L(A)) o E(n(A)) if
0 < p(E(m(A)),S) < 1/a; and L(A) = [a - 2, a + 2] if
E(m(A)) = 8.

In either case, L extends to a map G: 2x + C(X) by the

formula G(A) = E(m(A)) for A € 2X\Lﬂ Properties i) and iii)

are immediate from the definition of G. Property ii) is a
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consequence of the fact that E(n(A)) o w(A), and that

G(A) < [0,») when A ¢ [0,»). Property iv) is satisfied
vacuously. And finally, G(A) n A # @ for all A ¢ 2X,

since G(A) = E(n(A)) o w(A) if A n K # @, and G(A) = L(A) >

sup A if A n K = f.

8. Construction of the Map H

Let e: K x [0,») » C(K) be an admissible expansion
given by (6.1). Set # = {N € C(K): e(N,t) = K for some t}.
By the expansion property 3), # is a neighborhood of K.

The domain J < C(X) x C(X) of H can be partitioned

into four subdomains as follows:

Dy = {(M;N): MZKDONEN;

D,=1{MN): MnK=gand N cK};

Dy = {(M,N): M n K =g and N 2K}; and

D, ={MN): MNK=g=NnKand M NN # fg}.

We will define H separately over each 7 x [0,1].
i

For (M,N) € 0, set
H(M,N,t) = M, 0 <tx< 1/4;
H(M,N,t) = K, 1/2 < t < 3/4; and
H(M,N,1) = N.

Use the natural path in C(X) from M to K to define H(M,N,t)

for 1/4 < t < 1/2, and reverse the e-expansion {e(N,t):

0 <t <o} of NtoK to define H(M,N,t) for 3/4 <t <1
For (M,N) € 02, let N* = e(N, sup M); then N c N* ¢

C(K). Set
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H(M,N,0) = M;

H(M,N,1/4)

[inf M,») U K:

{H{M,N,1/2) K;

H(M,N,3/4)

N*; and

H(M,N,1) = N.
Use the natural paths in C(X) to define H(M,N,t) for
0 < t < 1/4 and 1/4 < t < 1/2; reverse the free expansion
(via an arc-length metric) in C(K) from N* to K to define
H(M,N,t) for 1/2 <t < 3/4; and reverse the e-expansion
from N to N* to define H(M,N,t) for 3/4 <t < 1.

For (M,N) € 03, set
H(M,N,0) = M:

H(M,N,1/4)

[inf M,») U K;

H(M,N,1/2) [max{inf M, inf N},») U K; and
H(M,N,t) = N, 5/8 <tc< 1.
Use the natural paths in C(X) to define H(M,N,t) for all
other t.
Define an index map t: 04 + [0,») by the formula
1(M,N) = max{inf N - inf M - 2,0} - p(w(N),K). For
(M,N) € 04, let N* = &(N,1(M,N)), where & is a 1lift for e.

Then N* € C(X), with N €« N* < [inf N - 1, sup N + 1]. Set

H(M,N,0) = M;

H(M,N,1/4) = [inf M, max{sup M, sup N*}];
H(M,N,1/2) = [max{inf M, inf N*}, max{sup M,
1 sup N*}];

H(M,N,5/8) = [inf N*, max{sup M, sup N*}];
H(M,N,3/4) = N*; and

H(M,N,1) = N.
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Use the natural paths in C(X) to complete the definition
of H(M,N,t) for O <t < 3/4, and reverse the é-expansion
from N to N* to define H(M,N,t) for 3/4 <t < 1.

We now verify that H is a map. For i # j, ﬂi n Ej # @
only if (i,j) = (1,2), (1,3), (1,4), (2,3), or (3,4).
Since each restriction H//7i x [0,1] is continuous, it suf-
fices to check continuity of H at boundary points in the
above cases., Considering first the case (i,j) = (1,2),
let (M, ,N,) be a sequence in 32 converging to (M,N) € ﬂl.
Then sup M, » =, and since N; > N € N, we have N¥ = K for
almost all k (use continuity of e, and the expansion pro-
perties 2) and 3)). It follows that H(Mk,Nk,tk) + H(M,N,t)
whenever tk + t. The cases (i,j) = (1,3) or (2,3) are rou-
tine. Consider a seguence (Mk,Nk) in 34 convgrging to
(M,N) € J;. Then if N # K, T(M, ,N,) > « and N¥ > K; if

. .. .
e K. This 1mp}1es that H(Mk,Nk,tk) >

H(M,N,t) whenever tk + t. Finally, consider a sequence

N = K, obviously N

(M, Ny ) in 34 converging to (M,N) € 33. Then m(N,) = K
for almost all k, hence T(Mk,Nk) = 0 and Nﬁ = Nk’ implying

that H(Mk,Nk,tk) + H(M,N,t) whenever t, + t. This completes

k
the verification of continuity for H: 7 x [0,1] - C(X).
Clearly, H satisfies the required conditions i) and

ii) of (5.2). Conditions iii) and iv) are also clear,
except possibly for (M,N) € 34 with N* # N. However,

N* # N implies t(M,N} > 0, which implies that inf N >

inf M + 2. Then inf N¥* > inf N - 1 > inf M, and condition
iii) is satisfied. And, diam(M U N) > 2 implies that

m(M U N) = K, so condition iv) is satisfied vacuously.

This completes the proof of (5.2).
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9. Means and Pseudo-Means

Let Y be a continuum. A map A: Y x Y + Y is called a
mean if A(x,y) = Aly,x) and A(y,y) = y for all x,y € Y. A
map A: Y x Y » C(Y) with the same properties is called a
pseudo-mean for Y [7].

Every hyperspace 2X admits a mean: define A (A,B) =
A U B, If there exists a retraction 2X + C(X), then C{X)
also admits a mean, and X admits a pseudo-mean. Thus we
have yet another necessary condition for the existence of
a hyperspace retraction. 1In this section we describe
examples from the class of regular half-line compactifica-
tions which show that the existence of a pseudo-mean neither
implies nor is implied by the subcontinuum approximation
property of section 2, and that both conditions together
are still not sufficient for the existence of a hyperspace
retraction. Recall that a regular compactification
X = [0,») U K has the subcontinuum approximation property
if and only if the remainder K is either an arc or a simple
closed curve. We do not know in general which regular

compactifications admit pseudo-means.

9.1. Ezample. Let mw: [0,») - I be the periodic sur-
jection defined as follows:
i) w(k) = 0 if k is an odd integer;

ii) w(k) 1 if k = 2,4 (mod 6);

iii) w(k) = -1 if k = 6 (mod 6); and

iv) m is linear over each interval [k,k + 1].
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Then for X = X(m), no retraction ZX + C(X) exists, since
X # XO; nonetheless, a pseudo-mean may be constructed for

X, and in fact C(X) admits a mean.

9.2. FExample. Let w: [0,») + I be the periodic

surjection defined by:

i) m(k) = 0 if k is odd;
ii) w(k) =1 if k = 2,4 (mod 8);
iii) mw(k) = -1 if k = 6,8 (mod 8); and

iv) m is linear over each interval [k,k + 1].
Then X = X(w) does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean \: X x X =+
C(X). Let k denote an integer of the form 8n + 2. Then
consideration of A(k - t, k + t), for 0 <tx< 1 and large
n, shows that either A(k - 1, k + 1) ~ (approximates)

{k = 1} or xtk -1, k + 1) ~ {k + 1}. Similarly, either
Ak + 1, k + 3) ~ {k + 1} or xtk + 1, k + 3) ~ {k + 3}.

If A(k -1, k + 1) ~ {k - 1}, then A(k, k + 2) ~ {k}; if
Ak + 1, k + 3) 8 {k + 3}, then A(k, k + 2) ~ {k + 2}.
Thus, either A(k - 1, k + 1) ~ {k + 1} or x(tk + 1, k + 3) w~
{k + 1}. Letting n + «, we see by continuity of ) that,
for every s € I <« X and the point 0 € I, either A(0,s) <
[0,1] or 1 € A(0,s") for some s' between 0 and s. (Suppose
that A(k - 1, k + 1) ~ {k + 1} for infinitely many k as
above. Then for every r € [k - 2, k], either X(r, k + 1) «
[k, k + 2] or x{(r', k + 1) n {k, k + 2} # @ for some r'
between k - 1 and r. Note that w(k - 2) = =1, 7(k - 1) =
m(k + 1) = 0, and n(k) = n(k + 2) = 1). An analogous

argument shows that either A(k + 3, k + 5) ~ {k + 5} or
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Xk + 5, k+ 7) ~ {k + 5}, which implies that for every

s € I, either x(0,s) < [-1,0] or -1 ¢ A(0,s') for some s'
between 0 and s. Consequently, A(0,s) = {0} for every

s € I. However, this implies that x(k - 1, k) ~ {k - 1} ~
Alk - 1, k + 1) and also that ia(k, k + 1) ~ {k + 1} ~

Ak -1, k + 1), a contradiction. Thus X does not admit

a pseudo-mean.

9.3. Example. Let T be a triod, with branch point v

and endpoints e;, e and e and let 7: [(0,«) > T be the

2’ 37
periodic surjection defined as follows:

i) w(k) = v if k is odd;

ii) w(k) = ey if k = 4 (mod 8);
iii) w(k) = e, if k = 2,6 (mod 8);
iv) 7w(k) = €3 if k = 8 (mod 8); and

»

v) w is linear over each interval [k, k + 1].

Let X = X(w). It can be shown that C(X) admits a mean.,

9.4. Example. For T as above, let 7: [0,») » T be the
periodic surjection defined by:

i) w(k) = v if k is odd;

ii) w(k) = e if k = 2 (mod 6):;
iii) w(k) = e, if k = 4 (mod 6);
iv) w(k) = €3 if k = 6 (mod 6); and

v) 7 is linear over each interval [k, k + 1].
Then X = X(7) does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean A. Let k
denote an integer of the form 6n + 1. Consideration of

A(k,k+t)and)\(k+2,k+2—t),for0_<_t_<_land
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large n, shows that X must have the following property

with respect to e for each x € [v,el], either

18
Alv,x) < [v,el] or e € A(v,x'") for some x' between v and

Xx. Of course, ) has the analogous properties with respect

2 and e3.

Now, consideration of A(k + 1 - t, k + 1 + t), for

to e

0 <t < 1l and k = é6n + 1 as above, shows that for large n,
either )(k, kK + 2) =~ {k} or x(k, k + 2) ~ {k + 2}. We may
suppose the former (for infinitely many n). Then considera-
tion of x(k, k + 2 + t), for O < t < 1, together with the

above property of ) with respect to e shows that

97
A(v,x) = {v} for each x ¢ [v,e2]. But this implies that
Ak + 2, k +3) »{k + 2} » Atk + 2, k +4) and also that
Ak + 4, k + 3) m {k + 4} ~ Ak + 4, kK + 2), a contradic-
tion. Thus X does not admit a pseudo-mean,

There also exist regular compactifications
X = [0,») Yy S similar to the above examples. Let
m: [0,») -+ S be the periodic surjection defined by
m(t) = ei“t, 0 <t <3 (mod 4), and m(t) = e—i”t, 3 <t <4
(mod 4). Then for X = X(w), C(X) admits a mean. On the
other hand, there exist periodic surjections [0,») + S for
which the corresponding compactifications do not admit
pseudo-means. An example is the map © defined by

= elznt, 0 <t < 2 (mod 3), and 7w (t) = e_12"t,

m(t)
2 <t <3 (mod 3).
If there exists a conservative retraction 2x + C(X),

then there exists a conservative pseudo-mean A: X x X +» C(X),

i.e., x(x,y) n {x,y} # @ for all x,y. It can be shown that
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a regular compactification X = [0,») U K admits a conserva-
tive pseudo-mean only if X is homeomorphic to either X0 or

X Thus, in the class of regular half-line compactifica-

1
tions, the existence of a conservative pseudo-mean is
equivalent to the existence of a conservative hyperspace
retraction., It seems unlikely that this would hold in

general, but we do not have a counterexample.
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