TOPOLOGY PROCEEDINGS Volume 11, 1986

Pages 29–64

http://topology.auburn.edu/tp/

A HYPERSPACE RETRACTION THEOREM FOR A CLASS OF HALF-LINE COMPACTIFICATIONS

by

D. W. CURTIS

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A HYPERSPACE RETRACTION THEOREM FOR A CLASS OF HALF-LINE COMPACTIFICATIONS

D. W. Curtis

1. Hyperspace Retractions

For X a metric continuum, let 2^{X} be the hyperspace of all nonempty subcompacta, with the Hausdorff metric topology, and let $C(X) \subset 2^X$ be the hyperspace of subcontinua. If X is locally connected, both C(X) and 2^{X} are absolute retracts [9], and in particular C(X) is a retract of 2^X . In the non-locally connected case, neither hyperspace is an absolute retract, but we may still ask whether C(X) is a retract of 2^X. Until now, this question has been answered in only two specific cases. In 1977, Goodykoontz [2] constructed a 1-dimensional continuum X in E^3 such that C(X)is not a retract of 2^X. And in 1983, Goodykoontz [3] showed that for X the cone over a convergent sequence, C(X) is a retract of 2^{X} . Thus, for X non-locally connected, C(X) is not necessarily a retract of 2^X, but it may be. (Nadler [6] had earlier shown the existence of surjections from 2^{X} to C(X), in all cases.)

At present, a completely general answer for the hyperspace retraction question seems out of reach. In this paper, we answer the question for a certain class of non-locally connected continua, large enough to be of interest, but sufficiently delimited so as to be manageable. This class will consist of those half-line compactifications with locally connected remainder which are "regular" in the following sense. Let $X = [0, \infty) \cup K$ denote an arbitrary half-line compactification with a nondegenerate locally connected remainder K (which is therefore a Peano continuum). In this situation, there always exists a retraction $X \neq K$. We say that X is a *regular* compactification if there exists a retraction r: $X \neq K$ such that, for some homeomorphism $\phi: [0, \infty) \neq [0, \infty)$, the map $r \circ \phi: [0, \infty) \neq K$ is a *periodic* surjection, i.e., there exists p > 0 such that $r(\phi(t)) =$ $r(\phi(t + p))$ for all t. Our main result is that the only regular half-line compactifications for which there exist hyperspace retractions $2^X \neq C(X)$ are the following: the topologist's sine curve; the circle with a spiral; and a sequence of other regular compactifications with a circle as remainder, to be described below.

The case of the circle with a spiral (labelled below as X_1) is of particular interest. It is known that Cone X_1 does not have the fixed point property [5], and that $C(X_1)$ is homeomorphic to Cone X_1 [8]. Noting this, Nadler [7] conjectured that 2^{X_1} does not have the fixed point property (which would make it the first such example to be known), and that the way to prove this is to construct a retraction from 2^{X_1} to $C(X_1)$. Our result confirms his conjecture.

Every periodic surjection π : $[0,\infty) \rightarrow K$ onto a Peano continuum induces a regular compactification $X(\pi)$, which may be defined as follows:

 $X(\pi) = \{(t, \pi(t)): t \ge 0\} \cup \{(\infty, k): k \in K\} \subset [0, \infty] \times K.$

Alternatively, we may consider $X(\pi)$ to be the disjoint union $[0,\infty)$ U K, with the topology defined by the open base

> {U: U open in $[0,\infty)$ } U {V U $(\pi^{-1}(V) \cap (N,\infty))$: V open in K and N < ∞ }.

Clearly, every regular half-line compactification is homeo-morphic to some $X(\pi)$.

Let I = [-1,1], and S = {z: |z| = 1}, the unit circle in the complex plane. Define $\pi_0: [0,\infty) \rightarrow I$ by $\pi_0(t) =$ sin π t; define $\pi_1: [0,\infty) \rightarrow S$ by $\pi_1(t) = e^{i\pi t}$; and for n > 1, define $\pi_n: [0,\infty) \rightarrow S$ by the formulas

$$\pi_{n}(t) = \begin{cases} e^{in\pi t}, & 0 \le t \le 1 \pmod{2}, \\ e^{-in\pi t}, & 1 \le t \le 2 \pmod{2}. \end{cases}$$

Then $X_0 = X(\pi_0)$ is the topologist's sine curve; $X_1 = X(\pi_1)$ is the circle with a spiral; and for $n = 2, 3, \dots, X_n = X(\pi_n)$ is the regular compactification obtained by alternately "wrapping" and "unwrapping" subintervals of $[0,\infty)$ about S, with each subinterval covering S n/2 times. Note that the spaces X_0, X_1, X_2, \dots are topologically distinct.

Theorem. For X a regular half-line compactification, there exists a hyperspace retraction $2^X \rightarrow C(X)$ if and only if X is homeomorphic to some X_n , $n = 0, 1, 2, \cdots$.

Of course, no hyperspace retraction $2^X \rightarrow C(X)$ for nonlocally connected X can be quite as nice as those which may be constructed in the locally connected case. For locally connected X, we may use a convex metric d, and define a retraction R: $2^X \rightarrow C(X)$ by taking $R(A) = \overline{N}_d(A;t)$, where $t \ge 0$ is the smallest value for which $\overline{N}_d(A;t) \in C(X)$. Such a retraction has the property that $R(A) \Rightarrow A$ for each $A \in 2^X$. Clearly, this is impossible for non-locally connected X. However, there may exist a retraction R: $2^X \rightarrow C(X)$ such that $R(A) \cap A \neq \emptyset$ for each A (we say that R is *conservative*). In the course of proving the above theorem, it will be shown that only for X_0 and X_1 do there exist conservative hyperspace retractions.

In the final section of the paper, we note the connection between the existence of a hyperspace retraction $2^X \rightarrow C(X)$ and the existence of a mean for C(X), and we give examples of continua X (from the class of regular half-line compactifications) for which C(X) does not admit a mean, thereby answering a question of Nadler [7].

2. A Necessary Condition

Let X be any metric continuum, and let ρ denote the Hausdorff metric on 2^X. We say that X has the *subcontinuum* approximation property if for each $\varepsilon > 0$ there exists $\delta > 0$ such that, for all L,M $\in C(X)$ with $\rho(L,M) < \delta$, and for every subcontinuum $P \subseteq M$, there exist P',M' $\in C(X)$ with $\rho(P,P') < \varepsilon, \rho(M,M') < \varepsilon$, and L U P' \subseteq M'. (In the locally connected case we may of course choose M' such that L U M \subseteq M', but in general M and M' will be disjoint.) We will show that this property is a necessary condition for the existence of a hyperspace retraction $2^X \rightarrow C(X)$, and that a regular half-line compactification has the property if and only if the remainder is either an arc or a simple closed curve.

In what follows, we shall have occasion to use order arcs and segments in the hyperspaces 2^X and C(X). An arc $\alpha \subset 2^X$ is an order arc if for each E,F $\in \alpha$, either E \subset F or $F \subset E$. For elements A,B $\in 2^X$, there exists an order arc α with $\cap \alpha$ = A and $\cup \alpha$ = B if and only if A \subset B and each component of B intersects A. Every order arc α can be uniquely parametrized as a segment $\alpha: [0,1] \rightarrow 2^X$ with respect to a given Whitney map $\omega: 2^X \rightarrow [0,\infty)$, i.e., $\alpha = \{\alpha(t): 0 < t < 1\}$, with $\alpha(0) = \cap \alpha$, $\alpha(1) = \cup \alpha$, and $\omega(\alpha(t)) = (1 - t)\omega(\alpha(0)) + t\omega(\alpha(1)) \text{ for each t.} \quad (\text{Order})$ arcs were first used by Borsuk and Mazurkiewicz [1] to show that C(X) and 2^{X} are arcwise connected. Segments were introduced by Kelley [4], who also formulated the necessary and sufficient conditions given above for the existence of an order arc, or segment, from A to B.) Let $\Gamma(X) = \{ \alpha \in C(2^X) : \alpha \text{ is an order arc or } \alpha = \{A\} \text{ for } A \in 2^X \},$ and let $S(\omega)$ be the function space of all segments α : [0,1] + 2^X (including the constant maps), with the topology of uniform convergence. Then the spaces $\Gamma(X)$ and

 $S(\omega)$ are compact, and the natural correspondence $\alpha \neq \{\alpha(t): 0 \leq t \leq 1\}$ is a homeomorphism from $S(\omega)$ to $\Gamma(X)$ (for a complete discussion, see [7]). Henceforth, we implicitly use this correspondence wherever convenient. Without confusion, we let ρ denote both the Hausdorff metric on 2^X and the sup metric on $S(\omega)$.

2.1. Lemma. Let $P, M \in C(X)$, with $P \subset M$. Then for each $\varepsilon > 0$ there exists $\delta > 0$ such that, for every $L \in C(X)$ with $\rho(L,M) < \delta$, there exist order arcs $\alpha \subset 2^X$ and $\beta \subset C(X)$ with $\alpha(1) = L$, $\beta(0) = P$, $\beta(1) = M$, and $\rho(\alpha, \beta) < \varepsilon$.

Proof. Suppose that for some $\varepsilon > 0$ there exists a sequence $\{L_i\}$ in C(X) converging to M, with no L_i satisfying the required condition. Choose a finite subset $F \subset P$ such that $\rho(F,P) < \varepsilon$. For each $x \in F$ and each i, choose $x_i \in L_i$ and an order arc $\alpha_{x_i} \subset C(X)$ such that $x_i \rightarrow x$, $\alpha_{x_i}(0) = \{x_i\}$, and $\alpha_{x_i}(1) = L_i$. Then for each i let α_i be the order arc in 2^X defined by $\alpha_i(t) = \cup \{\alpha_{x_i}(t) : x \in F\}$. Thus $\alpha_i(0) =$ $\{x_i : x \in F\}$ and $\alpha_i(1) = L_i$. Since the space $\Gamma(X)$ is compact, some subsequence of $\{\alpha_i\}$ must converge to an order arc λ in 2^X with $\lambda(0) = F$ and $\lambda(1) = M$. Define an order arc β in C(X) by $\beta(t) = P \cup \lambda(t)$. Thus $\beta(0) = P$ and $\beta(1) = M$. Since $\rho(\lambda,\beta) < \varepsilon$, we have $\rho(\alpha_i,\beta) < \varepsilon$ for some large i, contradicting our supposition about the sequence $\{L_i\}$.

2.2. Proposition. Let X be any continuum for which there exists a hyperspace retraction $2^X \rightarrow C(X)$. Then X has the subcontinuum approximation property.

Proof. Suppose X does not have the property. Then by compactness of C(X), there exist P,M \in C(X) with P \subset M, and a sequence {L_i} in C(X) converging to M such that, for some $\varepsilon > 0$, there do not exist P',M' \in C(X) with $\rho(P,P') < \varepsilon$, $\rho(M,M') < \varepsilon$, and L_i U P' \subset M' for some i. Let R: $2^X + C(X)$ be a retraction. Choose $0 < \eta < \varepsilon$ such that, for every A $\in 2^X$ with $\rho(A,M_0) < \eta$ for some subcontinuum M₀ \subset M, $\rho(R(A),M_0) < \varepsilon$. By (2.1), for sufficiently large i there exist order arcs $\alpha \subset 2^X$ and $\beta \subset C(X)$ with $\alpha(1) = L_i$, $\beta(0) = P$, $\beta(1) = M$, and $\rho(\alpha,\beta) < \eta$. Then the continua P' = R($\alpha(0)$) and M' = U{R($\alpha(t)$): $0 \le t \le 1$ } satisfy the conditions $\rho(P,P') < \varepsilon$, $\rho(M,M') < \varepsilon$, and L_i U P' \subset M', contradicting our supposition.

Note. The example constructed by Goodykoontz in [2] does not have the subcontinuum approximation property; our proof for (2.2) is a generalization of his argument for the non-existence of a hyperspace retraction.

2.3. Lemma. Let $\pi: I \rightarrow K$ be a map of an arc onto a Peano continuum which is neither an arc nor a simple closed curve. Then for some subarc $J \subset I$, $\pi(J)$ is a proper subcontinuum of K containing a simple triod.

Proof. Let l denote the collection of all proper subcontinua of K which are of the form $\pi(J)$ for some subarc J. Since K is neither an arc nor a simple closed curve, there must be some L $\in l$ which is not an arc. Then the Peano continuum L either contains a simple triod or is a simple closed curve. In either case there exists $\tilde{L} \in l$ properly containing L, and therefore containing a simple triod. 2.4. Lemma. Let $\pi: I \rightarrow T$ be a map of an arc onto a simple triod. Then there exists a subcontinuum $P \subset T$ such that $P \neq \pi(J)$ for any subarc $J \subset I$.

Proof. Choose a sequence $\{T_n\}$ of triods in T such that $T_n \subset int T_{n+1}$. Suppose that for each n there exists a subarc $J_n \subset I$ with $\pi(J_n) = T_n$. We may assume that each endpoint of J_n is mapped to an endpoint of T_n . Since for m < n, $T_m \subset int T_n$, we must have either $J_m \cap J_n = \emptyset$ or $J_m \subset J_n$. Choose $\delta > 0$ such that for each $A \subset I$ with diam $A < \delta$ and each n, $\pi(A)$ contains at most one endpoint of T_n . Since one of the endpoints of T_n can be the image only of interior points of J_n , it follows that diam $J_n \ge 2\delta$ for each n. Also, if m < n and $J_m \subset J_n$, then diam $J_n \ge 2\delta$ diam $J_m + \delta$. The sequence $\{J_n\}$ in C(I) clusters at some nondegenerate J. But for any pair of distinct arcs J_m , J_n sufficiently close to J, it's impossible that either $J_m \cap J_n = \emptyset$ or $J_m \subset J_n$. Thus some T_n must satisfy the conclusion of the lemma.

2.5. Proposition. A regular half-line compactification has the subcontinuum approximation property if and only if the remainder is either an arc or a simple closed curve.

Proof. Let $X = [0, \infty) \cup K$ be the regular half-line compactification corresponding to a periodic surjection π : $[0, \infty) \rightarrow K$, and let $I \subset [0, \infty)$ be a subarc such that π goes through at least two complete cycles over I.

Suppose first that K is neither an arc nor a simple closed curve. Applying (2.3) to the restriction π/I , we

obtain a proper subcontinuum $M \\ightarrow K$ such that M contains a simple triod T and $M = \pi(J)$ for some subarc $J \\ightarrow I$. Thus, there exists a sequence $\{J_i\}$ of subarcs in $[0, \infty)$ converging to M, and since $M \neq K$, every $M' \\ightarrow C(X)$ sufficiently close to M and containing some J_i must itself be a subarc of $[0, \infty)$. Let r: $K \\ightarrow T$ be any retraction, and apply (2.4) to the map $r \\ightarrow \pi$: $I \\ightarrow T$. We obtain a subcontinuum $P \\ightarrow T$ such that $P \neq \pi(I_0)$ for any subarc $I_0 \\ightarrow I$. Thus, every $P' \\ightarrow C(X)$ sufficiently close to P must lie in K. It follows that X does not have the subcontinuum approximation property with respect to the pair (M,P).

Now suppose that K is either an arc or a simple closed curve, and consider any P,M \in C(X) with P \subset M. It suffices to verify the subcontinuum approximation property with respect to this pair (see the proof of (2.2)). The property is obvious if either M \subset [0, ∞) or M \supset K, so we may suppose that M is a proper subcontinuum of K (and therefore an arc). Each L \in C(K) which is close to M intersects M, so in this case we may take M' = L U M and P' = P. And for any arc L \subset [0, ∞) close to M, there is a subarc L₀ \subset L close to P, so we may take M' = L and P' = L₀. This completes the argument that X has the subcontinuum approximation property.

It may be of interest to note that the subcontinuum approximation property is implied by property [K], which was introduced by Kelley [4] in the study of hyperspace contractibility and which has been used extensively in recent years (see [7]). In the class of regular half-line compactifications, the only spaces with property [K] are the spaces X_0 and X_1 which admit conservative hyperspace retractions. Thus, the spaces X_n for n > 1 show that property [K] is *not* necessary for the existence of hyperspace retractions. Whether there is any general relationship between property [K] and the existence of conservative hyperspace retractions remains an open question.

3. A Monotonicity Requirement

Let $X = [0, \infty)$ U K be the regular half-line compactification corresponding to a periodic surjection π : $[0,\infty) \rightarrow K$, and suppose there exists a hyperspace retraction $2^X \rightarrow C(X)$. By (2.2) and (2.5), the remainder K is either an arc or a simple closed curve. In the case that K is an arc, we say that π is *interior monotone* if, for each arc $J \subset [0, \infty)$ such that $\pi(J) \cap \partial K = \phi$, the restriction π/J is monotone (perhaps nonstrictly). A similar definition is made in the case that K is a simple closed curve, using a covering projection $(-\infty,\infty) \rightarrow \breve{K}$. Specifically, let $\tilde{\pi}$: $[0,\infty) \rightarrow (-\infty,\infty)$ be a lift of π , and set $\tilde{K} = im \tilde{\pi}$. We say that $\tilde{\pi}$ is interior monotone if $\tilde{\pi}/J$ is monotone for each arc $J \subset [0,\infty)$ such that $\tilde{\pi}(J) \cap \partial K = \phi$. We will show that π , or $\tilde{\pi}$, must be interior monotone. It follows easily that either $X \approx X_0$ (if K is an arc), or X \approx X1 (if K is a simple closed curve and K is unbounded), or $X \approx X_n$ for some n > 1 (if K is bounded).

We will need the following result concerning the composition semigroup S of all self-maps of the interval [0,1] which are fixed on the endpoints. 3.1. Proposition. For every $f_1, f_2 \in S$ and $\varepsilon > 0$, there exist $g_1, g_2 \in S$ such that $d(f_1 \circ g_1, f_2 \circ g_2) < \varepsilon$.

Proof. For each pair (m,n) of positive integers with $m \ge n$, let P(m,n) denote the finite set of piecewise-linear maps f in S satisfying the following conditions:

1) for each 0 \leq j \leq m, f(j/m) = k/n for some 0 \leq k \leq n; and

2) for each $0 \le j \le m$, $|f((j + 1)/m) - f(j/m)| \le 1/n$, and f is linear over the interval [j/m, (j + 1)/m].

Choose n such that $1/n < \varepsilon/4$, and choose m_1, m_2 such that $|f_i(s) - f_i(t)| \le 1/n$ whenever $|s - t| \le 1/m_i$, i = 1, 2. Then there exist maps $\phi_i \in P(m_i, n)$ with $d(f_i, \phi_i) \le 1/n + 1/2n + 1/2n < \varepsilon/2$, i = 1, 2. We show that, for some $m \ge \max\{m_1, m_2\}$, there exist $g_1 \in P(m, m_1)$ and $g_2 \in P(m, m_2)$ with $\phi_1 \circ g_1 = \phi_2 \circ g_2$ (note that the compositions are members of P(m, n)). It then follows that $d(f_1 \circ g_1, f_2 \circ g_2) < \varepsilon$.

The proof is by induction on $m_1 + m_2$. If $m_1 + m_2 = 2n$ (the least possible value), then $m_1 = m_2 = n$ and $\phi_1 = \phi_2 =$ id. In this case take m = n and $g_1 = g_2 = id$.

Now assume $m_1 + m_2 > 2n$. Suppose first that for some $j < m_1, \phi_1(j/m_1) = \phi_1((j+1)/m_1)$. Then we may consider the corresponding $\tilde{\phi}_1 \in P(m_1 - 1, n)$, obtained topologically by collapsing to a point the arc $[j/m_1, (j+1)/m_1] \times \phi_1(j/m_1)$ on the graph of ϕ_1 . Application of the inductive hypothesis to the pair $\tilde{\phi}_1, \phi_2$ gives maps $\gamma_1 \in P(m_0, m_1 - 1)$ and $\gamma_2 \in P(m_0, m_2)$, for some $m_0 \ge \max\{m_1 - 1, m_2\}$, such that $\tilde{\phi}_1 \circ \gamma_1 = \phi_2 \circ \gamma_2$. It's not difficult to see that this implies the corresponding result for the pair ϕ_1, ϕ_2 . Of

course, the same argument works if $\phi_2(j/m_2) = \phi_2((j + 1)/m_2)$ for some j < m₂.

Thus, we may suppose that neither ϕ_i is constant on any subinterval. Then there exists a least integer k for which $\phi_i(j/m_i) = k/n$ and $\phi_i((j - 1)/m_i) = \phi_i((j + 1)/m_i) =$ (k - 1)/n, for some $1 \le j < m_i$ and i = 1,2; suppose this holds for i = 1. Consider the corresponding $\tilde{\phi}_1 \in P(m_1 - 2,n)$, obtained topologically by identifying the points $((j - 1)/m_1,$ (k - 1)/n) and $((j + 1)/m_1, (k - 1)/n)$ of the restriction $\phi_1/[0, (j - 1)/m_1] \cup [(j + 1)/m_1, 1]$. Applying the inductive hypothesis to the pair $\tilde{\phi}_1, \phi_2$, we obtain maps $\gamma_1 \in P(m_0, m_1 - 2)$ and $\gamma_2 \in P(m_0, m_2)$, for some $m_0 \ge \max\{m_1 - 2, m_2\}$, such that $\tilde{\phi}_1 \circ \gamma_1 = \phi_2 \circ \gamma_2$. Note that by the choice of k, if $\phi_2((i - 1)/m_2) = (k - 1)/n$, then either $\phi_2((i - 1)/m_2) = k/n$ or $\phi_2((i + 1)/m_2) = k/n$. Clearly, the above implies the corresponding result for the pair ϕ_1, ϕ_2 . This completes the proof of the proposition.

3.2. Remark. If $\sup f_i^{-1}(0) < \inf f_i^{-1}(1)$ for each i = 1, 2, then there exists $\delta > 0$ (independent of ε) such that the maps g_1, g_2 may be chosen so that $\sup(f_i \circ g_i)^{-1}([0, \delta]) < \inf(f_i \circ g_i)^{-1}([1 - \delta, 1]), i = 1, 2$.

3.3. Theorem. Let $X = [0, \infty) \cup K$ be a regular halfline compactification for which there exists a hyperspace retraction $2^X \rightarrow C(X)$. Then $X \approx X_n$ for some $n = 0, 1, 2, \cdots$.

Proof. As observed at the beginning of this section, K is either an arc or a simple closed curve. We consider first the case that K is an arc. Suppose π is *not* interior monotone. Then it's not difficult to see that there exists a proper subarc σ of K, with endpoints v and w, and points t_0, \dots, t_n in $(0, \infty)$, with $t_0 < t_1 < \dots < t_n$ and $n \ge 3$, such that:

1) $\pi(t_0) = \pi(t_2) = \cdots = v;$ 2) $\pi(t_1) = \pi(t_3) = \cdots = w;$

3) $\pi([t_0, t_n]) = \sigma$, and $[t_0, t_n]$ is a maximal subinterval in $[0, \infty)$ with respect to this property; and

4) for each $i = 1, \dots, n$, the subsets $\pi^{-1}(v) \cap [t_{i-1}, t_i]$ and $\pi^{-1}(w) \cap [t_{i-1}, t_i]$ lie in disjoint subintervals.

An application of (3.1) to the maps $\pi | [t_0, t_1]$ and $\pi | [t_1, t_2]$, suitably re-parametrized, shows that for every $\varepsilon > 0$ there exist maps $g_1: [0,1] \rightarrow [t_0, t_1]$ and $g_2: [0,1] \rightarrow [t_1, t_2]$ such that $g_1(0) = t_1 = g_2(0)$, $g_1(1) = t_0$, $g_2(1) = t_2$, and $d(\pi g_1(t), \pi g_2(t)) < \varepsilon$ for all $0 \le t \le 1$. Furthermore, we may assume by (3.2) and the above property 4) that, independently of ε , there exist neighborhoods N(v) and N(w) in σ of v and w such that for each i = 1, 2, $\sup(\pi \circ g_1)^{-1}(N(w)) < \inf(\pi \circ g_1)^{-1})(N(v))$.

For maps g_1 and g_2 as above, consider the path $\alpha: [0,1] \rightarrow 2^X$ between $\{t_1\}$ and $\{t_0,t_2\}$, defined by $\alpha(t) = \{g_1(t),g_2(t)\}$. Let R: $2^X \rightarrow C(X)$ be a retraction. If $\varepsilon > 0$ is sufficiently small and t_0 sufficiently large (use the periodicity of π), then for each $0 \le t \le 1$, $\pi R(\alpha(t))$ is a small diameter continuum lying in some neighborhood of σ which is a proper subset of K. Since $\bigcup \{R(\alpha(t)):$ $0 \le t \le 1\}$ is a continuum containing $R(\alpha(0)) = \{t_1\}$, this implies that $\bigcup \{R(\alpha(t))\} \subset [0,\infty)$. Moreover, since $\sup(\pi \circ g_1)^{-1}(N(w)) < \inf(\pi \circ g_1)^{-1}(N(v))$, we may assume ε sufficiently small and t_0 sufficiently large so that $U\{R(\alpha(t))\} \subset [0,t_3)$. Thus $R(\{t_0,t_2\}) = R(\alpha(1)) \subset [0,t_3)$. In fact, we claim that $R(\{t_0,t_2\}) \subset [0,t_1)$ for all sufficiently large t_0 . Otherwise, the small diameter continuum $R(\{t_0,t_2\})$ would lie in the interval (t_1,t_3) , hence $R([t,t_0] \cup \{t_2\}) \subset (t_1,t_3)$ for some $t < t_0$. But by the maximal nature of $[t_0,t_n]$, $\pi([t,t_0]) \neq \sigma$, and since $R([t,t_0] \cup \{t_2\})$ is arbitrarily close to $\pi([t,t_0])$ for sufficiently large t_0 , this leads to a contradiction.

By another application of (3.1) we obtain maps $h_1: [0,1] \rightarrow [t_0,t_1]$ and $h_2: [0,1] \rightarrow [t_2,t_3]$ with $h_1(0) = t_0$, $h_1(1) = t_1$, $h_2(0) = t_2$, $h_2(1) = t_3$, and such that the maps $\pi \circ h_1$ and $\pi \circ h_2$ are arbitrarily close. As before, we may also assume that $\sup(\pi \circ h_1)^{-1}(N(v)) < \inf(\pi \circ h_1)^{-1}(N(w))$. Consideration of the path β in 2^X between $\{t_0,t_2\}$ and $\{t_1,t_3\}$, defined by $\beta(t) = \{h_1(t), h_2(t)\}$, shows that $R(\{t_{n-2},t_n\}) \in [0,t_2)$. Continuing in this fashion we obtain $R(\{t_{n-2},t_n\}) \in [0,t_{n-1})$. But an argument analogous to that given above for $R(\{t_0,t_2\})$ shows that $R(\{t_{n-2},t_n\}) \in (t_{n-1},\infty)$. This contradiction shows that π must be interior monotone. Clearly, this implies that $X \approx X_0$.

In the case that K is a simple closed curve, the same type of arguments show that the lift $\tilde{\pi}: [0,\infty) \to \tilde{K}$, defined at the beginning of this section, must be interior monotone. If $\tilde{K} = \operatorname{im} \tilde{\pi}$ is unbounded, then in fact $\tilde{\pi}$ is monotone and $X \approx X_1$. And if \tilde{K} is bounded, then $X \approx X_n$ for some n > 1. Specifically, $X \approx X_{2n}$ if the interval \tilde{K} wraps around K exactly n times, while $X \approx X_{2n+1}$ if \tilde{K} wraps around K n times plus a fraction.

4. Conservative Hyperspace Retractions

Recall that a retraction R: $2^X \rightarrow C(X)$ is *conservative* if R(A) $\cap A \neq \emptyset$ for each A $\in 2^X$. We show that the topologist's sine curve and the circle with a spiral are the only regular half-line compactifications admitting conservative hyperspace retractions.

4.1. Theorem. Let X be a regular half-line compactification for which there exists a conservative retraction R: $2^X + C(X)$. Then either $X \approx X_0$ or $X \approx X_1$.

Proof. We assume that $X = X(\pi)$, with $\pi = \pi_n$ for some n > 1, and show that this leads to a contradiction; the result then follows from (3.3).

Suppose first that n is even. Then for every large integer k, $R(\{k, k + 1\})$ is a small diameter continuum containing either k or k + 1, and therefore contained in a small neighborhood in $[0,\infty)$ of either k or k + 1. If k is sufficiently large, then $\pi R([k - \varepsilon, k + \varepsilon] \cup \{k + 1\})$ must be arbitrarily close to $\pi([k - \varepsilon, k + \varepsilon])$, for each $\varepsilon > 0$. Since for all sufficiently small ε , $\pi([k - \varepsilon, k + \varepsilon]) \cap$ $\pi([k + 1 - \varepsilon, k + 1 + \varepsilon]) = \{p\}$, where $p = (1,0) \in S$, consideration of an order arc in 2^X between the elements $\{k, k + 1\}$ and $[k - \varepsilon, k + \varepsilon] \cup \{k + 1\}$ shows that $R(\{k, k + 1\})$ cannot lie in a small neighborhood of k + 1. An analogous argument involving an order arc between $\{k, k + 1\}$ and $\{k\} \cup [k + 1 - \varepsilon, k + 1 + \varepsilon]$ shows that $R(\{k, k + 1\})$ cannot lie in a small neighborhood of k. Thus n cannot be even.

Now suppose n is odd. For any large integer k, set $k_1 = \inf\{t: t > k \text{ and } \pi(t) = \pi(k)\}$ and $k_2 = \sup\{t: t < k + 1\}$ and $\pi(t) = \pi(k + 1)$. Clearly, $k < k_i < k + 1$ for each i = 1,2. Since π is locally 1-1 at each k, but not at k or k + 1, arguments analogous to those above show that, for sufficiently large k, R({k,k1}) must lie in a small neighborhood of k_1 , and $R(\{k_2, k + 1\})$ must lie in a small neighborhood of k_2 . Let α : $[0,1] \rightarrow 2^X$ be the path between $\{k, k_1\}$ and $\{k_2, k + 1\}$ defined by $\alpha(t) = \{(1 - t)k + tk_2, k_1\}$ $(1 - t)k_1 + t(k + 1)$. Note that for each 0 < t < 1, $\pi(\alpha(t))$ is a singleton, and therefore $R(\alpha(t))$ must lie in a small neighborhood of one of the points of $\alpha(t)$. But since for each t the points of $\alpha(t)$ remain a constant distance apart, this is inconsistent with the noted properties of $R(\alpha(0))$ and $R(\alpha(1))$. Thus n cannot be odd, and this completes the proof that X is homeomorphic to either X_0 or x1.

5. Construction of Hyperspace Retractions

From this point through section 8, $X = [0, \infty) \cup K$ will denote one of the regular compactifications X_n , $n \ge 0$, described in section 1. Thus, K is either the interval I or the circle S. Let $\pi: X \rightarrow K$ be the retraction defined by the periodic surjection $\pi_n: [0,\infty) \rightarrow K$. The construction of a retraction R: $2^X \rightarrow C(X)$ is based on the two propositions stated next, whose proofs will be given in sections 7 and 8. 5.1. Proposition. There exists a map G: $2^X \rightarrow C(X)$ with the following properties:

i) G|C(K) = id;

ii) either $G(A) \supset \pi(A)$ or $G(A) \subset [0,\infty)$;

iii) G(A) $\subset K$ if A $\cap K \neq \emptyset$;

iv) $G(A) \supset K \ if \ A \subset [0,\infty) \ and \ G(A) \supset \pi([\inf A, \ \sup A]);$ and

v) G(A) \cap (K U A) $\neq \emptyset$.

Remark. In the cases n = 0, 1, the above property v) may be strengthened by requiring that $G(A) \cap A \neq \emptyset$.

For a given subset N of C(K), let $\hat{\rho}$ be the subset of C(X) × C(X) defined by $\hat{\rho} = \{(M,N): (M \cup K) \cap N \neq \emptyset$, and either $M \supseteq K \supset N \in N$ or $M \cap K = \emptyset\}$.

5.2. Proposition. For some neighborhood $N \subset C(K)$ of K, there exists a map H: $D \times [0,1] \rightarrow C(X)$ satisfying the following conditions, for every $(M,N) \in D$ and 0 < t < 1:

i) $H(M,N,0) = M \text{ and } H(M,N,1) = N_{j}$

ii) either $H(M,N,t) \supset M$ or $H(M,N,t) \supset N$;

iii) $H(M,N,t) \subset [r,\infty) \cup K \text{ if } M \cup N \subset [r,\infty) \cup K; and$

iv) $H(M,N,t) \subset [r,s]$ if $M \cup N \subset [r,s]$ and $\pi([r,s]) \neq K$.

5.3. Theorem. For $X = [0, \infty) \cup K$ as above, there exists a hyperspace retraction $2^X + C(X)$.

Proof. Let F: $2^X \sim 2^K \rightarrow C(X) \sim C(K)$ denote the "smallest continuum" retraction, defined by

$$F(A) = \begin{cases} [\inf A, \sup A] & \text{if } A \subset [0, \infty), \\ \\ [\inf(A \cap [0, \infty)), \infty) & \bigcup & K & \text{if } A \cap & K \neq \emptyset. \end{cases}$$

45

Define a map $\Theta: 2^{X} \cdot 2^{K} + [0,1]$ by the formula $\Theta(A) = \min\{(2/\delta) \cdot \inf(A \cap [0,\infty)) \cdot \rho(\pi(A), \pi(F(A))),1\},$ where $0 < \delta < 1$ is chosen such that $\{N \in C(K): \rho(N,K) < \delta\} \subset \eta$, the neighborhood of K in C(K) given by (5.2). Note that $\Theta(M) = 0$ for all $M \in C(X) \cdot C(K)$.

Let $\mathcal{W} = \{A \in 2^X \setminus 2^K : \text{ either } A \subset [0,\infty) \text{ or } \rho(\pi(A), K) < \delta\}.$ Note that \mathcal{W} is an open subset of 2^X , and $C(X) \setminus C(K) \subset \mathcal{W}$. Let G: $2^X + C(X)$ and H: $\partial \times [0,1] + C(X)$ be the maps given by (5.1) and (5.2). The desired retraction R: $2^X + C(X)$ is defined by

$$R(A) = \begin{cases} H(F(A), G(A), \Theta(A)) & \text{if } A \in \mathcal{V}, \\ G(A) & \text{if } A \in 2^X \setminus \mathcal{V}. \end{cases}$$

We first verify that for each $A \in W$, (F(A), G(A)) $\in D$, so that R is well-defined. There are two cases to be considered:

1) Suppose $A \in 2^X \setminus 2^K$ with $A \cap K \neq \emptyset$ and $\rho(\pi(A), K) < \delta$. Then $F(A) \xrightarrow{?} K \supset G(A) \supset \pi(A)$, therefore $\rho(G(A), K) < \delta$ and $G(A) \in \mathring{N}$. Thus $(F(A), G(A)) \in \mathring{D}$.

2) Suppose $A \subset [0,\infty)$. Then $F(A) \subset [0,\infty)$, and $(F(A) \cup K) \cap G(A) \supset (A \cup K) \cap G(A) \neq \emptyset$, so again (F(A), $G(A)) \in \hat{D}$.

We next verify that R/C(X) = id. Since R/C(K) = G/C(K) = id, we need only consider $M \in C(X) \setminus C(K)$. Then $\Theta(M) = 0$ and $M \in \mathcal{V}$, so R(M) = H(F(M), G(M), 0) = F(M) = M.

It remains to show that R is continuous. Since \mathcal{V} is open in 2^X, we have only to verify continuity of R at each A \in bd \mathcal{V} . Suppose to the contrary that R is *not* continuous at some such A. Then there exists a sequence $\{A_i\}$ in \mathcal{V} converging to A, with no subsequence of $\{R(A_i)\}$ converging to R(A) = G(A). In particular, $O(A_i) \neq 1$ for almost all i. There are two cases to be considered.

1) Suppose $A \in 2^{K}$. Then $\inf(A_{i} \cap [0, \infty)) \neq \infty$, which together with $O(A_{i}) \neq 1$ implies that $\rho(\pi(A_{i}), \pi(F(A_{i}))) \neq 0$. Thus $F(A_{i}) \neq A \in C(K)$, and $G(A_{i}) \neq G(A) = A$. If A = K, then $R(A_{i}) = H(F(A_{i}), G(A_{i}), O(A_{i})) \neq K$ by the properties ii) and iii) of H, contrary to our choice of $\{A_{i}\}$. Thus $A \in C(K) \setminus \{K\}$, and $A_{i} \subset [0, \infty)$ for almost all i since $F(A_{i}) \neq A$.

If $G(A_i) \cap K \neq \emptyset$ for infinitely many i, then $G(A_i) \supset \pi(A_i)$ by the property ii) of G, and since $F(A_i) \rightarrow A \neq K$ and $G(A_i) \rightarrow A$, it follows that $G(A_i) \supset \pi(F(A_i))$ for infinitely many i. By the property iv) of G, $G(A_i) \supset K$, contradicting the convergence of $\{G(A_i)\}$ to A.

On the other hand, if $G(A_i) \subset [0,\infty)$ for almost all i, then $F(A_i) \cap G(A_i) \supset A_i \cap G(A_i) \neq \emptyset$ by the property v) of G, so for almost all i, $F(A_i) \cup G(A_i) = [r_i, s_i]$, a subarc of $[0,\infty)$. Since both $\{F(A_i)\}$ and $\{G(A_i)\}$ converge to $A \neq K$, $\pi([r_i, s_i]) \neq K$ for almost all i. Then the properties ii) and iv) of H imply that $R(A_i) \rightarrow A = R(A)$, again contrary to our choice of $\{A_i\}$.

2) Suppose A $\in 2^X \ 2^K$, with A $\cap K \neq \emptyset$ and $\rho(\pi(A), K) \ge \delta$. Then for almost all i, $\pi(F(A_i)) = K$ and $\rho(\pi(A_i), K) \ge \delta/2$, yielding $\Theta(A_i) = 1$, which is impossible. This completes the verification of continuity for R.

Finally, we note that the retraction R is conservative if G is, since for each A $\in 2^X$, either R(A) \supset F(A) \supset A or R(A) \supset G(A). Thus, in the cases n = 0,1 where a conservative map G may be chosen, we obtain a conservative hyperspace retraction.

6. Admissible Expansions in K

As in the previous section, $X = [0, \infty) \cup K = X_n$ for some $n \ge 0$, with $\pi: X \rightarrow K$ the retraction defined by π_n . We call a map e: $K \times [0, \infty) \rightarrow C(K)$ an *expansion* if it satisfies the following conditions (for $A \in 2^X$, $e(A,t) = \cup \{e(a,t):$ $a \in A\}$):

1) $e(x,t) \supset e(x,0) = \{x\}$ for all x and t;

2) for every $0 \le s < t$, there exists $\delta > 0$ such that $e(e(x,s), \delta) \subset e(x,t)$ for all x;

3) for every $A \in 2^{K}$ and $\delta > 0$, $e(B, \delta) \supset A$ for all $B \in 2^{K}$ sufficiently close to A; and

4) for every $A \in 2^{K}$, $e(A,t) \in C(K)$ for some t.

An expansion e is *admissible* if it permits an extension to a map \tilde{e} : X × $[0,\infty) \rightarrow C(X)$ satisfying the above condition 1) and such that, for all x $\in [1,\infty)$ and all t, $\tilde{e}(x,t) \subset$ [x - 1, x + 1] and $\pi(\tilde{e}(x,t)) = e(\pi(x),t)$. We refer to \tilde{e} as a "lift" for e.

6.1. Lemma. There exists an admissible expansion e: $K \times [0, \infty) \rightarrow C(K)$.

Proof. With d the arc-length metric on K, we may obtain an expansion by simply setting $e(x,t) = \{y \in K: d(x,y) \leq t\}$. However, this "free" expansion is admissible only if $\pi/(0,\infty)$ is an open map, i.e., only for n = 0,1. Thus, for these cases the lemma is trivial, but for n > 1, some type of "partial" expansion is required.

Suppose then that K = S and n > 1. Let $\omega: (-\infty, \infty) \rightarrow S$ be the covering projection defined by $\omega(r) = e^{2\pi i r}$, and let $\tilde{\pi}: [0,\infty) \rightarrow (-\infty,\infty)$ be a lift of the periodic surjection $\pi_n: [0,\infty) \rightarrow S$. Then $J = im \tilde{\pi}$ is a compact subinterval with length $n/2 \ge 1$. Let $p,q \in J$ be the points for which J = [p - 1, q + 1]. For each $z \in S$, let $z_p, z_q \in (0,1]$ be the unique values for which $\omega(p - z_p) = z = \omega(q + z_q)$.

Define maps e_p, e_q : S × $[0, \infty) \rightarrow C(S)$ by the formulas $\begin{cases} e_p(z,t) = \omega([p - (1 + t)z_p, p - z_p] \cap J), \\ e_q(z,t) = \omega([q + z_q, q + (1 + t)z_q] \cap J). \end{cases}$

Although the total image function $z + e_p(z \times [0,\infty))$ is discontinuous at $z = \omega(p)$, the function e_p is continuous; similarly for e_q . These maps may be viewed quite simply. For $z \in S$, the restriction $e_p | z \times [0,\infty)$ is clockwise expansion around S from z to $\omega(p)$, where $\omega(p) = \pi(\{0,2,4,\dots,\}) = (1,0)$ is the π -projection of those "turning points" in $[0,\infty)$ where the direction of travel (towards ∞) changes from clockwise rotation about S to counterclockwise rotation. Similarly, $e_q | z \times [0,\infty)$ is counterclockwise expansion from z to $\omega(q)$, where $\omega(q) = \pi(\{1,3,5,\dots\})$ is the π -projection of those turning points where the direction of travel changes from counterclockwise to clockwise. For even n, $\omega(q) = (1,0)$, while for odd n, $\omega(q) = (-1,0)$.

We show that the map e: $S \times [0,\infty) \rightarrow C(S)$, defined by $e(z,t) = e_p(z,t) \cup e_q(z,t)$, is an admissible expansion. The admissibility of e should already be evident from the above discussion of the maps e_p and e_q . It remains to verify the expansion conditions 1) through 4). Condition 1) is obvious. Condition 2) is satisfied with $\delta = t - s/(1 + s)$, since then $(1 + s)(1 + \delta) = (1 + t)$. The verification of condition 3) is more involved. The basic observation is that, for all y,z \in S and $\delta > 0$,

i)
$$\begin{cases} z_p/(1+\delta) \leq y_p \leq z_p \text{ implies } z \in e_p(y,\delta); \\ z_q/(1+\delta) \leq y_q \leq z_q \text{ implies } z \in e_q(y,\delta). \end{cases}$$

Let d be the metric on S defined by $d(y,z) = min\{|u - v|: u, v \in (-\infty, \infty) \text{ with } \omega(u) = y \text{ and } \omega(v) = z\}.$ The above observation i) implies that for all y,z,

ii) if
$$d(y,z) \leq \min\{z_p, z_q\} \cdot \delta/(1 + \delta)$$
, then
 $z \in e(y, \delta)$.

Let $m = \min\{(\omega(p))_q, (\omega(q))_p\}$. Then i) also implies that for all y,

$$\text{iii)} \begin{cases} \text{if } y_q \leq m\delta/(1+\delta), \text{ then } e_p(y,\delta) \supset \omega([q,q+y_q]); \\ \text{if } y_p \leq m\delta/(1+\delta), \text{ then } e_q(y,\delta) \supset \omega([p-y_p,p]). \end{cases} \\ \text{Assuming } \delta < 1, \text{ iii} \text{ implies that for all } y,z, \end{cases}$$

$$iv) \begin{cases} \text{if } d(y,z) \leq z_q/2 \leq m\delta/6, \text{ then} \\ e_p(y,\delta) \supset \omega([q,q+.z_q/2]); \\ \text{if } d(y,z) \leq z_p/2 \leq m\delta/6, \text{ then} \\ e_q(y,\delta) \supset \omega([p-z_p/2,p]). \end{cases}$$

٢

We can now verify condition 3). Given $A \in 2^{S}$ and $\delta > 0$, set $A_{p} = x_{p}/2$, for some $x \in A$ such that either $x_{p} \leq m\delta/3$ or $x_{p} = \min\{a_{p}: a \in A\}$; set $A_{q} = y_{q}/2$, for some $y \in A$ such that either $y_{q} \leq m\delta/3$ or $y_{q} = \min\{a_{q}: a \in A\}$. Let $\eta = \min\{A_{p}, A_{q}\}$. $\delta/(1 + \delta)$. We claim that for every $B \in 2^{S}$ with $\rho(A, B) < \eta$, $e(B, \delta) \supset A$. There are three cases to be considered:

a) Consider $z \in A$ with $z_p \leq A_p$. Then $A_p = x_p/2 \leq m\delta/6$ for some $x \in A$. Choose $y \in B$ with $d(y,x) < \eta < A_p = x_p/2$. By iv), $e_q(y,\delta) \supset \omega([p - x_p/2,p])$. Since $z_p \le x_p/2$, we have $z = \omega(p - z_p) \in \omega([p - x_p/2,p])$. Thus $z \in e_q(y,\delta) \subset e(B,\delta)$.

b) An analogous argument shows that for $z \in A$ with $z_{q} \leq A_{q}, \ z \in e(B,\delta) \, .$

c) Consider $z \in A$ with $z_p \ge A_p$ and $z_q \ge A_q$. Choose $y \in B$ with $d(y,z) < \eta \le \min\{z_p, z_q\} \cdot \delta/(1 + \delta)$. By (ii), $z \in e(y, \delta) \subset e(B, \delta)$.

We next verify condition 4). Note that for each $z \in S$, and sufficiently large t, $e_p(z,t) \supset \omega([p-1, p-z_p])$, the arc (possibly degenerate) traversed in the clockwise direction from z to $\omega(p)$. Similarly, for large t, $e_q(z,t) \supset$ $\omega([q + z_q, q + 1])$, the arc traversed in the counterclockwise direction from z to $\omega(q)$. If $\omega(p) = \omega(q)$, then for every $A \in 2^S$ with $A \neq \{\omega(p)\}$, e(A,t) = S for large t. If $\omega(p) \neq \omega(q)$, let $\alpha \subset S$ be the subarc traversed in the clockwise direction from $\omega(q)$ to $\omega(p)$. Then for each $A \in 2^S$ with $A \land \alpha \neq \emptyset$, e(A,t) = S for large t, and for $A \subset \alpha$, $e(A,t) = \alpha$ for large t. This completes the verification that e is an expansion. And as remarked earlier, e is by its construction admissible.

The above lemma will be used in section 8 for the construction of a map H with the properties specified in (5.2). At present, we apply (6.1) in the case n > 1 to obtain a result which will be essential for the construction in the next section of a map G with the properties specified in (5.1). 6.2. Lemma. Let $\pi = \pi_n$: $[0,\infty) \rightarrow S$, n > 1. Then there exists a retraction E: $2^S \rightarrow C(S)$ with the following properties:

i) $E(A) \supset A$ for each $A \in 2^{S}$; and

ii) for each $A \in 2^{S}$ and subinterval $L \subset [0,\infty)$ such that $A \subset \pi(L) \subset E(A)$, there exists a subinterval $M \subset [0,\infty)$ with $L \subset M$ and $\pi(M) = E(A)$.

Proof. Let e: $S \times [0,\infty) \rightarrow C(S)$ be an admissible expansion given by (6.1). For each $A \in 2^{S}$, let $\tau(A)$ denote the smallest value of t for which $e(A,t) \in C(S)$, and define E: $2^{S} \rightarrow C(S)$ by setting $E(A) = e(A,\tau(A))$. Then E|C(S) = id, and $E(A) \supset A$.

We establish continuity for E by verifying continuity for the function $\tau: 2^S \rightarrow [0,\infty)$. The lower semi-continuity of τ is automatic, since C(S) is closed in 2^S and e is continuous. Using the expansion properties 2) and 3) of e, we show that τ is upper semi-continuous. Given A $\in 2^S$ and $\varepsilon > 0$, there exists by property 2) a number $\delta > 0$ such that $e(e(B,\tau(A)),\delta) \subset e(B,\tau(A) + \varepsilon)$ for all $B \in 2^{S}$. By continuity of e and property 3), there exists a neighborhood // of A in 2^S such that $e(e(B,\tau(A)),\delta) \supset e(A,\tau(A))$ for every $B \in U$. Thus, $e(B,\tau(A) + \varepsilon) \supset e(A,\tau(A))$. Also, by application of property 3) to each $\{a\}$, $a \in A$, we may assume the neighborhood U is small enough that for each $B \in U$ and $b \in B$, $e(b,\tau(A) + \varepsilon)$ meets A. Thus, each component of $e(B,\tau(A) + \varepsilon)$ meets A, and since $A \subseteq e(A, \tau(A)) \subseteq e(B, \tau(A) + \varepsilon)$ and $e(A,\tau(A)) \in C(S)$, it follows that $e(B,\tau(A) + \varepsilon) \in C(S)$. Then $\tau(B) < \tau(A) + \varepsilon$ for every $B \in U$, and τ is upper semicontinuous.

It remains to verify the property ii). Given $A \in 2^{S}$ and a subinterval $L \subset [0,\infty)$ such that $A \subset \pi(L) \subset E(A)$, we may assume that $E(A) \neq S$. Let $M \supset L$ be a maximal subinterval of $[0,\infty)$ for which $\pi(M) \subset E(A)$. We show that $\pi(M) = E(A)$. Let $\tilde{e}: X \times [0,\infty) \rightarrow C(X)$ be a lift for e. Since $A \subset \pi(L) \subset$ $\pi(M)$, we may choose for each $a \in A$ an element $\tilde{a} \in M$ with $\pi(\tilde{a}) = a$. Set $N_a = \tilde{e}(\tilde{a}, \tau(A))$. Then N_a is a subinterval of $[0,\infty)$ containing \tilde{a} , and $\pi(N_a) = \pi(\tilde{e}(\tilde{a}, \tau(A))) = e(a, \tau(A)) \subset$ $e(A, \tau(A)) = E(A)$. Since $\tilde{a} \in M \cap N_a$, $M \cup N_a$ is a subinterval, with $\pi(M \cup N_a) \subset E(A)$. By the maximal character of M, we must have $N_a \subset M$. Thus $E(A) = \cup\{e(a, \tau(A)): a \in A\} =$ $\cup\{\pi(N_a): a \in A\} \subset \pi(M)$, and $\pi(M) = E(A)$.

7. Construction of the Map G

We consider first the case n > 1. Thus, K = S and $\pi = \pi_n: [0,\infty) + S$. As in the proof of (6.1), let $\omega: (-\infty,\infty) + S$ be the covering projection defined by $\omega(r) = e^{2\pi i r}$, and let $\tilde{\pi}: [0,\infty) + (-\infty,\infty)$ be a lift of π . The desired map G: $2^X + C(X)$ will be obtained as an extension of the retraction E: $2^S + C(S)$ given by (6.2).

Let $\mathcal{U} \subset 2^X$ be the collection of those $A \in 2^X$ which satisfy the following conditions:

- a) $A \subset [0,\infty);$
- b) $E(\pi(A)) \neq S$; and

c) $E(\pi(A)) \supset \omega([\inf \tilde{\pi}(A), \sup \tilde{\pi}(A)]).$

Although condition c) by itself defines a closed subspace of 2^X , \mathcal{U} is an open subspace. This can be seen from the fact that, since $E(\pi(A)) \supset \pi(A) = \omega(\tilde{\pi}(A)) \supset \{\omega(\inf \tilde{\pi}(A)), \omega(\sup \tilde{\pi}(A))\}$ for each $A \in 2^X$, A satisfies conditions b) and c) if and only if $E(\pi(A)) \cup \omega([\inf \tilde{\pi}(A), \sup \tilde{\pi}(A)]) \neq S$. Thus conditions b) and c) together define an open subspace of 2^X , as does condition a), and therefore l' is open.

We claim that for each $A \in U$ and $x \in A$, the continuum $E(\pi(A)) \subset S$ can be "lifted" through x, i.e., there exists a continuum $M \subset [0,\infty)$ with $x \in M$ and $\pi(M) = E(\pi(A))$. Suppose $x \in [i,i + 1]$, for some integer i; let $L \subset [i,i + 1]$ be the subinterval such that $\tilde{\pi}(L) = [\inf \tilde{\pi}(A), \sup \tilde{\pi}(A)]$ (note that $\tilde{\pi}|[i,i + 1]$ is a homeomorphism onto im $\tilde{\pi}$). Then $x \in L$, and $\pi(A) \subset \pi(L) = \omega(\tilde{\pi}(L)) \subset E(\pi(A))$ since $A \in U$. The property ii) of the retraction E shows that L may be expanded to an interval $M \subset [i,i + 1]$ such that $\pi(M) =$ $E(\pi(A))$.

In particular, if $A \in U$ and $a = \sup A$ is the point of A nearest S, with $a \in [i, i + 1]$, then there exists a unique interval $M_i \subset [i, i + 1]$ with $a \in M_i$ and $\pi(M_i) = E(\pi(A))$. This permits the construction of a map L: $U \neq C(X)$ such that for each $A \in U$, L(A) is an "approximate lift" of $E(\pi(A))$ through the point $a = \sup A$. We may construct L according to the following rules:

1) $L(A) = M_i$ if min{a - i, i + 1 - a} $\geq 1/a$;

2) $L(A) = [i, \max M_i]$ if a - i = 1/2a, and $L(A) = [\min M_i, i + 1]$ if i + 1 - a = 1/2a;

3) $L(A) = M_{i-1} \cup M_i$ if a = i > 0, and $L(A) = M_i \cup M_{i+1}$ if a = i + 1. For 1/2a < a - i < 1/a or 1/2a < i + 1 - a < 1/a, L(A) is defined so that $M_i \subset L(A) \subset [i, \max M_i]$ or $M_i \subset L(A) \subset$ [min M_i , i + 1], respectively, and for 0 < a - i < 1/2a or 0 < i + 1 - a < 1/2a, $[i, \max M_i] \subset L(A) \subset [\min M_{i-1}, \max M_i]$ or $[\min M_i, i + 1] \subset L(A) \subset [\min M_i, \max M_{i+1}]$, respectively.

The key properties of the map L are that sup A \in L(A) \subset [0, ∞) and $\pi(L(A)) \supset E(\pi(A))$ for each A $\in U$, with inf L(A) $\rightarrow \infty$ and $\rho(\pi(L(A)), E(\pi(A))) \rightarrow 0$ as sup A $\rightarrow \infty$.

The desired map G: $2^X \rightarrow C(X)$ is defined over l' by modifying L as follows:

4) G(A) = L(A) if $\rho(E(\pi(A)), S) > 1/\sup A$;

5) $G(A) = [\inf L(A), \infty)$ U S if $\rho(E(\pi(A)), S) = 1/(2 \sup A);$

6) $G(A) = S \text{ if } \rho(E(\pi(A)), S) < 1/(4 \text{ sup } A)$.

For $1/(2 \sup A) < \rho(E(\pi(A)),S) < 1/\sup A$, G(A) is defined so that $L(A) \subset G(A) \subset [\inf L(A),\infty)$, and for $1/(4 \sup A) < \rho(E(\pi(A)),S) < 1/(2 \sup A)$, $S \subset G(A) \subset [\inf L(A),\infty) \cup S$.

Note that for $A \in U$, either $G(A) \cap S = \emptyset$ or $G(A) \supset S$, and $G(A) \cap (A \cup S) \neq \emptyset$.

Finally, G is defined over $2^X \setminus U$ by the formula $G(A) = E(\pi(A))$. Since U is open, it suffices to verify continuity of G at each B \in bdU. Note that, since the condition c) in the definition of U is automatically satisfied by each B \in bdU, we must have either $E(\pi(B)) = S$ or B $\cap S \neq \emptyset$, otherwise B $\in U$. If $G(B) = E(\pi(B)) = S$, then for any A $\in U$ near B, either G(A) = S by virtue of rule 6) above, or $1/(4 \sup A) < \rho(E(\pi(A)),S)$, in which case both L(A) and G(A) are near S. If $E(\pi(B)) \neq S$ and B $\cap S \neq \emptyset$, then for any A $\in U$ near B, L(A) is near $E(\pi(B))$ and $1/\sup A \leq \rho(E(\pi(A)),S)$, hence G(A) = L(A) is near $G(B) = E(\pi(B))$. Thus G is a map.

We next verify that G has the required properties i) through v) of (5.1). Since G extends E, property i) is clear. Since either G(A) \cap S = \emptyset , G(A) \supset S, or

In the cases n = 0, 1, a streamlined version of the above construction yields a conservative map G: $2^{X} + C(X)$ with the required properties. For either K = I or K = S, let E: $2^{K} + C(K)$ be any retraction such that $E(A) \Rightarrow A$ for each $A \in 2^{K}$. Let $V = \{A \in 2^{X} : A \subset [0,\infty)\}$. As above, an approximate lifting map L: V + C(X) may be constructed such that for each $A \in V$, sup $A \in L(A) \subset [0,\infty)$ and $\pi(L(A)) \Rightarrow E(\pi(A))$, with inf $L(A) \neq \infty$ and $\rho(\pi(L(A)))$, $E(\pi(A))) \neq 0$ as sup $A \neq \infty$. In fact, for n = 0, L is constructed in the same manner as above for n > 1. For n = 1, L is constructed such that $L(A) \subset [0,\infty)$ is the unique lift of $E(\pi(A))$ through $a = \sup A$ if $\rho(E(\pi(A)),S) \geq 1/a$; $a \in L(A) \subset [a - 2, a + 2]$ with $\pi(L(A)) \Rightarrow E(\pi(A))$ if $0 < \rho(E(\pi(A)),S) < 1/a$; and L(A) = [a - 2, a + 2] if $E(\pi(A)) = S$.

In either case, L extends to a map G: $2^X \rightarrow C(X)$ by the formula G(A) = E($\pi(A)$) for A $\in 2^X \setminus V$. Properties i) and iii) are immediate from the definition of G. Property ii) is a

consequence of the fact that $E(\pi(A)) \supset \pi(A)$, and that $G(A) \subset [0,\infty)$ when $A \subset [0,\infty)$. Property iv) is satisfied vacuously. And finally, $G(A) \cap A \neq \emptyset$ for all $A \in 2^X$, since $G(A) = E(\pi(A)) \supset \pi(A)$ if $A \cap K \neq \emptyset$, and $G(A) = L(A) \ni$ sup A if $A \cap K = \emptyset$.

8. Construction of the Map H

We will

Let e: $K \times [0, \infty) \rightarrow C(K)$ be an admissible expansion given by (6.1). Set $\mathcal{N} = \{N \in C(K) : e(N,t) = K \text{ for some } t\}$. By the expansion property 3), \mathcal{N} is a neighborhood of K.

The domain $\hat{D} \subset C(X) \times C(X)$ of H can be partitioned into four subdomains as follows:

$$\begin{array}{l} \partial_1 = \{ (M,N): M \not\supseteq K \supset N \in N \}; \\ \partial_2 = \{ (M,N): M \cap K = \emptyset \text{ and } N \subset K \}; \\ \partial_3 = \{ (M,N): M \cap K = \emptyset \text{ and } N \not\supseteq K \}; \text{ and} \\ \partial_4 = \{ (M,N): M \cap K = \emptyset = N \cap K \text{ and } M \cap N \neq \emptyset \}. \\ \text{Il define H separately over each } \partial_1 \times [0,1]. \\ \text{For } (M,N) \in \partial_1, \text{ set} \\ \begin{cases} H(M,N,t) = M, & 0 \leq t \leq 1/4; \\ H(M,N,t) = K, & 1/2 \leq t \leq 3/4; \text{ and} \end{cases} \end{array}$$

$$H(M,N,1) = N.$$

Use the natural path in C(X) from M to K to define H(M,N,t)for $1/4 \le t \le 1/2$, and reverse the e-expansion {e(N,t): $0 \le t < \infty$ } of N to K to define H(M,N,t) for $3/4 \le t \le 1$.

For (M,N) $\in \partial_2$, let N* = e(N, sup M); then N \subset N* \in C(K). Set

 $\begin{cases} H(M,N,0) = M; \\ H(M,N,1/4) = [inf M,\infty) U K: \\ H(M,N,1/2) = K; \\ H(M,N,3/4) = N*; and \\ H(M,N,1) = N. \end{cases}$

Use the natural paths in C(X) to define H(M,N,t) for $0 \le t \le 1/4$ and $1/4 \le t \le 1/2$; reverse the free expansion (via an arc-length metric) in C(K) from N* to K to define H(M,N,t) for $1/2 \le t \le 3/4$; and reverse the e-expansion from N to N* to define H(M,N,t) for $3/4 \le t \le 1$.

For $(M,N) \in \hat{\partial}_3$, set $\begin{cases}
H(M,N,0) = M; \\
H(M,N,1/4) = [inf M,\infty) \cup K; \\
H(M,N,1/2) = [max{inf M, inf N},\infty) \cup K; and \\
H(M,N,t) = N, 5/8 \le t \le 1.
\end{cases}$

Use the natural paths in C(X) to define H(M,N,t) for all other t.

Define an index map $\tau: \hat{D}_4 \rightarrow [0,\infty)$ by the formula $\tau(M,N) = \max\{\inf N - \inf M - 2,0\} \cdot \rho(\pi(N),K)$. For $(M,N) \in \hat{D}_4$, let $N^* = \tilde{e}(N,\tau(M,N))$, where \tilde{e} is a lift for e. Then $N^* \in C(X)$, with $N \subset N^* \subset [\inf N - 1, \sup N + 1]$. Set

Use the natural paths in C(X) to complete the definition of H(M,N,t) for $0 \le t \le 3/4$, and reverse the \tilde{e} -expansion from N to N* to define H(M,N,t) for 3/4 < t < 1.

We now verify that H is a map. For $i \neq j$, $\partial_i \cap \overline{\partial}_i \neq \emptyset$ only if (i,j) = (1,2), (1,3), (1,4), (2,3), or (3,4). Since each restriction $H/\partial_1 \times [0,1]$ is continuous, it suffices to check continuity of H at boundary points in the above cases. Considering first the case (i,j) = (1,2), let (M_k, N_k) be a sequence in ∂_2 converging to $(M, N) \in \partial_1$. Then sup $M_k \rightarrow \infty$, and since $N_k \rightarrow N \in \mathbb{N}$, we have $N_k^* = K$ for almost all k (use continuity of e, and the expansion properties 2) and 3)). It follows that $H(M_k, N_k, t_k) \rightarrow H(M, N, t)$ whenever $t_k \rightarrow t$. The cases (i,j) = (1,3) or (2,3) are routine. Consider a sequence (M_k, N_k) in $\hat{\partial}_4$ converging to $(M,N) \in \partial_1$. Then if $N \neq K$, $\tau(M_k,N_k) \rightarrow \infty$ and $N_k^* \rightarrow K$; if N = K, obviously $N_k^* \rightarrow K$. This implies that $H(M_k, N_k, t_k) \rightarrow K$ H(M,N,t) whenever $t_k \rightarrow t$. Finally, consider a sequence (M_k, N_k) in $\hat{\partial}_4$ converging to $(M, N) \in \hat{\partial}_3$. Then $\pi(N_k) = K$ for almost all k, hence $\tau(M_k, N_k) = 0$ and $N_k^* = N_k$, implying that $H(M_k, N_k, t_k) \rightarrow H(M, N, t)$ whenever $t_k \rightarrow t$. This completes the verification of continuity for H: $\hat{D} \times [0,1] \rightarrow C(X)$.

Clearly, H satisfies the required conditions i) and ii) of (5.2). Conditions iii) and iv) are also clear, except possibly for (M,N) $\in \hat{D}_4$ with N* \neq N. However, N* \neq N implies $\tau(M,N) > 0$, which implies that inf N \geq inf M + 2. Then inf N* \geq inf N - 1 \geq inf M, and condition iii) is satisfied. And, diam(M U N) \geq 2 implies that $\pi(M \cup N) = K$, so condition iv) is satisfied vacuously. This completes the proof of (5.2).

9. Means and Pseudo-Means

Let Y be a continuum. A map λ : Y × Y → Y is called a mean if $\lambda(x,y) = \lambda(y,x)$ and $\lambda(y,y) = y$ for all $x,y \in Y$. A map λ : Y × Y → C(Y) with the same properties is called a pseudo-mean for Y [7].

Every hyperspace 2^X admits a mean: define $\lambda(A,B) =$ A U B. If there exists a retraction $2^X \rightarrow C(X)$, then C(X)also admits a mean, and X admits a pseudo-mean. Thus we have yet another necessary condition for the existence of a hyperspace retraction. In this section we describe examples from the class of regular half-line compactifications which show that the existence of a pseudo-mean neither implies nor is implied by the subcontinuum approximation property of section 2, and that both conditions together are still not sufficient for the existence of a hyperspace retraction. Recall that a regular compactification $X = [0, \infty)$ U K has the subcontinuum approximation property if and only if the remainder K is either an arc or a simple closed curve. We do not know in general which regular compactifications admit pseudo-means.

9.1. Example. Let π : $[0,\infty) \rightarrow I$ be the periodic surjection defined as follows:

i) $\pi(k) = 0$ if k is an odd integer;

- ii) $\pi(k) = 1$ if $k \equiv 2,4 \pmod{6}$;
- iii) $\pi(k) = -1$ if $k \equiv 6 \pmod{6}$; and
- iv) π is linear over each interval [k,k + 1].

Then for $X = X(\pi)$, no retraction $2^X \rightarrow C(X)$ exists, since $X \not \approx X_0$; nonetheless, a pseudo-mean may be constructed for X, and in fact C(X) admits a mean.

9.2. Example. Let π : $[0,\infty) \rightarrow I$ be the periodic surjection defined by:

i) $\pi(k) = 0$ if k is odd;

ii) $\pi(k) = 1$ if $k \equiv 2,4 \pmod{8}$;

iii) $\pi(k) = -1$ if $k \equiv 6, 8 \pmod{8}$; and

iv) π is linear over each interval [k,k + 1]. Then X = X(π) does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean λ : X × X + C(X). Let k denote an integer of the form 8n + 2. Then consideration of $\lambda(k - t, k + t)$, for 0 < t < 1 and large n, shows that either $\lambda(k - 1, k + 1) \approx$ (approximates) $\{k - 1\}$ or $\lambda(k - 1, k + 1) \approx \{k + 1\}$. Similarly, either $\lambda(k + 1, k + 3) \approx \{k + 1\}$ or $\lambda(k + 1, k + 3) \approx \{k + 3\}$. If $\lambda(k - 1, k + 1) \approx \{k - 1\}$, then $\lambda(k, k + 2) \approx \{k\}$; if $\lambda(k + 1, k + 3) \approx \{k + 3\}, \text{ then } \lambda(k, k + 2) \approx \{k + 2\}.$ Thus, either $\lambda(k - 1, k + 1) \approx \{k + 1\}$ or $\lambda(k + 1, k + 3) \approx$ $\{k + 1\}$. Letting $n \neq \infty$, we see by continuity of λ that, for every $s \in I \subset X$ and the point $0 \in I$, either $\lambda(0,s) \subset$ [0,1] or $l \in \lambda(0,s')$ for some s' between 0 and s. (Suppose that $\lambda(k - 1, k + 1) \approx \{k + 1\}$ for infinitely many k as above. Then for every $r \in [k - 2, k]$, either $\lambda(r, k + 1) \subset$ [k, k + 2] or $\lambda(r', k + 1) \cap \{k, k + 2\} \neq \emptyset$ for some r' between k - 1 and r. Note that $\pi(k - 2) = -1$, $\pi(k - 1) =$ $\pi(k + 1) = 0$, and $\pi(k) = \pi(k + 2) = 1$). An analogous argument shows that either $\lambda(k + 3, k + 5) \approx \{k + 5\}$ or

 $\lambda(k + 5, k + 7) \approx \{k + 5\}$, which implies that for every $s \in I$, either $\lambda(0,s) \subset [-1,0]$ or $-1 \in \lambda(0,s')$ for some s' between 0 and s. Consequently, $\lambda(0,s) = \{0\}$ for every $s \in I$. However, this implies that $\lambda(k - 1, k) \approx \{k - 1\} \approx$ $\lambda(k - 1, k + 1)$ and also that $\lambda(k, k + 1) \approx \{k + 1\} \approx$ $\lambda(k - 1, k + 1)$, a contradiction. Thus X does not admit a pseudo-mean.

9.3. *Example*. Let T be a triod, with branch point v and endpoints e_1 , e_2 , and e_3 , and let π : $[0,\infty) \rightarrow T$ be the periodic surjection defined as follows:

i) $\pi(k) = v$ if k is odd; ii) $\pi(k) = e_1$ if $k \equiv 4 \pmod{8}$; iii) $\pi(k) = e_2$ if $k \equiv 2,6 \pmod{8}$; iv) $\pi(k) = e_3$ if $k \equiv 8 \pmod{8}$; and v) π is linear over each interval [k, k + 1]. Let $X = X(\pi)$. It can be shown that C(X) admits a mean.

9.4. Example. For T as above, let π : $[0,\infty) \rightarrow T$ be the periodic surjection defined by:

i) $\pi(k) = v$ if k is odd; ii) $\pi(k) = e_1$ if $k \equiv 2 \pmod{6}$; iii) $\pi(k) = e_2$ if $k \equiv 4 \pmod{6}$; iv) $\pi(k) = e_3$ if $k \equiv 6 \pmod{6}$; and v) π is linear over each interval [k, k + 1]. Then $X = X(\pi)$ does not admit a pseudo-mean.

Proof. Suppose there exists a pseudo-mean λ . Let k denote an integer of the form 6n + 1. Consideration of $\lambda(k, k + t)$ and $\lambda(k + 2, k + 2 - t)$, for $0 \le t \le 1$ and

large n, shows that λ must have the following property with respect to e_1 : for each $x \in [v, e_1]$, either $\lambda(v, x) \subset [v, e_1]$ or $e_1 \in \lambda(v, x')$ for some x' between v and x. Of course, λ has the analogous properties with respect to e_2 and e_3 .

Now, consideration of $\lambda(k + 1 - t, k + 1 + t)$, for $0 \le t \le 1$ and k = 6n + 1 as above, shows that for large n, either $\lambda(k, k + 2) \approx \{k\}$ or $\lambda(k, k + 2) \approx \{k + 2\}$. We may suppose the former (for infinitely many n). Then consideration of $\lambda(k, k + 2 + t)$, for $0 \le t \le 1$, together with the above property of λ with respect to e_2 , shows that $\lambda(v,x) = \{v\}$ for each $x \in [v,e_2]$. But this implies that $\lambda(k + 2, k + 3) \approx \{k + 2\} \approx \lambda(k + 2, k + 4)$ and also that $\lambda(k + 4, k + 3) \approx \{k + 4\} \approx \lambda(k + 4, k + 2)$, a contradiction. Thus X does not admit a pseudo-mean.

There also exist regular compactifications $X = [0,\infty) \cup S$ similar to the above examples. Let $\pi: [0,\infty) + S$ be the periodic surjection defined by $\pi(t) = e^{i\pi t}, 0 \le t \le 3 \pmod{4}$, and $\pi(t) = e^{-i\pi t}, 3 \le t \le 4$ (mod 4). Then for $X = X(\pi)$, C(X) admits a mean. On the other hand, there exist periodic surjections $[0,\infty) + S$ for which the corresponding compactifications do not admit pseudo-means. An example is the map π defined by $\pi(t) = e^{i2\pi t}, 0 \le t \le 2 \pmod{3}$, and $\pi(t) = e^{-i2\pi t},$ $2 < t < 3 \pmod{3}$.

If there exists a *conservative* retraction $2^X + C(X)$, then there exists a *conservative* pseudo-mean λ : X × X + C(X), i.e., $\lambda(x,y) \cap \{x,y\} \neq \emptyset$ for all x,y. It can be shown that a regular compactification $X = [0, \infty) \cup K$ admits a conservative pseudo-mean only if X is homeomorphic to either X_0 or X_1 . Thus, in the class of regular half-line compactifications, the existence of a conservative pseudo-mean is equivalent to the existence of a conservative hyperspace retraction. It seems unlikely that this would hold in general, but we do not have a counterexample.

References

- K. Borsuk and S. Mazurkiewicz, Sur l'hyperespace d'un continu, C. R. Soc. Sc. Varsovie 24 (1931), 149-152.
- [2] J. T. Goodykoontz, Jr., C(X) is not necessarily a retract of 2^X, Proc. Amer. Math. Soc. 67 (1977), 177-178.
- [3] _____, A nonlocally connected continuum X such that C(X) is a retract of 2^X, Proc. Amer. Math. Soc. 91 (1984), 319-322.
- [4] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- [5] R. J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967), 35-46.
- [6] S. B. Nadler, Jr., Some problems concerning hyperspaces, Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, pp. 190-197.
- [7] _____, Hyperspaces of sets, Monographs in Pure and Applied Math., vol. 49, Dekker, New York, 1978.
- [8] J. T. Rogers, Jr., The cone = hyperspace property, Canad. J. Math. 24 (1972), 279-285.
- [9] M. Wojdyslawski, Retractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.

Louisiana State University Baton Rouge, Louisiana 70803