TOPOLOGY PROCEEDINGS

Volume 11, 1986
Pages 29-64
http://topology.auburn.edu/tp/

A HYPERSPACE RETRACTION THEOREM FOR A CLASS OF HALF-LINE COMPACTIFICATIONS

by
D. W. Curtis

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

A HYPERSPACE RETRACTION THEOREM FOR A CLASS OF HALF-LINE COMPACTIFICATIONS

D. W. Curtis

1. Hyperspace Retractions

For X a metric continuum, let 2^{X} be the hyperspace of all nonempty subcompacta, with the Hausdorff metric topology, and let $C(X) \subset 2^{X}$ be the hyperspace of subcontinua. If X is locally connected, both $C(X)$ and 2^{X} are absolute retracts [9], and in particular $C(X)$ is a retract of 2^{X}. In the non-locally connected case, neither hyperspace is an absolute retract, but we may still ask whether $C(X)$ is a retract of 2^{X}. Until now, this question has been answered in only two specific cases. In 1977, Goodykoóntz [2] constructed a l-dimensional continuum X in E^{3} such that $C(X)$ is not a retract of 2^{X}. And in 1983, Goodykoontz [3] showed that for X the cone over a convergent sequence, $\mathrm{C}(\mathrm{X})$ is a retract of 2 X . Thus, for X non-locally connected, $C(X)$ is not necessarily a retract of 2^{X}, but it may be. (Nadler [6] had earlier shown the existence of surjections from 2^{X} to $C(X)$, in all cases.)

At present, a completely general answer for the hyperspace retraction question seems out of reach. In this paper, we answer the question for a certain class of non-locally connected continua, large enough to be of interest, but sufficiently delimited so as to be manageable. This class will consist of those half-line compactifications with locally connected remainder which are "regular" in the
following sense. Let $\mathrm{X}=[0, \infty) \cup \mathrm{K}$ denote an arbitrary half-line compactification with a nondegenerate locally connected remainder K (which is therefore a Peano continuum). In this situation, there always exists a retraction $\mathrm{X} \rightarrow \mathrm{K}$. We say that X is a regular compactification if there exists a retraction $r: X \rightarrow K$ such that, for some homeomorphism $\phi:[0, \infty) \rightarrow[0, \infty)$, the map $r \circ \phi:[0, \infty) \rightarrow K$ is a periodic surjection, i.e., there exists $p>0$ such that $r(\phi(t))=$ $r(\phi(t+p))$ for all t. Our main result is that the only regular half-line compactifications for which there exist hyperspace retractions $2^{X} \rightarrow C(X)$ are the following: the topologist's sine curve; the circle with a spiral; and a sequence of other regular compactifications with a circle as remainder, to be described below.

The case of the circle with a spiral (labelled below as X_{1}) is of particular interest. It is known that Cone X_{1} does not have the fixed point property [5], and that $C\left(X_{1}\right)$ is homeomorphic to Cone X_{1} [8]. Noting this, Nadler [7] conjectured that $2^{X_{1}}$ does not have the fixed point property (which would make it the first such example to be known), and that the way to prove this is to construct a retraction from $2^{X_{1}}$ to $C\left(X_{1}\right)$. Our result confirms his conjecture.

Every periodic surjection $\pi:[0, \infty) \rightarrow K$ onto a Peano continuum induces a regular compactification $X(\pi)$, which may be defined as follows:

$$
\begin{aligned}
x(\pi)= & \{(t, \pi(t)): t \geq 0\} \cup\{(\infty, k): k \in K\} \subset \\
& {[0, \infty] \times K . }
\end{aligned}
$$

Alternatively, we may consider $X(\pi)$ to be the disjoint union $[0, \infty) \mathrm{U} k$, with the topology defined by the open base
$\{U: U$ open in $[0, \infty)\} U\left\{V U\left(\pi^{-1}(V) \cap(N, \infty)\right):\right.$

V open in K and $N<\infty\}$.

Clearly, every regular half-line compactification is homeomorphic to some $X(\pi)$.

Let $I=[-1,1]$, and $S=\{z:|z|=1\}$, the unit circle in the complex plane. Define $\pi_{0}:[0, \infty) \rightarrow I$ by $\pi_{0}(t)=$ $\sin \pi t$; define $\pi_{1}:[0, \infty) \rightarrow$ S. by $\pi_{1}(t)=e^{i \pi t}$; and for $n>1$, define $\pi_{n}:[0, \infty) \rightarrow s$ by the formulas

$$
\pi_{n}(t)= \begin{cases}e^{i n \pi t}, & 0 \leq t \leq 1(\bmod 2) \\ e^{-i n \pi t}, & 1 \leq t \leq 2(\bmod 2)\end{cases}
$$

Then $X_{0}=X\left(\pi_{0}\right)$ is the topologist's sine curve; $X_{1}=X\left(\pi_{1}\right)$ is the circle with a spiral; and for $n=2,3, \cdots, X_{n}=X\left(\pi_{n}\right)$ is the regular compactification obtained by alternately "wrapping" and "unwrapping" subintervals of $[0, \infty)$ about S, with each subinterval covering $S \mathrm{n} / 2$ times. Note that the spaces $X_{0}, X_{1}, x_{2}, \cdots$ are topologically distinct.

X_{0}

x_{1}
X_{2}
X_{3}

Theorem. For X a regular half-line compactification, there exists a hyperspace retraction $2^{\mathrm{X}} \rightarrow \mathrm{C}(\mathrm{X})$ if and only if X is homeomorphic to some $\mathrm{X}_{\mathrm{n}}, \mathrm{n}=0,1,2, \ldots$.

Of course, no hyperspace retraction $2^{X} \rightarrow C(X)$ for nonlocally connected X can be quite as nice as those which may be constructed in the locally connected case. For locally connected X, we may use a convex metric d, and define a retraction $R: 2^{X} \rightarrow C(X)$ by taking $R(A)=\bar{N}_{d}(A ; t)$, where $t \geq 0$ is the smallest value for which $\bar{N}_{d}(A ; t) \in C(X)$. Such a retraction has the property that $R(A) \supset A$ for each $A \in 2^{X}$. Clearly, this is impossible for non-locally connected X. However, there may exist a retraction $R: 2^{X} \rightarrow C(X)$ such that $R(A) \cap A \neq \emptyset$ for each A (we say that R is conservative). In the course of proving the above theorem, it will be shown that only for X_{0} and X_{l} do there exist conservative hyperspace retractions.

In the final section of the paper, we note the connection between the existence of a hyperspace retraction $2^{X} \rightarrow C(X)$ and the existence of a mean for $C(X)$, and we give examples of continua X (from the class of regular half-line compactifications) for which $C(X)$ does not admit a mean, thereby answering a question of Nadler [7].

2. A Necessary Condition

Let X be any metric continuum, and let ρ denote the Hausdorff metric on 2^{X}. We say that X has the subcontinuum approximation property if for each $\varepsilon>0$ there exists $\delta>0$ such that, for all $L, M \in C(X)$ with $\rho(L, M)<\delta$, and for
every subcontinuum $P \subset M$, there exist $P^{\prime}, M^{\prime} \in C(X)$ with $\rho\left(P, P^{\prime}\right)<\varepsilon, \rho\left(M, M^{\prime}\right)<\varepsilon$, and $L U P^{\prime} \subset M^{\prime}$. (In the locally connected case we may of course choose M^{\prime} such that L $U M \subset M^{\prime}$, but in general M and M^{\prime} will be disjoint.) We will show that this property is a necessary condition for the existence of a hyperspace retraction $2^{X} \rightarrow C(X)$, and that a regular half-line compactification has the property if and only if the remainder is either an arc or a simple closed curve.

In what follows, we shall have occasion to use order arcs and segments in the hyperspaces 2^{X} and $C(X)$. An arc $\alpha \subset 2^{X}$ is an order arc if for each $E, F \in \alpha$, either $E \subset F$ or $F \subset E$. For elements $A, B \in 2^{X}$, there exists an order arc α with $\cap_{\alpha}=A$ and $U \alpha=B$ if and only if $A \subset B$ and each component of B intersects A. Every order arc α can be uniquely parametrized as a segment $\alpha:[0,1] \rightarrow 2^{X}$ with respect to a given Whitney map $\omega: 2^{\mathrm{X}} \rightarrow[0, \infty)$, i.e., $\alpha=\{\alpha(t): 0 \leq t \leq 1\}$, with $\alpha(0)=\cap \alpha, \alpha(1)=U \alpha$, and $\omega(\alpha(t))=(1-t) \omega(\alpha(0))+t \omega(\alpha(1))$ for each t. (Order arcs were first used by Borsuk and Mazurkiewicz [l] to show that $C(X)$ and 2^{X} are arcwise connected. Segments were introduced by Kelley [4], who also formulated the necessary and sufficient conditions given above for the existence of an order arc, or segment, from A to B.) Let $\Gamma(X)=\left\{\alpha \in C\left(2^{X}\right): \alpha\right.$ is an order arc or $\alpha=\{A\}$ for $\left.A \in 2^{X}\right\}$, and let $S(\omega)$ be the function space of all segments $\alpha:[0,1] \rightarrow 2^{\mathrm{X}}$ (including the constant maps), with the topology of uniform convergence. Then the spaces $\Gamma(X)$ and
$S(\omega)$ are compact, and the natural correspondence $\alpha \rightarrow\{\alpha(t):$ $0 \leq t \leq 1\}$ is a homeomorphism from $S(\omega)$ to $\Gamma(X)$ (for a complete discussion, see [7]). Henceforth, we implicitly use this correspondence wherever convenient. Without confusion, we let ρ denote both the Hausdorff metric on 2^{X} and the sup metric on $S(\omega)$.
2.1. Lemma. Let $\mathrm{P}, \mathrm{M} \in \mathrm{C}(\mathrm{X})$, with $\mathrm{P} \subset \mathrm{M}$. Then for each $\varepsilon>0$ there exists $\delta>0$ such that, for every $L \in C(X)$ with $\rho(L, M)<\delta$, there exist order ares $\alpha \subset 2^{X}$ and $\beta \subset C(X)$ with $\alpha(1)=I, \beta(0)=P, \beta(1)=M$, and $\rho(\alpha, \beta)<\varepsilon$.

Proof. Suppose that for some $\varepsilon>0$ there exists a sequence $\left\{L_{i}\right\}$ in $C(X)$ converging to M, with no L_{i} satisfying the required condition. Choose a finite subset $F \subset P$ such that $\rho(F, P)<\varepsilon$. For each $x \in F$ and each i, choose $x_{i} \in L_{i}$ and an order arc $\alpha_{x_{i}} \subset C(X)$ such that $x_{i} \rightarrow x_{i}, \alpha_{x_{i}}(0)=\left\{x_{i}\right\}$, and $\alpha_{x_{i}}(1)=L_{i}$. Then for each i let α_{i} be the order arc in 2^{X} defined by $\alpha_{i}(t)=U\left\{\alpha_{x_{i}}(t): x \in F\right\}$. Thus $\alpha_{i}(0)=$ $\left\{x_{i}: x \in F\right\}$ and $\alpha_{i}(1)=L_{i}$. Since the space $\Gamma(X)$ is compact, some subsequence of $\left\{\alpha_{i}\right\}$ must converge to an order $\operatorname{arc} \lambda$ in 2^{X} with $\lambda(0)=F$ and $\lambda(1)=M$. Define an order arc β in $C(X)$ by $\beta(t)=P \cup \lambda(t)$. Thus $\beta(0)=P$ and $\beta(I)=$ M. Since $\rho(\lambda, \beta)<\varepsilon$, we have $\rho\left(\alpha_{i}, \beta\right)<\varepsilon$ for some large i, contradicting our supposition about the sequence $\left\{L_{i}\right\}$ 。
2.2. Proposition. Let x be any continuum for which there exists a hyperspace retraction $\mathrm{Z}^{\mathrm{X}} \rightarrow \mathrm{C}(\mathrm{X})$. Then X has the subcontinuum approximation property.

Proof. Suppose X does not have the property. Then by compactness of $C(X)$, there exist $P, M \in C(X)$ with $P \subset M$, and a sequence $\left\{L_{i}\right\}$ in $C(X)$ converging to M such that, for some $\varepsilon>0$, there do not exist $P^{\prime}, M^{\prime} \in C(X)$ with $\rho\left(P, P^{\prime}\right)<\varepsilon$, $\rho\left(M, M^{\prime}\right)<\varepsilon$, and $L_{i} U P^{\prime} \subset M^{\prime}$ for some i. Let $R: 2^{X} \rightarrow C(X)$ be a retraction. Choose $0<\eta<\varepsilon$ such that, for every $A \in 2^{X}$ with $\rho\left(A, M_{0}\right)<\eta$ for some subcontinuum $M_{0} \subset M$, $\rho\left(R(A), M_{0}\right)<\varepsilon . \quad B y(2.1)$, for sufficiently large i there exist order arcs $\alpha \subset 2^{X}$ and $\beta \subset C(X)$ with $\alpha(1)=L_{i}$, $\beta(0)=P, \beta(1)=M$, and $\rho(\alpha, \beta)<\eta$. Then the continua $P^{\prime}=R(\alpha(0))$ and $M^{\prime}=U\{R(\alpha(t)): 0 \leq t \leq 1\}$ satisfy the conditions $\rho\left(P, P^{\prime}\right)<\varepsilon, \rho\left(M, M^{\prime}\right)<\varepsilon$, and $L_{i} U P^{\prime} \subset M^{\prime}$, contradicting our supposition.

Note. The example constructed by Goodykoontz in [2] does not have the subcontinuum approximation property; our proof for (2.2) is a generalization of his argument for the non-existence of a hyperspace retraction.
2.3. Lemma. Let $\pi: I \rightarrow K$ be a map of an arc onto a Peano continuum which is neither an arc nor a simple closed curve. Then for some subarc $J \subset I, \pi(J)$ is a proper subcontinuum of K containing a simple triod.

Proof. Let L denote the collection of all proper subcontinua of K which are of the form $\pi(J)$ for some subarc J. Since K is neither an arc nor a simple closed curve, there must be some $L \in L$ which is not an arc. Then the Peano continuum L either contains a simple triod or is a simple closed curve. In either case there exists $\tilde{L} \in L$ properly containing L, and therefore containing a simple triod.
2.4. Lemma. Let $\pi: I \rightarrow T$ be a map of an arc onto a simple triod. Then there exists a subcontinuum $P \subset T$ such that $P \neq \pi(J)$ for any subarc $J \subset I$.

Proof. Choose a sequence $\left\{T_{n}\right\}$ of triods in T such that $T_{n} \subset$ int T_{n+1}. Suppose that for each n there exists a subarc $J_{n} \subset I$ with $\pi\left(J_{n}\right)=T_{n}$. We may assume that each endpoint of J_{n} is mapped to an endpoint of T_{n}. Since for $m<n, T_{m} \subset$ int T_{n}, we must have either $J_{m} \cap J_{n}=\emptyset$ or $J_{m} \subset J_{n}$. Choose $\delta>0$ such that for each $A \subset I$ with $\operatorname{diam} A<\delta$ and each $n, \pi(A)$ contains at most one endpoint of T_{n}. Since one of the endpoints of T_{n} can be the inage only of interior points of J_{n}, it follows that diam $J_{n} \geq 2 \delta$ for each n. Also, if $m<n$ and $J_{m} \subset J_{n}$, then diam $J_{n} \geq$ diam $J_{m}+\delta$. The sequence $\left\{J_{n}\right\}$ in $C(I)$ clusters at some nondegenerate J. But for any pair of distinct arcs J_{m}, J_{n} sufficiently close to J, it's impossible that either $J_{m} \cap J_{n}=\emptyset$ or $J_{m} \subset J_{n}$. Thus some T_{n} must satisfy the conclusion of the lemma.
2.5. Proposition. A regular half-line compactification has the subcontinuum approximation property if and only if the remainder is either an arc or a simple closed curve.

Proof. Let $\mathrm{X}=[0, \infty) \mathrm{U} K$ be the regular half-line compactification corresponding to a periodic surjection $\pi:[0, \infty) \rightarrow K$, and let $I \subset[0, \infty)$ be a subarc such that π goes through at least two complete cycles over I.

Suppose first that K is neither an arc nor a simple closed curve. Applying (2.3) to the restriction π / I, we
obtain a proper subcontinuum $M \subset K$ such that M contains a simple triod T and $M=\pi(J)$ for some subarc $J \subset I$. Thus, there exists a sequence $\left\{J_{i}\right\}$ of subarcs in $[0, \infty)$ converging to M, and since $M \neq K$, every $M ' \in C(X)$ sufficiently close to M and containing some J_{i} must itself be a subarc of $[0, \infty)$. Let $r: K \rightarrow T$ be any retraction, and apply (2.4) to the map r o $\pi: I \rightarrow T$. We obtain a subcontinuum $P \subset T$ such that $P \neq \pi\left(I_{0}\right)$ for any subarc $I_{0} \subset I$. Thus, every $P^{\prime} \in C(X)$ sufficiently close to P must lie in K. It follows that X does not have the subcontinuum approximation property with respect to the pair (M,P).

Now suppose that K is either an arc or a simple closed curve, and consider any $P, M \in \mathcal{C}(X)$ with $P \subset M$. It suffices to verify the subcontinuum approximation property with respect to this pair (see the proof of (2.2)). The property is obvious if either $M \subset[0, \infty)$ or $M \supset K$, so we may suppose that M is a proper subcontinuum of K (and therefore an arc). Each L $\in C(K)$ which is close to M intersects M, so in this case we may take $M^{\prime}=L U M$ and $P^{\prime}=P$. And for any arc $L \subset[0, \infty)$ close to M, there is a subarc $L_{0} \subset L$ close to P, so we may take $M^{\prime}=I$ and $P^{\prime}=L_{0}$. This completes the argument that X has the subcontinuum approximation property.

It may be of interest to note that the subcontinuum approximation property is implied by property [K], which was introduced by Kelley [4] in the study of hyperspace contractibility and which has been used extensively in recent years (see [7]). In the class of regular half-line
compactifications, the only spaces with property [K] are the spaces X_{0} and X_{1} which admit conservative hyperspace retractions. Thus, the spaces X_{n} for $n>l$ show that property [K] is not necessary for the existence of hyperspace retractions. Whether there is any general relationship between property [K] and the existence of conservative hyperspace retractions remains an open question.

3. A Monotonicity Requirement

Let $X=[0, \infty) U K$ be the regular half-line compactification corresponding to a periodic surjection π : $[0, \infty) \rightarrow K$, and suppose there exists a hyperspace retraction $2^{X} \rightarrow C(X)$. By (2.2) and (2.5), the remainder K is either an arc or a simple closed curve. In the case that K is an arc, we say that π is interior monotone if, for each arc $J \subset[0, \infty)$ such that $\pi(J) \cap \partial K=\phi$, the restriction π / J is monotone (perhaps nonstrictly). A similar definition is made in the case that K is a simple closed curve, using a covering projection $(-\infty, \infty) \rightarrow$ K. Specifically, let $\tilde{\pi}:[0, \infty) \rightarrow(-\infty, \infty)$ be a lift of π, and set $\tilde{K}=i m \tilde{\pi}$. We say that $\tilde{\pi}$ is interior monotone if π / J is monotone for each arc $J \subset[0, \infty)$ such that
$\tilde{\pi}(J) \cap \partial \tilde{K}=\phi$. We will show that π, or $\tilde{\pi}$, must be interior monotone. It follows easily that either $X \approx X_{0}$ (if K is an arc), or $X \approx X_{1}$ (if K is a simple closed curve and \tilde{K} is unbounded), or $X \approx X_{n}$ for some $n>l$ (if \tilde{K} is bounded).

We will need the following result concerning the composition semigroup S of all self-maps of the interval [0,1] which are fixed on the endpoints.
3.1. Proposition. For every $\mathrm{f}_{1}, \mathrm{f}_{2} \in S$ and $\varepsilon>0$, there exist $g_{1}, g_{2} \in S$ such that $d\left(f_{1} \circ g_{1}, f_{2} \circ g_{2}\right)<\varepsilon$.

Proof. For each pair (m, n) of positive integers with $m \geq n$, let $P(m, n)$ denote the finite set of piecewise-linear maps f in S satisfying the following conditions:

1) for each $0 \leq j \leq m, f(j / m)=k / n$ for some $0 \leq k \leq n ;$ and
2) for each $0 \leq j<m,|f((j+1) / m)-f(j / m)| \leq 1 / n$, and f is linear over the interval $[j / m,(j+1) / m]$.

Choose n such that $1 / n<\varepsilon / 4$, and choose m_{1}, m_{2} such that $\left|f_{i}(s)-f_{i}(t)\right| \leq 1 / n$ whenever $|s-t| \leq 1 / m_{i}, i=1,2$. Then there exist maps $\phi_{i} \in P\left(m_{i}, n\right)$ with $d\left(f_{i}, \phi_{i}\right) \leq 1 / n+$ $1 / 2 \mathrm{n}+1 / 2 \mathrm{n}<\varepsilon / 2, \mathrm{i}=1,2$. We show that, for some $m \geq \max \left\{m_{1}, m_{2}\right\}$, there exist $g_{1} \in P\left(m, m_{1}\right)$ and $g_{2} \in P\left(m, m_{2}\right)$ with $\phi_{1} \circ g_{1}=\phi_{2} \circ g_{2}$ (note that the compositions are members of $P(m, n))$. It then follows that $d\left(f_{1} \circ g_{1}, f_{2} \circ g_{2}\right)$ $<\varepsilon$.

The proof is by induction on $m_{1}+m_{2}$. If $m_{1}+m_{2}=2 n$ (the least possible value), then $m_{1}=m_{2}=n$ and $\phi_{1}=\phi_{2}=$ id. In this case take $m=n$ and $g_{1}=g_{2}=i d$.

Now assume $m_{1}+m_{2}>2 n$. Suppose first that for some $j<m_{1}, \phi_{1}\left(j / m_{1}\right)=\phi_{1}\left((j+l) / m_{1}\right)$. Then we may consider the corresponding $\tilde{\phi}_{1} \in P\left(m_{1}-1, n\right)$, obtained topologically by collapsing to a point the $\operatorname{arc}\left[j / m_{1},(j+1) / m_{1}\right] \times \phi_{1}\left(j / m_{1}\right)$ on the graph of ϕ_{1}. Application of the inductive hypothesis to the pair $\tilde{\phi}_{1}, \phi_{2}$ gives maps $\gamma_{1} \in P\left(m_{0}, m_{1}-1\right)$ and $\gamma_{2} \in P\left(m_{0}, m_{2}\right)$, for some $m_{0} \geq \max \left\{m_{1}-1, m_{2}\right\}$, such that $\tilde{\phi}_{1} \circ \gamma_{1}=\phi_{2} \circ \gamma_{2}$. It's not difficult to see that this implies the corresponding result for the pair ϕ_{1}, ϕ_{2}. Of
course, the same argument works if $\phi_{2}\left(j / m_{2}\right)=\phi_{2}\left((j+1) / m_{2}\right)$ for some $j<m_{2}$.

Thus, we may suppose that neither ϕ_{i} is constant on any subinterval. Then there exists a least integer k for which $\phi_{i}\left(j / m_{i}\right)=k / n$ and $\phi_{i}\left((j-l) / m_{i}\right)=\phi_{i}\left((j+l) / m_{i}\right)=$ ($k-1$) $/ n$, for some $l \leq j<m_{i}$ and $i=1,2$; suppose this holds for $i=1$. Consider the corresponding $\tilde{\phi}_{1} \in P\left(m_{1}-2, n\right)$, obtained topologically by identifying the points ($(j-1) / m_{1}$, $(k-1) / n)$ and $\left((j+1) / m_{1},(k-1) / n\right)$ of the restriction $\phi_{1} /\left[0,(j-1) / m_{l}\right] \cup\left[(j+1) / m_{1}, l\right]$. Applying the inductive hypothesis to the pair $\tilde{\phi}_{1}, \phi_{2}$, we obtain maps $\gamma_{1} \in P\left(m_{0}, m_{1}-2\right)$ and $\gamma_{2} \in P\left(m_{0}, m_{2}\right)$, for some $m_{0} \geq \max \left\{m_{1}-2, m_{2}\right\}$, such that $\tilde{\phi}_{1} \circ \gamma_{1}=\phi_{2} \circ \gamma_{2}$. Note that by the choice of k, if $\phi_{2}\left(i / m_{2}\right)=(k-1) / n$, then either $\phi_{2}\left((i-1) / m_{2}\right)=k / n$ or $\phi_{2}\left((i+1) / m_{2}\right)=k / n$. Clearly, the above implies the corresponding result for the pair ϕ_{1}, ϕ_{2}. This completes the proof of the proposition.
3.2. Remark. If $\sup f_{i}^{-1}(0)<\inf f_{i}^{-1}(1)$ for each i $=1,2$, then there exists $\delta>0$ (independent of ε) such that the maps g_{1}, g_{2} may be chosen so that $\sup \left(f_{i} \circ g_{i}\right)^{-1}$ $([0, \delta])<\inf \left(f_{i} \circ g_{i}\right)^{-1}([1-\delta, 1]), i=1,2$.
3.3. Theorem. Let $\mathrm{X}=[0, \infty) \mathrm{U} \mathrm{K}$ be a regular halfIine compactification for which there exists a hyperspace retraction $2^{\mathrm{X}} \rightarrow \mathrm{C}(\mathrm{X})$. Then $\mathrm{X} \approx \mathrm{X}_{\mathrm{n}}$ for some $\mathrm{n}=0,1,2, \ldots$.

Proof. As observed at the beginning of this section, K is either an arc or a simple closed curve. We consider first the case that K is an arc. Suppose π is not interior monotone. Then it's not difficult to see that there exists
a proper subarc σ of K, with endpoints v and w, and points t_{0}, \cdots, t_{n} in $(0, \infty)$, with $t_{0}<t_{1}<\cdots<t_{n}$ and $n \geq 3$, such that:

1) $\pi\left(t_{0}\right)=\pi\left(t_{2}\right)=\cdots=v$;
2) $\pi\left(t_{1}\right)=\pi\left(t_{3}\right)=\cdots=w$;
3) $\pi\left(\left[t_{0}, t_{n}\right]\right)=\sigma$, and $\left[t_{0}, t_{n}\right]$ is a maximal subinterval in $[0, \infty)$ with respect to this property; and
4) for each $i=1, \cdots, n$, the subsets $\pi^{-1}(v) \cap\left[t_{i-1}, t_{i}\right]$ and $\pi^{-l}(w) \cap\left[t_{i-1}, t_{i}\right]$ lie in disjoint subintervals.

An application of (3.1) to the maps $\pi \mid\left[t_{0}, t_{1}\right]$ and $\pi \mid\left[t_{1}, t_{2}\right]$, suitably re-parametrized, shows that for every $\varepsilon>0$ there exist maps $g_{1}:[0,1] \rightarrow\left[t_{0}, t_{1}\right]$ and $g_{2}:[0,1] \rightarrow$ $\left[t_{1}, t_{2}\right]$ such that $g_{1}(0)=t_{1}=g_{2}(0), g_{1}(1)=t_{0}, g_{2}(1)=t_{2}$, and $d\left(\pi g_{1}(t), \pi g_{2}(t)\right)<\varepsilon$ for all $0 \leq t \leq 1$. Furthermore, we may assume by (3.2) and the above property 4) that, independently of ε, there exist neighborhoods $N(v)$ and $N(w)$ in σ of v and w such that for each $i=1,2$, $\left.\sup \left(\pi \circ g_{i}\right)^{-1}(N(w))<\inf \left(\pi \circ g_{i}\right)^{-1}\right)(N(v))$.

For maps g_{1} and g_{2} as above, consider the path $\alpha:[0,1] \rightarrow 2^{X}$ between $\left\{t_{1}\right\}$ and $\left\{t_{0}, t_{2}\right\}$, defined by $\alpha(t)=\left\{g_{1}(t), g_{2}(t)\right\}$. Let $R: 2^{X} \rightarrow C(X)$ be a retraction. If $\varepsilon>0$ is sufficiently small and t_{0} sufficiently large (use the periodicity of π), then for each $0 \leq t \leq 1, \pi R(\alpha(t))$ is a small diameter continuum lying in some neighborhood of σ which is a proper subset of K. Since $U\{R(\alpha(t))$: $0 \leq t \leq l\}$ is a continuum containing $R(\alpha(0))=\left\{t_{1}\right\}$, this implies that $U\{R(\alpha(t))\} \subset[0, \infty)$. Moreover, since $\sup \left(\pi \circ g_{i}\right)^{-l}(N(w))<\inf \left(\pi \circ g_{i}\right)^{-1}(N(v))$, we may assume
ε sufficiently small and t_{0} sufficiently large so that $U\{R(\alpha(t))\} \subset\left[0, t_{3}\right)$. Thus $R\left(\left\{t_{0}, t_{2}\right\}\right)=R(\alpha(1)) \subset\left[0, t_{3}\right)$. In fact, we claim that $R\left(\left\{t_{0}, t_{2}\right\}\right) \subset\left[0, t_{1}\right)$ for all sufficiently large t_{0}. Otherwise, the small diameter continuum $R\left(\left\{t_{0}, t_{2}\right\}\right)$ would lie in the interval $\left(t_{1}, t_{3}\right)$, hence $R\left(\left[t, t_{0}\right] \cup\left\{t_{2}\right\}\right) \subset\left(t_{1}, t_{3}\right)$ for some $t<t_{0}$. But by the maximal nature of $\left[t_{0}, t_{n}\right], \pi\left(\left[t, t_{0}\right]\right) \neq \sigma$, and since $R\left(\left[t, t_{0}\right] U\left\{t_{2}\right]\right)$ is arbitrarily close to $\pi\left(\left[t, t_{0}\right]\right)$ for sufficiently large t_{0}, this leads to a contradiction. By another application of (3.1) we obtain maps $h_{1}:[0,1] \rightarrow\left[t_{0}, t_{1}\right]$ and $h_{2}:[0,1] \rightarrow\left[t_{2}, t_{3}\right]$ with $h_{1}(0)=t_{0}, h_{1}(1)=t_{1}, h_{2}(0)=t_{2}, h_{2}(1)=t_{3}$, and such that the maps $\pi \circ h_{1}$ and $\pi \circ h_{2}$ are arbitrarily close. As before, we may also assume that $\sup \left(\pi \circ h_{i}\right)^{-1}(N(v))<$ $\inf \left(\pi \circ h_{i}\right)^{-1}(N(w))$. Consideration of the path β in 2^{X} between $\left\{t_{0}, t_{2}\right\}$ and $\left\{t_{1}, t_{3}\right\}$, defined by $\beta(t)=\left\{h_{1}(t)\right.$, $\left.h_{2}(t)\right\}$, shows that $R\left(\left\{t_{1}, t_{3}\right\}\right) \subset\left[0, t_{2}\right)$. Continuing in this fashion we obtain $R\left(\left\{t_{n-2}, t_{n}\right\}\right) \subset\left[0, t_{n-1}\right)$. But an argument analogous to that given above for $R\left(\left\{t_{0}, t_{2}\right\}\right)$ shows that $R\left(\left\{t_{n-2}, t_{n}\right\}\right) \subset\left(t_{n-1}, \infty\right)$. This contradiction shows that π must be interior monotone. Clearly, this implies that $\mathrm{X} \approx \mathrm{X}_{0}$.

In the case that K is a simple closed curve, the same type of arguments show that the lift $\tilde{\pi}:[0, \infty) \rightarrow \tilde{K}$, defined at the beginning of this section, must be interior monotone. If $\tilde{K}=$ im $\tilde{\pi}$ is unbounded, then in fact $\tilde{\pi}$ is monotone and $X \approx X_{1}$. And if \tilde{K} is bounded, then $X \approx X_{n}$ for some $n>1$. Specifically, $X \approx X_{2 n}$ if the interval \tilde{K} wraps around K
exactly n times, while $X \approx X_{2 n+1}$ if \tilde{K} wraps around $K n$ times plus a fraction.

4. Conservative Hyperspace Retractions

Recall that a retraction $R: 2^{X} \rightarrow C(X)$ is conservative if $R(A) \cap A \neq \varnothing$ for each $A \in 2^{X}$. We show that the topologist's sine curve and the circle with a spiral are the only regular half-line compactifications admitting conservative hyperspace retractions.
4.1. Theorem. Let X be a regular half-line compactification for which there exists a conservative retraction $R: 2^{\mathrm{X}} \rightarrow \mathrm{C}(\mathrm{X})$. Then either $\mathrm{X} \approx \mathrm{X}_{0}$ or $\mathrm{X} \approx \mathrm{X}_{1}$.

Proof. We assume that $\mathrm{X}=\mathrm{X}(\pi)$, with $\pi=\pi_{\mathrm{n}}$ for some n > l, and show that this leads to a contradiction; the result then follows from (3.3).

Suppose first that n is even. Then for every large integer $k, R(\{k, k+1\})$ is a small diameter continuum containing either k or $k+1$, and therefore contained in a small neighborhood in $[0, \infty)$ of either k or $k+1$. If k is sufficiently large, then $\pi R([k-\varepsilon, k+\varepsilon] U\{k+1\})$ must be arbitrarily close to $\pi([k-\varepsilon, k+\varepsilon])$, for each $\varepsilon>0$. Since for all sufficiently small $\varepsilon, \pi([k-\varepsilon, k+\varepsilon]) ~ \cap$ $\pi([k+1-\varepsilon, k+l+\varepsilon])=\{p\}$, where $p=(1,0) \in S$, consideration of an order arc in 2^{X} between the elements $\{k, k+1\}$ and $[k-\varepsilon, k+\varepsilon] \cup\{k+1\}$ shows that $R(\{k, k+l\})$ cannot lie in a small neighborhood of $k+1$. An analogous argument involving an order arc between $\{k, k+l\}$ and $\{k\} u[k+l-\varepsilon, k+1+\varepsilon]$ shows that
$R(\{k, k+l\})$ cannot lie in a small neighborhood of k. Thus n cannot be even.

Now suppose n is odd. For any large integer k , set $k_{1}=\inf \{t: t>k$ and $\pi(t)=\pi(k)\}$ and $k_{2}=\sup \{t: t<k+1$ and $\pi(t)=\pi(k+1)\}$. Clearly, $k<k_{i}<k+1$ for each $i=1,2$. Since π is locally $l-1$ at each k_{i}, but not at k or $k+1$, arguments analogous to those above show that, for sufficiently large $k, R\left(\left\{k, k_{1}\right\}\right)$ must lie in a small neighborhood of k_{1}, and $R\left(\left\{k_{2}, k+1\right\}\right)$ must lie in a small neighborhood of k_{2}. Let $\alpha:[0,1] \rightarrow 2^{X}$ be the path between $\left\{k, k_{l}\right\}$ and $\left\{k_{2}, k+l\right\}$ defined by $\alpha(t)=\left\{(l-t) k+t k_{2}\right.$, $\left.(1-t) k_{1}+t(k+1)\right\}$. Note that for each $0 \leq t \leq 1$, $\pi(\alpha(t))$ is a singleton, and therefore $R(\alpha(t))$ must lie in a small neighborhood of one of the points of $\alpha(t)$. But since for each t the points of $\alpha(t)$ remain a constant distance apart, this is inconsistent with the noted properties of $R(\alpha(0))$ and $R(\alpha(1))$. Thus n cannot be odd, and this completes the proof that X is homeomorphic to either X_{0} or x_{1}.

5. Construction of Hyperspace Retractions

From this point through section $8, \mathrm{X}=[0, \infty) \mathrm{U} \mathrm{K}$ will denote one of the regular compactifications $X_{n}, n \geq 0$, described in section 1. Thus, K is either the interval I or the circle S. Let $\pi: X \rightarrow K$ be the retraction defined by the periodic surjection $\pi_{n}:[0, \infty) \rightarrow K$. The construction of a retraction R : $2^{X} \rightarrow C(X)$ is based on the two propositions stated next, whose proofs will be given in sections 7 and 8.
5.1. Proposition. There exists a map G: $2^{\mathrm{X}} \rightarrow \mathrm{C}(\mathrm{X})$ with the following properties:
i) $G \mid C(K)=i d ;$
ii) either $G(A) \supset \pi(A)$ or $G(A) \subset[0, \infty)$;
iii) $G(A) \subset K$ if $A \cap K \neq \varnothing$;
iv) $G(A) \supset K$ if $A \subset[0, \infty)$ and $G(A) \supset \pi([\inf A$, sup $A])$;
and
v) $G(A) \cap(K \cup A) \neq \varnothing$.

Remark. In the cases $n=0,1$, the above property v) may be strengthened by requiring that $G(A) \cap A \neq \varnothing$.

For a given subset N of $C(K)$, let D be the subset of $C(X) \times C(X)$ defined by $D=\{(M, N):(M \cup K) \cap N \neq \varnothing$, and either $M \nexists \mathrm{~K} \supset \mathrm{~N} \in N$ or $\mathrm{M} \cap \mathrm{K}=\varnothing\}$.
5.2. Proposition. For some neighborhood $N \subset C(K)$ of K , there exists a map $\mathrm{H}: D \times[0,1] \rightarrow \mathrm{C}(\mathrm{X})$ satisfying the following conditions, for every $(M, N) \in D$ and $0 \leq t \leq 1$:
i) $H(M, N, O)=M$ and $H(M, N, I)=N$;
ii) either $H(M, N, t) \supset M$ or $H(M, N, t) \supset N$;
iii) $H(M, N, t) \subset[r, \infty) \cup K$ if $M \cup N \subset[r, \infty) \cup K$; and
iv) $H(M, N, t) \subset[r, s]$ if $M U N \in[r, s]$ and $\pi([r, s]) \neq K$.
5.3. Theorem. For $\mathrm{X}=[0, \infty) \cup \mathrm{K}$ as above, there exists a hyperspace retraction $2^{\mathrm{X}}+\mathrm{C}(\mathrm{X})$.

Proof. Let $F: 2^{X}, 2^{K} \rightarrow C(X) \backslash C(K)$ denote the "smallest continuum" retraction, defined by

$$
F(A)= \begin{cases}{[\inf A, \sup A]} & \text { if } A \subset[0, \infty) \\ {[\inf (A \cap[0, \infty)), \infty) \cup K \text { if } A \cap K \neq \varnothing}\end{cases}
$$

Define a map $\theta: 2^{\mathrm{X}}, 2^{\mathrm{K}} \rightarrow[0,1]$ by the formula
$\theta(A)=\min \{(2 / \delta) \cdot \inf (A \cap[0, \infty)) \cdot \rho(\pi(A), \pi(F(A))), 1\}$, where $0<\delta<1$ is chosen such that $\{N \in C(K): \rho(N, K)$ $<\delta\} \subset \eta$, the neighborhood of K in $C(K)$ given by (5.2). Note that $\theta(M)=0$ for all $M \in C(X) \backslash C(K)$.

Let $W=\left\{A \in 2^{X}, 2^{K}\right.$: either $A \subset[0, \infty)$ or $\left.\rho(\pi(A), K)<\delta\right\}$. Note that W is an open subset of 2^{X}, and $C(X) \backslash C(K) \subset W$. Let $G: 2^{X} \rightarrow C(X)$ and $H: D \times[0,1] \rightarrow C(X)$ be the maps given by (5.1) and (5.2). The desired retraction $R: 2^{X} \rightarrow C(X)$ is defined by

$$
R(A)= \begin{cases}H(F(A), G(A), \theta(A)) & \text { if } A \in W, \\ G(A) & \text { if } A \in 2^{X}, W .\end{cases}
$$

We first verify that for each $A \in \mathbb{W},(F(A), G(A)) \in D$, so that R is well-defined. There are two cases to be considered:

1) Suppose $A \in 2^{X}, 2^{K}$ with $A \cap K \neq \emptyset$ and $\rho(\pi(A), K)<\delta$. Then $F(A) \nexists K \supset G(A) \supset \pi(A)$, therefore $\rho(G(A), K)<\delta$ and $G(A) \in N . \quad T h u s(F(A), G(A)) \in D$.
2) Suppose $A \subset[0, \infty)$. Then $F(A) \subset[0, \infty)$, and $(F(A) \cup K) \cap G(A) \supset(A \cup K) \cap G(A) \neq \varnothing$, so again ($F(A)$, $G(A)) \in D$.

We next verify that $R / C(X)=$ id. Since $R / C(K)=$ $G / C(K)=i d$, we need only consider $M \in C(X) \backslash C(K)$. Then $\theta(M)=0$ and $M \in \mathbb{W}$, so $R(M)=H(F(M), G(M), 0)=F(M)=M$.

It remains to show that R is continuous. Since $\|$ is open in 2^{X}, we have only to verify continuity of R at each $A \in b d W$. Suppose to the contrary that R is not continuous at some such A. Then there exists a sequence $\left\{A_{i}\right\}$ in W
converging to A, with no subsequence of $\left\{R\left(A_{i}\right)\right\}$ converging to $R(A)=G(A)$. In particular, $\Theta\left(A_{i}\right) \neq 1$ for almost all i. There are two cases to be considered.

1) Suppose $A \in 2^{K}$. Then $\inf \left(A_{i} \cap[0, \infty)\right) \rightarrow \infty$, which together with $0\left(A_{i}\right) \neq 1$ implies that $\rho\left(\pi\left(A_{i}\right), \pi\left(F\left(A_{i}\right)\right)\right) \rightarrow 0$. Thus $F\left(A_{i}\right) \rightarrow A \in C(K)$, and $G\left(A_{i}\right) \rightarrow G(A)=A$. If $A=K$, then $R\left(A_{i}\right)=H\left(F\left(A_{i}\right), G\left(A_{i}\right), \theta\left(A_{i}\right)\right) \rightarrow K$ by the properties ii) and iii) of H, contrary to our choice of $\left\{A_{i}\right\}$. Thus $A \in C(K) \backslash\{K\}$, and $A_{i} \subset[0, \infty)$ for almost all i since $F\left(A_{i}\right) \rightarrow A$.

If $G\left(A_{i}\right) \cap K \neq \varnothing$ for infinitely many i, then $G\left(A_{i}\right) \supset$ $\pi\left(A_{i}\right)$ by the property ii) of G, and since $F\left(A_{i}\right) \rightarrow A \neq K$ and $G\left(A_{i}\right) \rightarrow A$, it follows that $G\left(A_{i}\right) \supset \pi\left(F\left(A_{i}\right)\right)$ for infinitely many i. By the property iv) of $G, G\left(A_{i}\right) \supset K$, contradicting the convergence of $\left\{G\left(A_{i}\right)\right\}$ to A.

On the other hand, if $G\left(A_{i}\right) \subset[0, \infty)$ for almost all i, then $F\left(A_{i}\right) \cap G\left(A_{i}\right) \supset A_{i} \cap G\left(A_{i}\right) \neq \varnothing$ by the property $\left.v\right)$ of G, so for almost all $i, F\left(A_{i}\right) U G\left(A_{i}\right)=\left[r_{i}, s_{i}\right]$, a subarc of $[0, \infty)$. Since both $\left\{F\left(A_{i}\right)\right\}$ and $\left\{G\left(A_{i}\right)\right\}$ converge to $A \neq K$, $\pi\left(\left[r_{i}, s_{i}\right]\right) \neq K$ for almost all i. Then the properties ii) and iv) of H imply that $R\left(A_{i}\right) \rightarrow A=R(A)$, again contrary to our choice of $\left\{A_{i}\right\}$.
2) Suppose $A \in 2^{X} \backslash 2^{K}$, with $A \cap K \neq \varnothing$ and $\rho(\pi(A), K) \geq \delta$. Then for almost all $i, \pi\left(F\left(A_{i}\right)\right)=K$ and $\rho\left(\pi\left(A_{i}\right), K\right) \geq \delta / 2$, yielding $\theta\left(A_{i}\right)=1$, which is impossible. This completes the verification of continuity for R.

Finally, we note that the retraction R is conservative if G is, since for each $A \in 2^{X}$, either $R(A) \supset F(A) \supset A$ or $R(A) \supset G(A)$. Thus, in the cases $n=0,1$ where a conservative
map G may be chosen, we obtain a conservative hyperspace retraction.

6. Admissible Expansions in K

As in the previous section, $X=[0, \infty) U K=X_{n}$ for some $n \geq 0$, with $\pi: X \rightarrow K$ the retraction defined by π_{n}. We call a map $e: K \times[0, \infty) \rightarrow C(K)$ an expansion if it satisfies the following conditions (for $A \in 2^{X}, e(A, t)=U\{e(a, t)$: a $\in A\}$):

1) $e(x, t) \supset e(x, 0)=\{x\}$ for all x and $t ;$
2) for every $0 \leq s<t$, there exists $\delta>0$ such that $e(e(x, s), \delta) \subset e(x, t)$ for all $x ;$
3) for every $A \in 2^{K}$ and $\delta>0, e(B, \delta) \supset A$ for all $B \in 2^{K}$ sufficiently close to A; and
4) for every $A \in 2^{K}, e(A, t) \in C(K)$ for some t.

An expansion e is admissible if it permits an extension to a map ẽ: $X \times[0, \infty) \rightarrow C(X)$ satisfying the above condition 1) and such that, for all $x \in[1, \infty)$ and all $t, \underset{e}{(x, t)} \subset$ $[x-1, x+1]$ and $\pi(\tilde{e}(x, t))=e(\pi(x), t)$. We refer to ẽ as a "lift" for e.
6.1. Lemma. There exists an admissible expansion $e: K \times[0, \infty) \rightarrow C(K)$.

Proof. With d the arc-length metric on K, we may obtain an expansion by simply setting $e(x, t)=\{y \in K$: $d(x, y) \leq t\}$. However, this "free" expansion is admissible only if $\pi /(0, \infty)$ is an open map, i.e., only for $n=0,1$. Thus, for these cases the lemma is trivial, but for $n>1$, some type of "partial" expansion is required.

Suppose then that $K=S$ and $n>1$. Let $\omega:(-\infty, \infty) \rightarrow S$ be the covering projection defined by $\omega(r)=e^{2 \pi i r}$, and let $\tilde{\pi}:[0, \infty) \rightarrow(-\infty, \infty)$ be a lift of the periodic surjection $\pi_{n}:[0, \infty) \rightarrow$. Then $J=i m \tilde{\pi}$ is a compact subinterval with length $n / 2 \geq 1$. Let $p, q \in J$ be the points for which $J=[p-1, q+1]$. For each $z \in S$, let $z_{p}, z_{q} \in(0,1]$ be the unique values for which $\omega\left(p-z_{p}\right)=z=w\left(q+z_{q}\right)$.

Define maps $e_{p}, e_{q}: S \times[0, \infty) \rightarrow C(S)$ by the formulas

$$
\left\{\begin{array}{l}
e_{p}(z, t)=w\left(\left[p-(1+t) z_{p}, p-z_{p}\right] \cap J\right) \\
e_{q}(z, t)=w\left(\left[q+z_{q}, q+(1+t) z_{q}\right] \cap J\right)
\end{array}\right.
$$

Although the total image function $z \rightarrow e_{p}(z \times[0, \infty))$ is discontinuous at $z=\omega(p)$, the function e_{p} is continuous; similarly for e_{q}. These maps may be viewed quite simply. For $z \in S$, the restriction $e_{p} \mid z \times[0, \infty)$ is clockwise expansion around S from z to $\omega(p)$, where $\omega(p)=$ $\pi(\{0,2,4, \ldots\})=,(1,0)$ is the π-projection of those "turning points" in $[0, \infty)$ where the direction of travel (towards ∞) changes from clockwise rotation about S to counterclockwise rotation. Similarly, $e_{q} \mid z \times[0, \infty)$ is counterclockwise expansion from z to $\omega(q)$, where $\omega(q)=\pi(\{1,3,5, \ldots\})$ is the π-projection of those turning points where the direction of travel changes from counterclockwise to clockwise. For even $n, \omega(q)=(1,0)$, while for odd $n, \omega(q)=(-1,0)$.

We show that the map e: $S \times[0, \infty) \rightarrow C(S)$, defined by $e(z, t)=e_{p}(z, t) U e_{q}(z, t)$, is ar admissible expansion. The admissibility of e should already be evident from the above discussion of the maps e_{p} and e_{q}. It remains to verify the expansion conditions 1) through 4).

Condition 1) is obvious. Condition 2) is satisfied with $\delta=t-s /(1+s)$, since then $(1+s)(1+\delta)=(1+t)$. The verification of condition 3) is more involved. The basic observation is that, for all $y, z \in S$ and $\delta>0$,
i) $\left\{\begin{array}{l}z_{p} /(1+\delta) \leq y_{p} \leq z_{p} \text { implies } z \in e_{p}(y, \delta) ; \\ z_{q} /(1+\delta) \leq y_{q} \leq z_{q} \text { implies } z \in e_{q}(y, \delta) .\end{array}\right.$

Let d be the metric on S defined by $d(y, z)=$
$\min \{|u-v|: u, v \in(-\infty, \infty)$ with $\omega(u)=y$ and $\omega(v)=z\}$.
The above observation i) implies that for all y, z,

$$
\begin{aligned}
& \text { ii) if } d(y, z) \leq \min \left\{z_{p^{\prime}} z_{q}\right\} \cdot \delta /(1+\delta) \text {, then } \\
& z \in e(y, \delta) \text {. }
\end{aligned}
$$

Let $m=\min \left\{(\omega(p))_{q},(\omega(q))_{p}\right\}$. Then i) also implies that for all y,
iii) $\left\{\begin{array}{l}\text { if } y_{q} \leq m \delta /(1+\delta), \text { then } e_{p}(y, \delta) \supset \omega\left(\left[q, q+y_{q}\right]\right) \text {; } \\ \text { if } y_{p} \leq m \delta /(1+\delta), \text { then } e_{q}(y, \delta) \supset \omega\left(\left[p-y_{p}, p\right]\right) .\end{array}\right.$

Assuming $\delta<1, i i i)$ implies that for all y, z,
iv) $\left\{\begin{aligned} & \text { if } d(y, z) \leq z_{q} / 2 \leq m \delta / 6, ~ t h e n ~ \\ & e_{p}(y, \delta) \supset \omega\left(\left[q, q+. z_{q} / 2\right]\right) ; \\ & \text { if } d(y, z) \leq z_{p} / 2 \leq m \delta / 6, \text { then } \\ & e_{q}(y, \delta) \supset \omega\left(\left[p-z_{p} / 2, p\right]\right) .\end{aligned}\right.$

We can now verify condition 3). Given $A \in 2^{S}$ and $\delta>0$, set $A_{p}=x_{p} / 2$, for some $x \in A$ such that either $x_{p} \leq m \delta / 3$ or $x_{p}=\min \left\{a_{p}: a \in A\right\} ; \operatorname{set} A_{q}=y_{q} / 2$, for some $y \in A$ such that either $y_{q} \leq m \delta / 3$ or $y_{q}=\min \left\{a_{q}: a \in A\right\}$. Let $\eta=\min \left\{A_{p}, A_{q}\right\}$. $\delta /(1+\delta)$. We claim that for every $B \in 2^{S}$ with $\rho(A, B)<\eta$, $e(B, \delta) \supset A$. There are three cases to be considered:
a) Consider $z \in A$ with $z_{p} \leq A_{p}$. Then $A_{p}=x_{p} / 2 \leq m \delta / 6$ for some $x \in A$. Choose $y \in B$ with $d(y, x)<\eta<A_{p}=x_{p} / 2$.

By iv), $e_{q}(y, \delta)>\omega\left(\left[p-x_{p} / 2, p\right]\right)$. Since $z_{p} \leq x_{p} / 2$, we have $z=\omega\left(p-z_{p}\right) \in \omega\left(\left[p-x_{p} / 2, p\right]\right)$. Thus $z \in e_{q}(y, \delta) \subset$ e (B, δ).
b) An analogous argument shows that for $z \in A$ with $z_{q} \leq A_{q}, z \in e(B, \delta)$.
c) Consider $z \in A$ with $z_{p} \geq A_{p}$ and $z_{q} \geq A_{q}$. Choose $y \in B$ with $d(y, z)<\eta \leq \min \left\{z_{p}, z_{q}\right\} \cdot \delta /(1+\delta)$. By (ii), $z \in e(y, \delta) \subset e(B, \delta)$.

We next verify condition 4). Note that for each $z \in S$, and sufficiently large $t, e_{p}(z, t) \supset \omega\left(\left[p-1, p-z_{p}\right]\right)$, the arc (possibly degenerate) traversed in the clockwise direction from z to $\omega(p)$. Similarly, for large $t, e_{q}(z, t) \nu$ $\omega\left(\left[q+z_{q}, q+1\right]\right)$, the arc traversed in the counterclockwise direction from z to $\omega(q)$. If $\omega(p)=\omega(q)$, then for every $A \in 2^{S}$ with $A \neq\{\omega(p)\}, e(A, t)=S$ for large t. If $\omega(p) \neq \omega(q)$, let $\alpha \subset S$ be the subarc traversed in the clockwise direction from $\omega(q)$ to $\omega(p)$. Then for each $A \in 2^{S}$ with $A \backslash \alpha \neq \varnothing, e(A, t)=S$ for large t, and for $A \subset \alpha, e(A, t)=\alpha$ for large t. This completes the verification that e is an expansion. And as remarked earlier, e is by its construction admissible.

The above lemma will be used in section 8 for the construction of a map H with the properties specified in (5.2). At present, we apply (6.1) in the case $n>l$ to obtain a result which will be essential for the construction in the next section of a map G with the properties specified in (5.1).
6.2. Lemma. Let $\pi=\pi_{n}:[0, \infty) \rightarrow \mathrm{S}, \mathrm{n}>1$. Then there exists a retraction $\mathrm{E}: \mathbf{2}^{\mathbf{S}} \rightarrow \mathrm{C}(\mathrm{S})$ with the following properties:
i) $\mathrm{E}(\mathrm{A}) \supset \mathrm{A}$ for each $\mathrm{A} \in 2^{\mathrm{S}}$; and
ii) for each $\mathrm{A} \in 2^{\mathrm{S}}$ and subinterval $\mathrm{L} \subset[0, \infty)$ such that $\mathrm{A} \subset \pi(\mathrm{L}) \subset \mathrm{E}(\mathrm{A})$, there exists a subinterval $\mathrm{M} \subset[0, \infty)$ with $\mathrm{L} \subset \mathrm{M}$ and $\pi(\mathrm{M})=\mathrm{E}(\mathrm{A})$.

Proof. Let e: $S \times[0, \infty) \rightarrow C(S)$ be an admissible expansion given by (6.1). For each $A \in 2^{S}$, let $\tau(A)$ denote the smallest value of t for which $e(A, t) \in C(S)$, and define $E: 2^{S} \rightarrow C(S)$ by setting $E(A)=e(A, \tau(A))$. Then $E \mid C(S)=i d$, and $E(A) \supset A$.

We establish continuity for E by verifying continuity for the function $\tau: 2^{S} \rightarrow[0, \infty)$. The lower semi-continuity of τ is automatic, since $C(S)$ is closed in 2^{S} and e is continuous. Using the expansion properties 2) and 3) of e, we show that τ is upper semi-continuous. Given $A \in 2^{S}$ and $\varepsilon>0$, there exists by property 2) a number $\delta>0$ such that $e(e(B, \tau(A)), \delta) \subset e(B, \tau(A)+\varepsilon)$ for all B $\in 2^{S}$. By continuity of e and property 3), there exists a neighborhood U of A in 2^{S} such that $e(e(B, \tau(A)), \delta) \supset e(A, \tau(A))$ for every $B \in U$. Thus, $e(B, \tau(A)+\varepsilon) \supset e(A, \tau(A))$. Also, by application of property 3) to each $\{a\}, a \in A$, we may assume the neighborhood U is small enough that for each $B \in U$ and $b \in B$, $e(b, \tau(A)+\varepsilon)$ meets A. Thus, each component of $e(B, \tau(A)+\varepsilon)$ meets A, and since $A \subset e(A, \tau(A)) \subset e(B, \tau(A)+\varepsilon)$ and $e(A, \tau(A)) \in C(S)$, it follows that $e(B, \tau(A)+\varepsilon) \in C(S)$. Then $\tau(B) \leq \tau(A)+\varepsilon$ for every $B \in U$, and τ is upper semicontinuous.

It remains to verify the property ii). Given $A \in 2^{S}$ and a subinterval $L \subset[0, \infty)$ such that $A \subset \pi(L) \subset E(A)$, we may assume that $\mathrm{E}(\mathrm{A}) \neq \mathrm{S}$. Let $\mathrm{M} \boldsymbol{\mathrm { L }} \mathrm{L}$ be a maximal subinterval of $[0, \infty)$ for which $\pi(M) \subset E(A)$. We show that $\pi(M)=E(A)$. Let $\mathrm{X}: \mathrm{X} \times[0, \infty) \rightarrow \mathrm{C}(\mathrm{X})$ be a lift for e . Since $\mathrm{A} \subset \pi(\mathrm{L}) \subset$ $\pi(M)$, we may choose for each $a \in A$ an element $\mathfrak{a} \in M$ with $\pi(\tilde{a})=a$. Set $N_{a}=\tilde{e}(\tilde{a}, \tau(A))$. Then N_{a} is a subinterval of $[0, \infty)$ containing \tilde{a}, and $\pi\left(N_{a}\right)=\pi(\tilde{e}(\tilde{a}, \tau(A)))=e(a, \tau(A)) c$ $e(A, \tau(A))=E(A)$. Since $Z \in M \cap N_{a}, M U N_{a}$ is a subinterval, with $\pi\left(M \cup N_{a}\right) \subset E(A)$. By the maximal character of M, we must have $N_{a} \subset M$. Thus $E(A)=U\{e(a, \tau(A)): a \in A\}=$ $U\left\{\pi\left(N_{a}\right): a \in A\right\} \subset \pi(M)$, and $\pi(M)=E(A)$.

7. Construction of the Map G

We consider first the case $\mathrm{n}>1$. Thus, $\mathrm{K}=\mathrm{S}$ and $\pi=\pi_{n}:[0, \infty) \rightarrow$ S. As in the proof of (6.1), let $\omega:(-\infty, \infty) \rightarrow S$ be the covering projection defined by $\omega(r)=e^{2 \pi i r}$, and let $\tilde{\pi}:[0, \infty) \rightarrow(-\infty, \infty)$ be a lift of π. The desired map $G: 2^{X} \rightarrow C(X)$ will be obtained as an extension of the retraction $E: 2^{S} \rightarrow C(S)$ given by (6.2).

Let $U \subset 2^{X}$ be the collection of those $A \in 2^{X}$ which satisfy the following conditions:
a) $A \subset[0, \infty)$;
b) $E(\pi(A)) \neq S$; and
c) $E(\pi(A)) \supset \omega([\inf \tilde{\pi}(A), \sup \tilde{\pi}(A)])$.

Although condition c) by itself defines a closed subspace of $2^{X}, U$ is an open subspace. This can be seen from the fact that, since $E(\pi(A)) \supset \pi(A)=\omega(\tilde{\pi}(A)) \quad(\omega(\inf \tilde{\pi}(A))$, $\omega(\sup \tilde{\pi}(A))\}$ for each $A \in 2^{X}$, A satisfies conditions b) and
c) if and only if $E(\pi(A)) U \omega([i n f ~ \tilde{\pi}(A), \sup \tilde{\pi}(A)]) \neq S$. Thus conditions b) and c) together define an open subspace of 2^{X}, as does condition a), and therefore U is open.

We claim that for each $A \in U$ and $x \in A$, the continuum $E(\pi(A)) \subset S$ can be "lifted" through $x, i . e .$, there exists a continuum $M \subset[0, \infty)$ with $x \in M$ and $\pi(M)=E(\pi(A))$. Suppose $x \in[i, i+1]$, for some integer $i ; ~ l e t ~ L \subset[i, i+1]$ be the subinterval such that $\tilde{\pi}(L)=[\inf \tilde{\pi}(A)$, sup $\tilde{\pi}(A)]$ (note that $\tilde{\pi} \mid[i, i+1]$ is a homeomorphism onto im $\tilde{\pi}$). Then $x \in L$, and $\pi(A) \subset \pi(L)=\omega(\tilde{\pi}(L)) \subset E(\pi(A))$ since $A \in U$. The property ii) of the retraction E shows that L may be expanded to an interval $M \subset[i, i+1]$ such that $\pi(M)=$ $E(\pi(A))$.

In particular, if $A \in U$ and $a=\sup A$ is the point of A nearest S, with $a \in[i, i+1]$, then there exists a unique interval $M_{i} \subset[i, i+1]$ with $a \in M_{i}$ and $\pi\left(M_{i}\right)=E(\pi(A))$. This permits the construction of a map $L: U \rightarrow C(X)$ such that for each $A \in U, L(A)$ is an "approximate lift" of $E(\pi(A))$ through the point $a=\sup A$. We may construct L according to the following rules:

1) $L(A)=M_{i}$ if $\min \{a-i, i+1-a\} \geq 1 / a$;
2) $L(A)=\left[i, \max M_{i}\right]$ if $a-i=1 / 2 a$, and $L(A)=$ $\left[\min M_{i}, i+1\right]$ if $i+l-a=1 / 2 a ;$
3) $L(A)=M_{i-1} \cup M_{i}$ if $a=i>0$, and $L(A)=M_{i} \cup M_{i+1}$ if $a=i+1$.

For $1 / 2 a<a-i<1 / a$ or $1 / 2 a<i+1-a<1 / a, L(A)$ is defined so that $M_{i} \subset L(A) \subset\left[i, \max M_{i}\right]$ or $M_{i} \subset L(A) \subset$ $\left[\min M_{i}, i+1\right]$, respectively, and for $0<a-i<1 / 2 a$ or
$0<i+1-a<1 / 2 a,\left[i, \max M_{i}\right] \subset L(A) \subset\left[\min M_{i-1}, \max M_{i}\right]$ or $\left[\min M_{i}, i+l\right] \subset L(A) \subset\left[\min M_{i}, \max M_{i+1}\right]$, respectively.

The key properties of the map L are that sup $A \in L(A) C$ $[0, \infty)$ and $\pi(L(A)) \supset E(\pi(A))$ for each $A \in U$, with $\inf L(A)$ $\rightarrow \infty$ and $\rho(\pi(L(A)), E(\pi(A))) \rightarrow 0$ as $\sup A \rightarrow \infty$.

The desired map $G: 2^{X} \rightarrow C(X)$ is defined over U by modifying L as follows:
4) $\mathrm{G}(\mathrm{A})=\mathrm{L}(\mathrm{A})$ if $\rho(E(\pi(\mathrm{~A})), \mathrm{S}) \geq 1 / \sup \mathrm{A}$;
5) $G(A)=[\inf L(A), \infty)$ US if $\rho(E(\pi(A)), S)=1 /(2 \sup A)$;
6) $G(A)=S$ if $\rho(E(\pi(A)), S) \leq l /(4 \sup A)$.

For $l /(2 \sup A)<\rho(E(\pi(A)), S)<l / \sup A, G(A)$ is defined so that $L(A) \subset G(A) \subset[\inf L(A), \infty)$, and for $1 /(4 \sup A)<$ $\rho(E(\pi(A)), S)<l /(2 \sup A), S \in G(A) \subset[i n f L(A), \infty) U S$.

Note that for $A \in U$, either $G(A) \cap S=\varnothing$ or $G(A) \geq S$, and $G(A) \cap(A \cup S) \neq \varnothing$.

Finally, G is defined over $2^{X}, ~ U$ by the formula $G(A)=$ $E(\pi(A))$. Since U is open, it suffices to verify continuity of G at each $B \in b d l$. Note that, since the condition c) in the definition of U is automatically satisfied by each $B \in \operatorname{bd} U$, we must have either $E(\pi(B))=S$ or $B \cap S \neq \varnothing$, otherwise $B \in \mathbb{U}$. If $G(B)=E(\pi(B))=s$, then for any $A \in U$ near B, either $G(A)=s$ by virtue of rule 6) above, or $l /(4 \sup A)<\rho(E(\pi(A)), S)$, in which case both $L(A)$ and $G(A)$ are near S. If $E(\pi(B)) \neq S$ and $B \cap S \neq \varnothing$, then for any $A \in U$ near $B, L(A)$ is near $E(\pi(B))$ and $1 /$ sup $A \leq \rho(E(\pi(A)), S)$, hence $G(A)=L(A)$ is near $G(B)=E(\pi(B))$. Thus G is a map.

We next verify that G has the required properties i) through v) of (5.1). Since G extends E, property i) is clear. Since either $G(A) \cap S=\varnothing, G(A) \supset S$, or
$G(A)=E(\pi(A))>\pi(A)$, property ii) is satisfied. Property iii) is immediate from the definition of G over $2^{X}, ~ U$. Property iv) is clear if $A \in U$. On the other hand, if $A \subset[0, \infty)$ with $A \notin U$ and $G(A)=E(\pi(A)) \neq S$, then $E(\pi(A)) \not \supset \omega([i n f$ $\tilde{\pi}(A), \sup \tilde{\pi}(A)])$. However, this contradicts the hypothesis that $G(A) \nu \pi([\inf A, \sup A])=\omega(\tilde{\pi}([\inf A, \sup A]))$, since $\pi ̃([\inf A, \sup A]) \supset[\inf \pi(A), \sup \pi(A)]$. Finally, property v) has been previously noted for $A \in U$, and is obvious for $A \in 2^{X}, ~ U$. This completes the proof of (5.1) in the case $n>1$.

In the cases $\mathrm{n}=0,1$, a streamlined version of the above construction yields a conservative map $G: 2^{X} \rightarrow C(X)$ with the required properties. For either $\mathrm{K}=\mathrm{I}$ or $\mathrm{K}=\mathrm{S}$, let $E: 2^{K} \rightarrow C(K)$ be any retraction such that $E(A) \supset A$ for each $A \in 2^{K}$. Let $V=\left\{A \in 2^{X}: A \subset[0, \infty)\right\}$. As above, an approximate lifting map $L: V \rightarrow C(X)$ may be constructed such that for each $A \in V$, sup $A \in L(A) \subset[0, \infty)$ and $\pi(L(A))>E(\pi(A))$, with $\inf L(A) \rightarrow \infty$ and $\rho(\pi(L(A))$, $\mathrm{E}(\pi(\mathrm{A}))) \rightarrow 0$ as $\sup \mathrm{A} \rightarrow \infty$. In fact, for $\mathrm{n}=0$, L is constructed in the same manner as above for $\mathrm{n}>1$. For $\mathrm{n}=1$, L is constructed such that $\mathrm{L}(\mathrm{A}) \subset[0, \infty)$ is the unique lift of $E(\pi(A))$ through $a=\sup A$ if $\rho(E(\pi(A)), S) \geq 1 / a ;$ $a \in L(A) \subset[a-2, a+2]$ with $\pi(L(A)) \sim E(\pi(A))$ if $0<\rho(E(\pi(A)), S)<1 / a ;$ and $L(A)=[a-2, a+2]$ if $\mathrm{E}(\pi(\mathrm{A}))=\mathrm{S}$.

In either case, L extends to a map $G: 2^{X} \rightarrow C(X)$ by the formula $G(A)=E(\pi(A))$ for $A \in 2^{X}, V$. Properties i) and iii) are immediate from the definition of G. Property ii) is a
consequence of the fact that $E(\pi(A)) \geqslant \pi(A)$, and that $G(A) \subset[0, \infty)$ when $A \subset[0, \infty)$. Property iv) is satisfied vacuously. And finally, $G(A) \cap A \neq \varnothing$ for all $A \in 2^{X}$, since $G(A)=E(\pi(A)) \supset \pi(A)$ if $A \cap K \neq \varnothing$, and $G(A)=L(A) \quad \ni$ $\sup A$ if $A \cap K=\varnothing$.

8. Construction of the Map H

Let $e: K \times[0, \infty) \rightarrow C(K)$ be an admissible expansion given by (6.1). Set $N=\{N \in C(K): e(N, t)=K$ for some $t\}$. By the expansion property 3), N is a neighborhood of K .

The domain $D \subset C(X) \times C(X)$ of H can be partitioned into four subdomains as follows:

$$
\begin{aligned}
& D_{1}=\{(M, N): M \nexists K \supset N \in N\} ; \\
& D_{2}=\{(M, N): M \cap K=\emptyset \text { and } N \subset K\} ; \\
& D_{3}=\{(M, N): M \cap K=\emptyset \text { and } N \nsupseteq K\} ; \text { and } \\
& D_{4}=\{(M, N): M \cap K=\emptyset=N \cap K \text { and } M \cap N \neq \emptyset\} .
\end{aligned}
$$

We will define H separately over each $D_{i} \times[0,1]$.
For $(M, N) \in D_{1}$, set

$$
\begin{cases}H(M, N, t)=M, & 0 \leq t \leq 1 / 4 ; \\ H(M, N, t)=K, & 1 / 2 \leq t \leq 3 / 4 ; \text { and } \\ H(M, N, 1)=N . & \end{cases}
$$

Use the natural path in $C(X)$ from M to K to define $H(M, N, t)$ for $1 / 4 \leq t \leq 1 / 2$, and reverse the e-expansion $\{e(N, t)$: $0 \leq t<\infty$ \} of N to K to define $H(M, N, t)$ for $3 / 4 \leq t \leq 1$.

For $(M, N) \in D_{2}$, let $N^{*}=e(N, \sup M) ;$ then $N \subset N^{*} \in$ C(K). Set

$$
\left\{\begin{array}{l}
H(M, N, 0)=M ; \\
H(M, N, 1 / 4)=[\inf M, \infty) \cup K: \\
H(M, N, 1 / 2)=K ; \\
H(M, N, 3 / 4)=N^{*} ; \text { and } \\
H(M, N, 1)=N
\end{array}\right.
$$

Use the natural paths in $C(X)$ to define $H(M, N, t)$ for $0 \leq t \leq 1 / 4$ and $1 / 4 \leq t \leq 1 / 2$; reverse the free expansion (via an arc-length metric) in $C(K)$ from N^{*} to K to define $H(M, N, t)$ for $l / 2 \leq t \leq 3 / 4$; and reverse the e-expansion from N to N^{*} to define $H(M, N, t)$ for $3 / 4 \leq t \leq 1$.

For $(M, N) \in D_{3}$, set

$$
\left\{\begin{array}{l}
H(M, N, 0)=M: \\
H(M, N, l / 4)=[\inf M, \infty) U K ; \\
H(M, N, l / 2)=[\max \{\inf M, \inf N\}, \infty) U K ; \text { and } \\
H(M, N, t)=N, 5 / 8 \leq t \leq 1 .
\end{array}\right.
$$

Use the natural paths in $C(X)$ to define $H(M, N, t)$ for all other t.

Define an index map $\tau: \mathcal{D}_{4} \rightarrow[0, \infty)$ by the formula $\tau(M, N)=\max \{\inf N-\inf M-2,0\} \cdot \rho(\pi(N), K)$. For $(M, N) \in D_{4}$, let $N^{*}=\tilde{e}(N, \tau(M, N))$, where ẽ is a lift for e. Then $N * \in C(X)$, with $N \subset N^{*} \subset[\inf N-1$, $\sup N+1]$. Set

$$
\left\{\begin{aligned}
H(M, N, 0)= & M ; \\
H(M, N, l / 4)= & {\left[\inf M, \max \left\{\sup M, \sup N^{*}\right\}\right] ; } \\
H(M, N, l / 2)= & {\left[\max \left\{\inf M, \inf N^{*}\right\}, \max \{\sup M,\right.} \\
& \left.\left.\sup N^{*}\right\}\right] ; \\
H(M, N, 5 / 8)= & {\left[\inf N^{*}, \max \left\{\sup M, \sup N^{*}\right\}\right] ; } \\
H(M, N, 3 / 4)= & N^{*} ; \text { and } \\
H(M, N, l)= & N .
\end{aligned}\right.
$$

Use the natural paths in $C(X)$ to complete the definition of $H(M, N, t)$ for $0 \leq t \leq 3 / 4$, and reverse the ex-expansion from N to N^{*} to define $H(M, N, t)$ for $3 / 4 \leq t \leq 1$.

We now verify that H is a map. For $i \neq j, D_{i} \cap \bar{D}_{j} \neq \phi$ only if $(i, j)=(1,2),(1,3),(1,4),(2,3)$, or $(3,4)$. Since each restriction $H / D_{i} \times[0,1]$ is continuous, it suffices to check continuity of H at boundary points in the above cases. Considering first the case $(i, j)=(1,2)$, let $\left(M_{k}, N_{k}\right)$ be a sequence in D_{2} converging to $(M, N) \in D_{1}$. Then $\sup M_{k} \rightarrow \infty$, and since $N_{k} \rightarrow N \in N$, we have $N_{k}^{*}=K$ for almost all k (use continuity of e, and the expansion properties 2) and 3)). It follows that $H\left(M_{k}, N_{k}, t_{k}\right) \rightarrow H(M, N, t)$ whenever $t_{k} \rightarrow t$. The cases $(i, j)=(1,3)$ or $(2,3)$ are routine. Consider a sequence $\left(M_{k}, N_{k}\right)$ in D_{4} converging to $(M, N) \in D_{1}$. Then if $N \neq K, \tau\left(M_{k}, N_{k}\right) \rightarrow \infty$ and $N_{k}^{*} \rightarrow K$; if $N=K$, obviously $N_{k}^{*} \rightarrow K$. This implies that $H\left(M_{k}, N_{k}, t_{k}\right) \rightarrow$ $H(M, N, t)$ whenever $t_{k} \rightarrow t$ Finally, consider a sequence $\left(M_{k}, N_{k}\right)$ in D_{4} converging to $(M, N) \in D_{3}$. Then $\pi\left(N_{k}\right)=K$ for almost all k, hence $\tau\left(\mathrm{M}_{\mathrm{k}}, \mathrm{N}_{\mathrm{k}}\right)=0$ and $\mathrm{N}_{\mathrm{k}}^{\star}=\mathrm{N}_{\mathrm{k}}$, implying that $H\left(M_{k}, N_{k}, t_{k}\right) \rightarrow H(M, N, t)$ whenever $t_{k} \rightarrow t$. This completes the verification of continuity for $H: D \times[0,1] \rightarrow C(X)$.

Clearly, H satisfies the required conditions i) and ii) of (5.2). Conditions iii) and iv) are also clear, except possibly for $(M, N) \in D_{4}$ with $N^{*} \neq N$. However, $N^{*} \neq N$ implies $\tau(M, N)>0$, which implies that inf $N \geq$ inf $M+2$. Then inf $N^{*} \geq \inf N-1 \geq i n f M$, and condition iii) is satisfied. And, diam(M $U N$) ≥ 2 implies that $\pi(M \cup N)=K, ~ s o ~ c o n d i t i o n ~ i v) ~ i s ~ s a t i s f i e d ~ v a c u o u s l y . ~$ This completes the proof of (5.2).

9. Means and Pseudo-Means

Let Y be a continuum. A map $\lambda: Y \times Y \rightarrow Y$ is called a mean if $\lambda(x, y)=\lambda(y, x)$ and $\lambda(y, y)=y$ for all $x, y \in Y . \quad A$ map $\lambda: Y \times Y \rightarrow C(Y)$ with the same properties is called a pseudo-mean for Y [7].

Every hyperspace 2^{X} admits a mean: define $\lambda(A, B)=$ $A \cup B$. If there exists a retraction $2^{X} \rightarrow C(X)$, then $C(X)$ also admits a mean, and X admits a pseudo-mean. Thus we have yet another necessary condition for the existence of a hyperspace retraction. In this section we describe examples from the class of regular half-line compactifications which show that the existence of a pseudo-mean neither implies nor is implied by the subcontinuum approximation property of section 2 , and that both conditions together are still not sufficient for the existence of a hyperspace retraction. Recall that a regular compactification $X=[0, \infty) U K$ has the subcontinuum approximation property if and only if the remainder K is either an arc or a simple closed curve. We do not know in general which regular compactifications admit pseudo-means.
9.1. Example. Let $\pi:[0, \infty) \rightarrow$ be the periodic surjection defined as follows:

```
    i) \pi(k) = O if k is an odd integer;
ii) }\pi(k)=1 if k \equiv2,4(\operatorname{mod}6)
iii) \pi(k) = -l if k \equiv 6 (mod 6); and
iv) \pi is linear over each interval [k,k + l].
```

Then for $\mathrm{X}=\mathrm{X}(\pi)$, no retraction $2^{\mathrm{X}} \rightarrow \mathrm{C}(\mathrm{X})$ exists, since $\mathrm{X} \neq \mathrm{X}_{0}$; nonetheless, a pseudo-mean may be constructed for X, and in fact $C(X)$ admits a mean.
9.2. Example. Let $\pi:[0, \infty) \rightarrow I$ be the periodic surjection defined by:
i) $\pi(k)=0$ if k is odd;
ii) $\pi(k)=1$ if $k \equiv 2,4(\bmod 8)$;
iii) $\pi(k)=-1$ if $k \equiv 6,8(\bmod 8)$; and
iv) π is linear over each interval $[k, k+1]$.

Then $\mathrm{X}=\mathrm{X}(\pi)$ does not admit a pseudo-mean.
Proof. Suppose there exists a pseudo-mean $\lambda: X \times X \rightarrow$ $\mathrm{C}(\mathrm{X})$. Let k denote an integer of the form $8 \mathrm{n}+2$. Then consideration of $\lambda(k-t, k+t)$, for $0 \leq t \leq 1$ and large n , shows that either $\lambda(\mathrm{k}-1, \mathrm{k}+1) \approx$ (approximates) $\{k-1\}$ or $\lambda(k-1, k+1) \approx\{k+1\}$. Similarly, either $\lambda(k+1, k+3) \approx\{k+1\}$ or $\lambda(k+1, k+3) \approx\{k+3\}$. If $\lambda(k-1, k+1) \approx\{k-1\}$, then $\lambda(k, k+2) \approx\{k\} ; i f$ $\lambda(k+1, k+3) \approx\{k+3\}$, then $\lambda(k, k+2) \approx\{k+2\}$. Thus, either $\lambda(k-1, k+1) \approx\{k+1\}$ or $\lambda(k+1, k+3) \approx$ $\{k+l\}$. Letting $n \rightarrow \infty$, we see by continuity of λ that, for every $s \in I \subset X$ and the point $0 \in I$, either $\lambda(0, s) \subset$ $[0,1]$ or $1 \in \lambda\left(0, s^{\prime}\right)$ for some s^{\prime} between 0 and s. (Suppose that $\lambda(k-1, k+1) \approx\{k+1\}$ for infinitely many k as above. Then for every $r \in[k-2, k]$, either $\lambda(r, k+1) \subset$ $[k, k+2]$ or $\lambda\left(r^{\prime}, k+1\right) \cap\{k, k+2\} \neq \varnothing$ for some r^{\prime} between $k-1$ and r. Note that $\pi(k-2)=-1, \pi(k-1)=$ $\pi(k+1)=0$, and $\pi(k)=\pi(k+2)=1)$. An analogous argument shows that either $\lambda(k+3, k+5) \approx\{k+5\}$ or
$\lambda(k+5, k+7) \approx\{k+5\}$, which implies that for every $s \in I$, either $\lambda(0, s) \subset[-1,0]$ or $-1 \in \lambda\left(0, s^{\prime}\right)$ for some s^{\prime} between 0 and s. Consequently, $\lambda(0, s)=\{0\}$ for every $s \in I . H$ wever, this implies that $\lambda(k-1, k) \approx\{k-1\} \approx$ $\lambda(k-l, k+l)$ and also that $\lambda(k, k+l) \approx\{k+l\} \approx$ $\lambda(k-1, k+1), a$ contradiction. Thus X does not admit a pseudo-mean.
9.3. Example. Let T be a triod, with branch point v and endpoints e_{1}, e_{2}, and e_{3}, and let $\pi:[0, \infty) \rightarrow T$ be the periodic surjection defined as follows:
i) $\pi(k)=v$ if k is odd;
ii) $\pi(k)=e_{1}$ if $k \equiv 4(\bmod 8)$;
iii) $\pi(k)=e_{2}$ if $k \equiv 2,6(\bmod 8)$;
iv) $\pi(k)=e_{3}$ if $k \equiv 8(\bmod 8)$; and
v) π is linear over each interval $[k, k+1]$.

Let $X=X(\pi)$. It can be shown that $C(X)$ admits a mean.
9.4. Example. For T as above, let $\pi:[0, \infty) \rightarrow T$ be the periodic surjection defined by:
i) $\pi(k)=v$ if k is odd;
ii) $\pi(k)=e_{1}$ if $k \equiv 2(\bmod 6) ;$
iii) $\pi(k)=e_{2}$ if $k \equiv 4(\bmod 6)$;
iv) $\pi(k)=e_{3}$ if $k \equiv 6(\bmod 6)$; and
v) π is linear over each interval $[k, k+1]$.

Then $\mathrm{X}=\mathrm{X}(\pi)$ does not admit a pseudo-mean.
Proof. Suppose there exists a pseudo-mean λ. Let k denote an integer of the form $6 n+1$. Consideration of $\lambda(k, k+t)$ and $\lambda(k+2, k+2-t)$, for $0 \leq t \leq 1$ and
large n, shows that λ must have the following property with respect to e_{1} : for each $x \in\left[v, e_{1}\right]$, either $\lambda(v, x) \subset\left[v, e_{1}\right]$ or $e_{1} \in \lambda\left(v, x^{\prime}\right)$ for some x^{\prime} between v and x. Of course, λ has the analogous properties with respect to e_{2} and e_{3}.

Now, consideration of $\lambda(k+1-t, k+l+t)$, for $0 \leq t \leq l$ and $k=6 n+1$ as above, shows that for large n, either $\lambda(k, k+2) \approx\{k\}$ or $\lambda(k, k+2) \approx\{k+2\}$. We may suppose the former (for infinitely many n). Then consideration of $\lambda(k, k+2+t)$, for $0 \leq t \leq 1$, together with the above property of λ with respect to e_{2}, shows that $\lambda(v, x)=\{v\}$ for each $x \in\left[v, e_{2}\right]$. But this implies that $\lambda(k+2, k+3) \approx\{k+2\} \approx \lambda(k+2, k+4)$ and also that $\lambda(k+4, k+3) \approx\{k+4\} \approx \lambda(k+4, k+2)$, a contradiction. Thus X does not admit a pseudo-mean.

There also exist regular compactifications $x=[0, \infty) \cup S$ similar to the above examples. Let $\pi:[0, \infty) \rightarrow S$ be the periodic surjection defined by $\pi(t)=e^{i \pi t}, 0 \leq t \leq 3(\bmod 4)$, and $\pi(t)=e^{-i \pi t}, 3 \leq t \leq 4$ (mod 4). Then for $X=X(\pi), C(X)$ admits a mean. On the other hand, there exist periodic surjections $[0, \infty) \rightarrow S$ for which the corresponding compactifications do not admit pseudo-means. An example is the map π defined by $\pi(t)=e^{i 2 \pi t}, 0 \leq t \leq 2(\bmod 3)$, and $\pi(t)=e^{-i 2 \pi t}$, $2 \leq t \leq 3(\bmod 3)$.

If there exists a conservative retraction $2^{X}+C(X)$, then there exists a conservative pseudo-mean $\lambda: X \times X \rightarrow C(X)$, i.e., $\lambda(x, y) \cap\{x, y\} \neq \varnothing$ for all x, y. It can be shown that
a regular compactification $X=[0, \infty) U K$ admits a conservative pseudo-mean only if X is homeomorphic to either X_{0} or X_{1}. Thus, in the class of regular half-line compactifications, the existence of a conservative pseudo-mean is equivalent to the existence of a conservative hyperspace retraction. It seems unlikely that this would hold in general, but we do not have a counterexample.

References

[1] K. Borsuk and S. Mazurkiewicz, Sur Z'hyperespace d'un continu, C. R. Soc. Sc. Varsovie 24 (1931), l49-152.
[2] J. T. Goodykoontz, Jr., C(X) is not necessarily a retract of 2^{X}, Proc. Amer. Math. Soc. 67 (1977), 177178.
[3] \qquad , A nonlocally connected continuum X such that $\mathrm{C}(\mathrm{X})$ is a retract of 2^{X}, Proc. Amer. Math. Soc. 91 (1984), 319-322.
[4] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
[5] R. J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967), 35-46.
[6] S. B. Nadler, Jr., Some problems concerning hyperspaces, Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, pp. 190-197.
[7] \qquad , Hyperspaces of sets, Monographs in Pure and Applied Math., vol. 49, Dekker, New York, 1978.
[8] J. T. Rogers, Jr., The cone = hyperspace property, Canad. J. Math. 24 (1972), 279-285.
[9] M. Wojdyslawski, Retractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.

Louisiana State University

Baton Rouge, Louisiana 70803

