TOPOLOGY PROCEEDINGS

Volume 11, 1986
Pages 65-113
http://topology.auburn.edu/tp/

RATIONAL SPACES OF A GIVEN RIM-TYPE AND THE PROPERTY OF UNIVERSALITY

by
S. D. Iliadis

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

RATIONAL SPACES OF A GIVEN RIM-TYPE AND THE PROPERTY OF UNIVERSALITY

S. D. Iliadis

Introduction

All spaces in this paper are assumed to be metrizable and having a countable basis.

A space is said to be rational (resp. rim-finite) if it has a basis of open sets with countable (resp. finite) boundaries (a finite set is considered also as countable).

It is said that a space X has rim-type $\leq \alpha$, where α is an ordinal number, iff it has a basis B of open sets such that the α-derivative (see [Ku], v.I, § 24.IV) of the boundary of every element of B is empty. If α is the least such ordinal, then we say that the space X has rim-type α.

It is easy to see that if X has rim-type α then α is a countable ordinal number (a finite ordinal number is also considered as countable). In what follows all ordinal numbers considered are countable.

A space T is said to be universal for a family R of spaces iff T is an element of R and for every $X \in R$ there is an embedding i: $\mathrm{X} \rightarrow \mathrm{T}$.

We say that a space T has the property of finite intersection with respect to a family R of spaces iff for every element X of R there is a fixed embedding $i_{X}: X \rightarrow T$ such that if X and Y are different elements of R then the set $i_{X}(X) \cap i_{Y}(Y)$ is finite. The space T is not necessarily an element of R.

Nobeling (see [N]) proved that in the family of all rim-finite spaces, the family of all rim-finite compact spaces and the family of all rim-finite continua there does not exist a universal element.

Also, it is well-known (see [Ku], V.II, §5l.IV) that in the family of all rational compact spaces and in the family of all rational continua there does not exist a universal element.

In [I_{1}] it is proved that in the family of all (locally connected) compact spaces having rim-type $\leq \alpha$ and in the family of all (locally connected) continua having rim-type $\leq \alpha$ there does not exist a universal element.

On the other hand, in $\left[I_{2}\right]$, it is proved that in the family of all rational spaces there exists a universal element having the property of finite intersection with respect to the subfamily of all rational continua (more precisely, with respect to a given subfamily the power of which is less than or equal to the continuum).

In part I of this paper we give some lemmas about the type and the rim-type of spaces. These lemmas are used (in part III) in order to represent the spaces as quotient spaces of "good" partitions of subsets of the Cantor ternary set. The "good" means that the corresponding partitions have some properties of "countability."

In part II, starting with a family of pairs (S,D) where S is a subset of the Cantor ternary set and D is a "good" partition, we construct a space which is used (as a universal element) in part III where we give the main result: In the family of all spaces of rim-type $\leq \alpha$ there is a
universal element having the property of finite intersection with respect to a given subfamily the power of which is less than or equal to the continuum (in particular, with respect to the subfamily of all compact spaces of rim-type $\leq \alpha)$.

Let $\alpha=\beta+n$ where β is a limit ordinal number or 0 and n is a non-negative integer.

Using theorem 8 of $[I-T]$ we also have:
There exists a continuum of rim-type $\leq \beta+2 n+$ min $\{\beta, 1\}$ having the property of finite intersection with respect to the family of all compact spaces of rim-type $\leq \alpha$.

In particular, there exists a continuum of rim-type 2 having the property of finite intersection with respect to the family of all rim-finite compact spaces.

This result gives affirmative answers to problems 8 and 9 (hence, negative answers to problems 10 and ll) of [I_{3}].

By the main result it follows that for a given space X of rim-type $\leq \alpha$ there is a space of rim-type $\leq \alpha$ having the property of finite intersection with respect to the family of all closed subsets of X.
I.l. For every space X and for every subset Q of X by $\mathrm{cl}(Q), \operatorname{Bd}(Q), \operatorname{Int}(Q)$ and $|Q|$ we denote the closure, the boundary, the interior and the cardinality of Q, respectively. If X is metric then by diam(Q) we denote the diameter of Q. An open subset U of X is called a reguzar open subset iff $\mathrm{U}=$ Int(cl(U)). Obviously, a set U is regular iff $B d(U)=B d(X \backslash c l(U))$.

A space Y is said to be an extension of X iff X is a dense subset of Y. A space Y is said to be a compactification of X iff Y is a compact extension of X .

For every space M and for every ordinal number α by $M^{(\alpha)}$ we denote the α-th derivative of M. The ordinal number 0 is considered as a limit ordinal. A non-limit ordinal number is called isolated.

We say that a space M has type α (resp. $\leq \alpha$) and write type $(M)=\alpha$ (resp. type $(M) \leq \alpha$) iff $M^{(\alpha)}=\emptyset$ and $M^{(\beta)} \neq \emptyset$ for every $\beta<\alpha$ (resp. $M^{(\alpha)}=\varnothing$).

We say that a space M at the point $x \in M$ has type α (resp. $\leq \alpha$) and write type $(x, M)=\alpha$ (resp. type $(x, M) \leq \alpha)$ iff $x \in M^{(\alpha)}$ and $x \not \subset M^{(\beta)}$ for every $\beta<\alpha$ (resp. $x \notin M^{(\alpha)}$). Obviously, for every $M \neq \emptyset$ and for every $x \in M$, type (x, M) is an isolated ordinal number and type $(M)=\sup _{x \in M}\{t y p e(x, M)\}$.

We observe that two countable locally compact spaces whose type is the same limit ordinal number are homeomorphic.

Indeed, let M and N be locally compact spaces and type (M) $=$ type $(N)=\alpha$, where $\alpha>0$ is a limit ordinal number. Let $\mathrm{M} U(\mathrm{a}\}$ and $\mathrm{N} U(b\}$ be one-point compactifications of M and N, respectively. Then, type ($\mathrm{M} U\{a\}$) $=$ type $(N \cup\{b\})=\alpha+1$ and $\mid\left(M \cup\{a\}^{(\alpha)}|=|\left(N \cup\{b\}^{(\alpha)} \mid=1\right.\right.$. Hence, by $[\mathrm{M}-\mathrm{S}]$ there is a homeomorphism h of $M U\{a\}$ onto $N \quad \cup\{b\}$. Obviously, $h(a)=b$. Hence, $h(M)=N$.

We also observe that by [M-S] it follows that the set of all non-homeomorphic compact spaces having type $\leq \alpha$ is countable.
2. Let α be a limit ordinal number and let $\beta=\alpha+m$ where m is a non-negative integer.

By $P(\alpha, m)$ we denote the set of all pairs (X, K) where K is a compact space having type $\alpha+n$ for some non-negative integer $n \geq m$ and X is a subset of K such that type $(X)=\beta=$ $\alpha+m$ and $K \backslash K^{(\alpha)} \subseteq X$ (hence, $\left.K K^{(\alpha)}=X \backslash X^{(\alpha)}\right)$.

By $T P(\alpha, m), m \geq 1$, we denote the set of all 3-tuples (a, X, K) such that $(x, K) \in P(\alpha, m)$ and $a \in X^{(\beta-1)}=x^{(\alpha+m-1)}$.

If $(X, K(X)) \in P(\alpha, m)$ then by $B(K(X))$ we denote the set of all open and closed subsets of $K(X)$. $B y B(X)$ we denote the set of all subsets U^{\prime} of X of the form $U^{\prime}=U \cap X$ where $U \in B(K(X))$.

Let e be a subset of $T P(\alpha, m)$ and $(a, X, K(X)) \in$ e. A neighbourhood $U^{\prime} \in B(X)$ of a is called standard for the subset e iff for every (b,Y,K(Y)) \in e there exist a neighborhood $V^{\prime} \in B(Y)$ of b and a homeomorphism h of U^{\prime} onto V^{\prime} such that $h(a)=b$.

We observe that if $(a, X, K(X)) \in T P(\alpha, m)$ and $a \in U \in$ $B(K(X))$ then $(a, U \cap X, U) \in T P(\alpha, m)$.

Lemma 1. For a given a there exists a finite set $\operatorname{ETP}(\alpha, m)=\left\{e_{1}^{m}, \cdots, e_{k(m)}^{m}\right\}$ whose elements are subsets of $\mathrm{TP}(\alpha, \mathrm{M})$ such that:

1) $e_{l}^{m} \cup \cdots U e_{k(m)}^{m}=T P(\alpha, m)$,
2) $e_{i}^{m} \cap e_{j}^{m}=\emptyset$ if $i \neq j$,
3) if $(a, X, K(X)) \in e_{i}^{m}, i=1, \cdots, k(m)$, and $a \in U \in$ $B(K(X))$ then $(a, U \cap X, U) \in e_{i}^{m}$,
4) if $(a, X, K(X)) \in e_{i}^{m}, i=1, \cdots, k(m)$, then a has a standard neighbourhood for the subset e_{i}^{m}.

Proof. We may assume that all spaces are metric. We prove the lemma by induction on m.

Let $m=1 . \quad B y e_{1}^{1}$ (resp. e_{2}^{l}) we denote the set of all elements $(a, X, K(X))$ of $T P(\alpha, m)$ such that the space X is locally compact (resp. is not locally compact) at the point a.

We prove that the set $\operatorname{ETP}(\alpha, m)=\left\{e_{1}^{1}, e_{2}^{1}\right\}$ is the required set. Indeed, it is clear that the properties 1)-3) of the lemma are satisfied.

Suppose that $(a, X, K(X)) \in e_{1}^{1}$ and $(b, Y, K(Y)) \in e_{1}^{1}$. Since $X^{(\alpha)}$ and $Y^{(\alpha)}$ consist of isolated points (in the relative topology), there are $U \in B(K(X))$ and $v \in B(K(Y))$ such that:

1) the sets $U^{\prime}=U \cap X$ and $V^{\prime}=V \cap Y$ are compact and 2) $\mathrm{J} \cap \mathrm{X}^{(\alpha)}=\{\mathrm{a}\}$ and $\mathrm{V} \cap \mathrm{Y}^{(\alpha)}=\{\mathrm{b}\}$. Obviously, type $\left(\mathrm{U}^{\prime}\right)=$ type $\left(V^{\prime}\right)=\alpha+1,\left(U^{\prime}\right)^{(\alpha)}=\{a\}$ and $\left(V^{\prime}\right)^{(\alpha)}=\{b\}$. Hence, the sets $U '$ and V^{\prime} are homeomorphic (see [M-S]). Moreover, if h is an arbitrary homeomorphism of U^{\prime} onto V ' then $h(a)=b$.

Since the construction of the set U ' is independent of the construction of the set V^{\prime}, the neighbourhood U ' of a is standard for the element e_{1}^{l}.

Now, suppose that $(a, X, K(X)) \in e_{2}^{l}$ and $(b, Y, K(Y)) \in e_{2}^{l}$. For every $i=1,2, \ldots$ there exists $U_{i} \in B(K(X)$) (resp. $V_{i} \in B(K(Y))$) such that: l) $U_{1} \cap X^{(\alpha)}=\{a\}$ (resp. $\left.\left.V_{1} \cap Y^{(\alpha)}=\{b\}\right), 2\right) a \in U_{i+1} \subseteq U_{i}\left(r e s p . b \in V_{i+1} \subseteq V_{i}\right)$, 3) the set $\left(U_{i} \backslash U_{i+1}\right) \cap X\left(r e s p .\left(V_{i} \backslash V_{i+1}\right) \cap Y\right)$ is not compact and 4) $\lim _{i \rightarrow \infty} \operatorname{diam}\left(U_{i}\right)=0$ (resp. $\left.\lim _{i \rightarrow \infty} \operatorname{diam}\left(V_{i}\right)=0\right)$.

Since $K(X) \backslash(K(X))^{(\alpha)} \subseteq X$ by properties 1) and 2) it follows that $\left(U_{i} \backslash U_{i+1}\right) \cap x=\left(U_{i} \backslash U_{i+1}\right) \cap\left(x \vee X^{(\alpha)}\right)=$ $\left(U_{i} \backslash U_{i+1}\right) \cap\left(K(X) \backslash(K(X))^{(\alpha)}\right)$. Hence, the set $\left(U_{i} \backslash U_{i+1}\right) \cap x$ as an open subset of $K(X)$ is locally compact.

On the other hand, the set $U_{i} \backslash U_{i+1}$ is compact and the set $\left(U_{i} \backslash U_{i+1}\right) \cap x$ is not compact. Hence, $\left(U_{i} \backslash U_{i+1}\right) n$ $(K(X))^{(\alpha)} \neq \varnothing$. It then follows that type $\left(\left(U_{i} \backslash U_{i+1}\right) \cap X\right)=\alpha$.

Similarly, the set $\left(\mathrm{V}_{\mathrm{i}} \backslash \mathrm{V}_{\mathrm{i}+1}\right) \mathrm{O} \mathrm{Y}$ is locally compact and type $\left(\left(V_{i} \backslash V_{i+1}\right) \cap Y\right)=\alpha$. Hence, there is a homeomorphism h_{i} of $\left(U_{i} \backslash U_{i+1}\right) \cap x$ onto $\left(V_{i} \backslash V_{i+1}\right) \cap Y$.

We construct a map h of $U_{i}=U_{1} \cap x$ onto $V_{i}=V_{1} \cap Y$ setting $h(a)=b$ and considering that h coincides with the $\operatorname{map} h_{i}$ on the set $\left(U_{i} \backslash U_{i+l}\right) \cap x$. By property 4) of the sets U_{i} and V_{i} it follows that the map h is a homeomorphism of U_{i}^{\prime} onto V_{i}^{\prime}.

As in the first case, since the construction of the set U_{i}^{\prime} is independent of the construction of the set V_{i}^{\prime}, the neighbourhood U_{i} of a is standard for the element e_{2}^{l}.

Suppose that the lemma is true for $m<m_{0}, m_{0} \geq 2$.
For every element $e \in U_{i=1}^{m_{0}-1} \operatorname{ETP}(\alpha, i)$ we consider a fixed 3-tuple (a(e),X(e),K(X(e))) of e and a fixed standard neighbourhood $U(e)$ of $a(e)$ in $X(e)$ for the element e.

Let $p=(a, x, K(x)) \in \operatorname{TP}\left(\alpha, m_{0}\right) . \quad$ Set $X_{1}=x \backslash x^{\left(\beta_{0}-1\right)}$
where $\beta_{0}=\alpha+m_{0}$. Obviously, type $\left(x_{1}\right)=\beta_{0}-1, x_{1}^{\left(\beta_{0}-2\right)}=$ $x^{\left(\beta_{0}-2\right)} \backslash x^{\left(\beta_{0}-1\right)}$ and $\left(X_{1}, K(X)\right) \in P\left(\alpha, m_{0}-1\right)$.

In the set $\operatorname{ETP}\left(\alpha, m_{0}-1\right)$ we define a subset $\operatorname{ETP}\left(\alpha, m_{0}-1, p\right)$ as follows: an element e of $\operatorname{ETP}\left(\alpha, m_{0}-1\right)$ belongs to
$\operatorname{ETP}\left(\alpha, m_{0}-1, p\right)$ iff for every neighbourhood $W \in B(K(X))$ of a there exists a point $x \in W \cap X_{1}^{\left(\beta_{0}-2\right)}$ such that $\left(x, X_{1}, K(X)\right)$ ϵe (hence, ($\left.\left(x, W \cap X_{1}, W\right) \in e\right)$.

For every e $\in \operatorname{ETP}\left(\alpha, m_{0}-1, p\right)$ by $X(e, p)$ we denote the set of all points $x \in X_{1}^{\left(\beta_{0}-2\right)}$ for which $\left(x, X_{1}, K(x)\right) \in e$.

Obviously, if $e_{1} \neq e_{2}$, then $X\left(e_{1}, p\right) \cap X\left(e_{2}, p\right)=\varnothing$.
We observe that type $(\{a\} U X(e, p))=2$ and $\{a\}=$ $(\{a\} \cup X(e, p))^{(l)}$.

We say that the element $e \in \operatorname{ETP}\left(\alpha, m_{0}-1, p\right)$ is compact (resp. non-compact) if the space $\{a\} U X(e, p)$ is locally compact (resp. is not locally compact) at the point a.

A sequence $U_{1}^{p}, U_{2}^{p}, \cdots$ of elements of $B(K(X))$ is called a normal sequence of p if: l) $a \in U_{i+1}^{p} \subseteq U_{i}^{p}, i=1,2, \ldots$, 2) $\left.U_{1}^{p} \cap X^{\left(\beta_{0}-1\right)}=\{a\}, 3\right) U_{1}^{p} \cap x_{1}^{\left(\beta_{0}-2\right)} \subseteq U_{\operatorname{e\in ETP}\left(\alpha, m_{0}-1, p\right)} x(e, p)$, 4) $\lim _{i \rightarrow \infty} \operatorname{diam}\left(U_{i}^{p}\right)=0$, 5) the set $\{a\} U\left(U_{1}^{p} \cap X(e, p)\right)$ is a compact set if e is a compact element and 6) for every $i=1,2, \ldots$ the set $\left(U_{i}^{p} U_{i+1}^{p}\right) \cap x(e, p)$ is infinite if e is a non-compact element.

Since ETP $\left(\alpha, m_{0}-1\right)$ is finite, the existence of a normal sequence is easily proved.

Let $U_{1}^{p}, U_{2}^{p}, \cdots$ be a normal sequence.
Let $U_{1}^{p} \cap x_{1}^{\left(\beta_{0}-2\right)}=\left\{x_{1}, x_{2}, \cdots\right\}$. If $\alpha>0$ then for
every i we consider a point c_{i} of U_{1}^{p} such that:

1) $c_{i} \in\left(U_{1}^{p}\right)^{\left(\alpha_{i}\right)} \cup\left(U_{1}^{p}\right)^{\left(\alpha_{i}+1\right)}$ where $\left.\alpha_{i}<\alpha, 2\right) \lim _{i \rightarrow \infty} \alpha_{i}=\alpha$
and 3) $\lim _{i \rightarrow \infty} d\left(c_{i}, x_{i}\right)=0$ where $d\left(c_{i}, x_{i}\right)$ is the distance between c_{i} and x_{i}.

For every point $x \in U_{1}^{p} \cap x_{1}^{\left(\beta_{0}-2\right)}=\left\{x_{1}, x_{2}, \cdots\right\}$ we consider an element $U_{1}(x) \in B(K(X))$ such that: l) $x \in U_{1}(x)$ $\left.\subseteq \mathrm{U}_{1}^{\mathrm{P}}, ~ 2\right)$ if $\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}$ then $\mathrm{U}_{1}\left(\mathrm{x}_{\mathrm{i}}\right) \cap \mathrm{U}_{1}\left(\mathrm{x}_{\mathrm{j}}\right)=\varnothing$, 3) if $x \in U_{i}^{p} \backslash U_{i+1}^{p}$ then $U_{1}(x) \subseteq U_{i}^{p}, U_{i+1}^{p}$, 4) if $\alpha>0$ then $c_{i} \notin U_{1}(x)$ for every $i=1,2, \ldots$ and 5) $\lim _{i \rightarrow \infty} \operatorname{diam}\left(U_{1}\left(x_{i}\right)\right)=0$.

Since the set $U_{1}^{p} \cap X_{1}^{\left(\beta_{0}-2\right)}$ is countable and consists of isolated points (in the relative topology) the existence of such elements of $B(K(X))$ is easily established.

We observe that if $x \in X(e, p)$ then by property 3) of the lemma $\left(x, U_{1}(x) \cap x, U_{1}(x)\right) \in e$. Hence, there exist a neighbourhood $U(x) \in B\left(U_{1}(x)\right) \subseteq B(K(X))$ of x and a homeomorphism $h(x)$ of $U(e)$ onto $U(x) \cap X$ such that $h(x)(a(e))=x$.

$$
\text { Set } \tilde{U}=\{a\} \cup U{ }_{x \in U_{1}^{P} \cap X_{1}}\left(\beta_{0}-2\right)^{U(x)} \text { and } \hat{U}=\{a\} \cup\left(U_{1}^{P} \sim \tilde{U}\right)
$$

Obviously, $\hat{\mathrm{U}}=\mathrm{cl}(\hat{\mathrm{U}})$.
We prove that $(\hat{U} \cap X, \hat{U}) \in P\left(\alpha, i_{0}\right)$ where $i_{0} \leq m_{0}-1$.
Indeed, if $\alpha>0$ then by the choice of the points c_{i}, $i=1,2, \cdots$ it follows that type $(\hat{U}) \geq \alpha$. On the other hand, since $\hat{U} \cap X_{1}^{\left(\beta_{0}-2\right)}=\varnothing$ it follows that type $(\hat{U} \cap X) \leq$ $\alpha+m_{0}-1$.

Let $y \in \operatorname{Cl}(\tilde{U}) \quad n \hat{U}$. By the construction of the points $c_{i}, i=1,2, \ldots$ and the sets (Ux) where $x \in U_{1}^{p} \cap x_{1}^{\left(\beta_{0}-2\right)}$ it follows that $y \in \operatorname{cl}\left(\left\{c_{1}, c_{2}, \cdots\right\}\right)$. This means that $y \in(\hat{U})^{(\alpha)}$. In particular, $a \in(\hat{U})(\alpha)$.

Hence, if $z \in \hat{U}(\hat{U}){ }^{(\alpha)}$ then $z \& \operatorname{cl}(\tilde{U})$. This means that $z \in \hat{U} \cap x$. Thus, $\hat{U} \backslash(\hat{U})^{(\alpha)} \subseteq \hat{U} \cap x$.

There exists an integer i_{0} such that type $(\hat{U} \cap X)=$ $\alpha+i_{0}$. Hence, $(\hat{U} \cap X, \hat{U}) \in P\left(\alpha, i_{0}\right)$ where $i_{0} \leq m_{0}-1$.

There exists an integer $i_{1} \leq i_{0}$ and a neighbourhood $\hat{U}_{1}(a) \in B(\hat{U})$ of a such that type $\left(\hat{U}_{1}(a) n X\right)=\alpha+i_{1}$ and $a \in\left(\hat{U}_{1}(a) \cap X\right)^{\left(\alpha+i_{1}-1\right)}$. Hence, $\left(a, \hat{U}_{1}(a) \cap X, \hat{U}_{1}(a)\right) \epsilon$ $T P\left(\alpha, i_{1}\right)$.

By $e(p)$ we denote the element of $\operatorname{ETP}\left(\alpha, i_{1}\right)$ which contains the 3-tuple $\left(a, \hat{U}_{1}(a) \cap X, \hat{U}_{1}(a)\right)$.

By induction it follows that the element $e(p)$ is not dependent on the choice of the neighbourhood $\hat{U}_{1}(a)$ of a in \hat{U}.

There exists a neighbourhood $\hat{U}(a) \in B\left(\hat{U}_{1}(a)\right)$ of a and a homeomorphism $h(p)$ of $U(e(p))$ onto $\hat{U}(a) \cap X$ such that $h(p)(a(e(p)))=a$.

The set $\hat{U}(a) \cap c l(\tilde{U})$ is an open and closed subset of cl($\tilde{U}) \cap \hat{U}$. There exists an open subset $\tilde{U}_{1}(a)$ of $c l(\tilde{U})$ such that $\tilde{U}_{1}(a) \cap \hat{U}=\hat{U}(a) \cap \operatorname{cl}(\tilde{U})$.

By $\tilde{U}(a)$ we denote the union of all elements $U(x)$, $x \in U_{1}^{p} \cap X_{1}^{\left(\beta_{0}-2\right)}$ such that $U(x) \cap \tilde{U}_{1}(a) \neq \varnothing$. By the properties of the sets $U(x)$ we have $c l(\tilde{U}(a)) \backslash \tilde{U}(a)=$ $\operatorname{cl}(\tilde{U}(a)) \cap \hat{U}=\tilde{U}_{1}(a) \cap \hat{U}=\hat{U}(a) \cap \operatorname{cl}(\tilde{U})$. From this follows that the set $U(a)=\tilde{U}(a) U \hat{U}(a)$ is an open and closed subset of $K(X)$. Obviously, a $\in U(a)$.

We observe that the element $e(p)$ is dependent on the choice of the normal sequence $U_{1}^{p}, U_{2}^{p}, \cdots$, the points c_{i}, i $=1,2, \ldots$ and on the choice of the standard neighbourhoods $U(x), x \in U_{1}^{p} \cap X_{1}^{\left(\beta_{0}-2\right)}$.

In the set $\mathrm{U}_{\mathrm{i}=1}^{\mathrm{m}_{0}-1} \operatorname{ETP}(\alpha, i)$ we define an order as follows: we set $e_{j_{1}}^{m_{1}}<e_{j_{2}}^{m_{2}}$ iff, either $m_{1}<m_{2}$, or $m_{1}=m_{2}$ and $j_{1}<j_{2}$.

Choosing the suitable normal sequence $\mathrm{U}_{1}^{\mathrm{P}}, \mathrm{U}_{2}^{\mathrm{P}}, \cdots$, the points c_{i} and the neighbourhoods $U(x)$, we may consider that the element $e(p)$ is the least possible.

Now we define the set $\operatorname{ETP}\left(\alpha, m_{0}\right)$. Let $p, q \in \operatorname{TP}\left(\alpha, m_{0}\right)$. We say that the elements p and q of $T P\left(\alpha, m_{0}\right)$ belong to an element of $\operatorname{ETP}\left(\alpha, m_{0}\right)$ iff: 1) $\operatorname{ETP}\left(\alpha, m_{0}-1, p\right)=\operatorname{ETP}\left(\alpha, m_{0}-1, q\right)$, 2) an element e of $\operatorname{ETP}\left(\alpha, m_{0}-1, p\right)$ is compact iff this element is compact as an element of $\operatorname{ETP}\left(\alpha, m_{0}-1, q\right)$ and 3$) e(p)=e(q)$.

Obviously, properties l)-3) of the lemma are satisfied.
We prove property 4) of the lemma.
Let e be the element of $\operatorname{ETP}\left(\alpha_{0}, m_{0}\right)$ which contains $(\alpha, X, K(X))$. We prove that the neighbourhood $U(\alpha) \cap X$ of a is a standard neighbourhood for the element e.

Indeed, let $q=(b, Y, K(Y))$ be an element of e. For the 3 -tuple q we consider all sets which were constructed for the 3 -tuple p. For these sets we use the same notations replacing only letters p, a, x, X and U by letters q, b, y, y and V , respectively.

We prove that there is a homeomorphism h of $U(a) \cap X$ onto $V(b) \cap Y$ such that $h(a)=b$.

Let $\hat{h}=h(q) \circ h^{-1}(p)$. Then \hat{h} is a homeomorphism of $\hat{U}(a) \cap X$ onto $\hat{V}(b) \cap Y$ such that $\hat{h}(a)=b$.

On the other hand, there exists an integer k such that $\mathrm{U}_{\mathrm{k}}^{\mathrm{P}} \subseteq \mathrm{U}(\mathrm{a})$ and $\mathrm{V}_{\mathrm{k}}^{\mathrm{q}} \subseteq \mathrm{V}(\mathrm{a})$.

Between the sets $U(a) \cap X_{1}^{\left(\beta_{0}-2\right)}$ and $V(b) \cap Y_{1}^{\left(\beta_{0}-2\right)}$ there exists a one-to-one correspondence such that: l) if $x \in X(e, p)$ and x corresponds to y then $y \in Y(e, q)$ and 2) if e is a noncompact element of $\operatorname{ETP}\left(\alpha, m_{0}-1, p\right)$
and $x \in\left(U_{i}^{p}, U_{i+1}^{p}\right) \cap x(e, p), i \geq k+1$, or $x \in\left(U(a) \backslash U_{k+1}^{p}\right) \cap$ $X(e, p)$ then $y \in\left(V_{i}^{q} V_{i+1}^{q}\right) \cap Y(e, q)$ or $y \in\left(V(b) \backslash V_{k+1}^{q}\right) \cap Y(e, q)$, respectively.

Let x correspond to y. Then $\left(x, U_{1}(x) \cap X, U_{1}(x)\right)$ and ($\mathrm{y}, \mathrm{V}_{1}(\mathrm{y}) \cap \mathrm{Y}, \mathrm{V}_{1}(\mathrm{y})$) belong to the same element e of $\operatorname{ETP}\left(\alpha, m_{0}-1\right)$. Hence, the map $h(y) h^{-1}(x)$ is a homeomorphism of $U(x) \cap X$ onto $V(y) \cap Y$ such that $\left(h(y) h^{-l}(x)\right)(x)=y$.

Now, we construct the map h. First, we observe that $U(a) \cap X=(\tilde{U}(a) \cap X) U(\hat{U}(a) \backslash(\hat{U}(a) \cap c l(\tilde{U}))) \cap X)$. This is true because each point $z \in(\hat{U}(a) \cap \operatorname{cl}(\tilde{U})) \cap X$ is a limit point for the set $x_{1}^{\left(\beta_{0}-2\right)}$, that is, z belongs to the set $x^{\left(\beta_{0}-1\right)}$ which is impossible by the choice of the set U_{1}^{p}. Also, we have $V(b) \cap Y=(\tilde{V}(b) \cap Y) U(\hat{V}(b) \backslash(\hat{V}(a) \cap$ $\mathrm{cl}(\tilde{\mathrm{V}}))$) $\cap \mathrm{Y})$.

Let $z \in U(a) \cap x$. If $z \in \tilde{U}(a)$ then there is $x \in X_{l}^{\left(\beta_{0}-2\right)}$ such that $z \in U(x)$. In this case we set $h(z)=$ $\left(h(y) h^{-1}(x)\right)(z)$. If $z=a$ then we set $h(a)=b$.

If $z \in \hat{U}(a) \cap X$ then we set $h(z)=\hat{h}(z)$. By the above properties of the sets $U(a) \cap X$ and $V(b) \cap Y$ it follows that h is a homeomorphism of $U(a) \cap X$ onto $V(b) \cap Y$.

Thus, $U(a) N X$ is a standard neighbourhood of a for the element e .

The proof of the lemma is completed.

Remark. Let $G(\alpha, m), m \geq 0$, be the set of all spaces X for which there exists a compact space K such that (X, K) ϵ $P(\alpha, m)$. By $P G(\alpha, m), m \geq 1$, we denote the set of all pairs (a, X) where $X \in G(\alpha, m)$ and $a \in X^{(\alpha+m-1)}$.

We say that the elements (a, X) and (b, Y) of $P G(\alpha, m)$ are equivalent (write (a, X) $\sim(b, Y)$) iff there exist open and closed neighbourhoods U and V of a and b in X and Y, respectively, and a homeomorphism h of U onto V such that $h(a)=b$. Obviously, the relation " \sim " is an equivalence relation.

By EPG(α, m) we denote the set of all equivalence classes.

Obviously, if (a,X) $\in P G(\alpha, m)$ then for some compact space $K,(a, X, K) \in T P(\alpha, m)$ and, conversely, if $(a, X, K) \in$ $T P(\alpha, m)$ then $(a, x) \in P G(\alpha, m)$.

By property 4) of Lemma 1 it follows that if ($\mathrm{a}, \mathrm{X}, \mathrm{K}(\mathrm{X})$) and ($\mathrm{b}, \mathrm{Y}, \mathrm{K}(\mathrm{Y})$) belong to an element of $\operatorname{ETP}(\alpha, \mathrm{m})$ then $(a, X) \sim(b, Y)$.

Hence, the set EPG (α, m) is finite. Moreover, every element of EPG(α, m) is a finite union of elements of $\operatorname{ETP}(\alpha, m)$. We observe that the set ETP (α, m) is not defined uniquely.

Let e be a subset of $P G(\alpha, m)$ and $(a, x) \in e$. An open and closed neighbourhood U of a in X is called standard for e iff for every (b,Y) ϵ e there are an open and closed neighbourhood V of b in Y and a homeomorphism h of u onto V such that $\mathrm{h}(\mathrm{a})=\mathrm{b}$.

Since every element EPG (α, m) is a finite union of elements of $\operatorname{ETP}(\alpha, m)$, by property 4) of Lemma lit follows that for every element e of $\operatorname{EPG}(\alpha, m)$ and for every $(a, x) \in e$, the point a has a standard neighbourhood in X .
3. Lemma 2. The set $\mathrm{G}(\alpha, \mathrm{m})$ is countable.

Proof. We prove the lemma by induction on m.
Let $\mathrm{m}=0$. If $\alpha=0$ then $\mathrm{G}(0,0)=\{\emptyset\}$. If $\alpha>0$
then every element of $G(\alpha, 0)$ is a locally compact space having type α. Since every two locally compact spaces having type α are homeomorphic, the set $G(\alpha, 0)$ is a singleton.

Suppose that the lemma is true for $m<m_{0}, m_{0} \geq 1$. We prove that the set $G\left(\alpha, m_{0}\right)$ is countable.

Let $X \in G\left(\alpha, m_{0}\right)$. By $K(X)$ we denote a compact space such that $(X, K(X)) \in P\left(\alpha, m_{0}\right)$.

Suppose that $X^{\left(\alpha+m_{0}-1\right)}=\left\{x_{1}, x_{2}, \cdots\right\}$ is an infinite set. Then, for every $i=1,2, \cdots$ there exists a point $c_{i} \in X$ such that: 1$) c_{i} \in X^{\left(\alpha_{i}\right)} \backslash X^{\left(\alpha_{i}+1\right)}$, where $\alpha_{i}<\alpha$, 2) $\lim _{i \rightarrow \infty} \alpha_{i}=\alpha$ and 3) $\lim _{i \rightarrow \infty} d\left(c_{i}, x_{i}\right)=0$, where $d\left(c_{i}, x_{i}\right)$ is the distance between c_{i} and x_{i}.

If the set $X^{\left(\alpha+m_{0}-1\right)}$ is finite and $X \neq K(X)$ then by c_{i},

```
i = l,2,\cdots we denote a point of X such that:
                                    1) }\mp@subsup{c}{i}{}\in\mp@subsup{X}{}{(\mp@subsup{\alpha}{i}{}) \(x^{\left(\alpha_{i}+l\right)}\)
, where \(\left.\alpha_{i}<\alpha, 2\right) \lim _{i \rightarrow \infty} \alpha_{i}=\alpha\) and 3) there is a
``` point \(c \in K(X) \backslash X\) such that \(\lim _{i \rightarrow \infty} c_{i}=c\).

For every \(x \in x^{\left(\alpha+m_{0}-1\right)}\) we consider a neighbourhood

every \(j=1,2, \ldots\) and \(x \in x^{\left(\alpha+m_{0}-1\right)}\).
For every element \(e \in \operatorname{ETP}\left(\alpha, m_{0}\right)\) (see Lemma l) by \(X(e)\)
we denote the set of all points \(x \in x^{\left(\alpha+m_{0}-1\right)}\) for which \((x, X, K(X)) \in\) e. Obviously, \(X^{\left(\alpha+m_{0}-1\right)}=U_{e \in \operatorname{ETP}\left(\alpha, m_{0}\right)} X(e)\).

If \(x \in X(e)\) then \(\left(x, U_{1}(x) \cap X, U_{1}(x)\right) \in\) e. Hence, there are a neighbourhood \(U(x) \in B(K(X))\) of \(x\) and a homeomorphism \(h(x)\) of \(U(e)\) (see Lemma l) onto \(U(x) \cap X\) such that \(U(x) \subseteq U_{1}(x)\) and \(h(x)(a(e))=x\).

Set \(X^{\prime}=K(X) \backslash\left(U \underset{x \in X}{ }\left(\alpha+m_{0}-1\right)(X)\right)\). Obviously, \(X^{\prime}\) is a compact space and if \(X=K(X)\) then type \(\left(X^{\prime} \cap X\right) \leq \alpha+m_{0}-1\).

If \(X \neq K(X)\), in particular if \(X^{\left(\alpha+m_{0}-1\right)}\) is an infinite set, then by the choice of the points \(c_{i}\), we have type (\(X^{\prime} \cap\) \(\mathrm{X}) \geq \alpha\). In this case, if \(\mathrm{x}^{\left(\alpha+m_{0}-1\right)}\) is finite then it is clear that \(X^{\prime} \cup\left(X^{\prime}\right)^{(\alpha)} \subseteq X^{\prime} \cap X\). This means that \(X \cap X^{\prime} \in\) \(G(\alpha, i), i \leq m_{0}-1\), because type \(\left(X \cap X^{\prime}\right) \leq \alpha+m_{0}-1\). \(\left(\alpha+m_{0}-1\right)\)
Let \(X\) be infinite. Set \(X^{\prime \prime}=U_{x \in X^{\prime}}\left(\alpha+m_{0}-1\right) U(x)\). Obviously, if \(z \in\left(X^{\prime} \backslash\left(X^{\prime}\right)^{(\alpha)}\right) \backslash c l\left(X^{\prime}\right)\) then \(z \in X^{\prime} \cap X\).

If \(z \in X^{\prime} \cap \operatorname{cl}\left(X^{\prime \prime}\right)\) then by the choice of the sets \(U_{1}(x), x \in X^{\left(\alpha+m_{0}-1\right)}\) it follows that \(z \in \operatorname{cl}\left(X^{\left(\alpha+m_{0}-1\right)}\right)\) and, hence, \(z \in \operatorname{cl}\left(\left\{c_{1}, c_{2}, \cdots\right\}\right)\). This means that \(z \in\left(X^{\prime}\right)^{(\alpha)}\).

Hence, \(X^{\prime} \backslash\left(X^{\prime}\right)^{(\alpha)} \subseteq X^{\prime} \cap X\) and since type \(\left(X^{\prime} \cap X\right) \geq \alpha\)
we have \(X^{\prime} \cap X \in G(\alpha, i)\), \(i \leq m_{0}-1\).
Let \(Y\) be an element of \(G\left(\alpha, m_{0}\right)\). For the space \(Y\) we construct the sets \(Y(e)\), e \(\in \operatorname{ETP}\left(\alpha, m_{0}\right)\), the neighbourhoods \(\mathrm{U}(\mathrm{y}), \mathrm{y} \in \mathrm{Y}^{\left(\alpha+\mathrm{m}_{0}-1\right)}\), the homeomorphisms \(\mathrm{h}(\mathrm{y}), y \in \mathrm{Y}^{\left(\alpha+\mathrm{m}_{0}-1\right)}\), and the space \(Y ' \cap Y\) as we constructed the corresponding
sets and homeomorphisms for the space \(X\).
Now, we prove that the spaces \(X\) and \(Y\) are homeomorphic
if: l) for every \(e \in \operatorname{ETP}\left(\alpha, m_{0}\right),|X(e)|=|Y(e)|\) and 2) the spaces \(X^{\prime} \cap X\) and \(Y^{\prime} \cap Y\) are homeomorphic.

Indeed, let \(h\) ' be a homeomorphism of \(X^{\prime} \cap \mathrm{X}\) onto
Y' \(\cap\) Y. By the condition \(|X(e)|=|Y(e)|\) it follows that between the sets \(X^{\left(\alpha+m_{0}-1\right)}\) and \(Y^{\left(\alpha+m_{0}-1\right)}\) there is a one-toone correspondence such that if \(x \in X^{\left(\alpha+m_{0}-1\right)}\) corresponds to \(y \in Y^{\left(\alpha+m_{0}-1\right)}\) then \((x, X, K(X))\) and \((y, Y, K(Y))\) belong to the same element of the set ETP \(\left(\alpha, m_{0}-1\right)\).

A homeomorphism \(h\) of \(X\) onto \(Y\) is constructed as follows: 1) if \(z \in U(x) \cap x\) where \(x \in x^{\left(\alpha+m_{0}-1\right)}\) then we set \(h(z)=h(y)\left((h(x))^{-1}(z)\right)\) where \(y\) is the point of \(Y^{\left(\alpha+m_{0}-1\right)}\) which corresponds to \(x\) and 2) if \(z \in X^{\prime} \cap X\) then \(h(z)=\) \(h^{\prime}(z)\).

From the above it follows that since the set \(\operatorname{ETP}\left(\alpha, m_{0}\right)\) is finite, the sets \(G(\alpha, m), 0 \leq m<m_{0}\), are countable and the set of all compact spaces having type less than \(\alpha\) is countable, the set \(G\left(\alpha, m_{0}\right)\) is countable. The proof of the lemma is completed.

Remark. From Lemma 2 it follows that the set of all spaces having a finite type is countable. On the other hand it is easy to prove that the set of all spaces whose type is a given infinite ordinal number has power greater than or equal to the continuum.
4. Lemma 3. Let X be a space having type \(\alpha+\mathrm{m}\) where \(\alpha\) is a limit ordinal number and \(m\) is a non-negative integer.

If Y is a metric compactification of X and \(\operatorname{dim} \mathrm{Y} \leq 0\) then there exists a compactification K of X such that: 1) natural projection \(\pi\) of \(Y\) onto \(K\) exists, 2) type \((\mathrm{K}) \leq \alpha+2 \mathrm{~m}+\) \(\min \{\alpha, 1\}\), 3) type \(\left.\left(\mathrm{X} \cup\left(K \backslash{ }^{(\alpha)}\right)\right)=\alpha+\mathrm{m}, 4\right)\) if \(\mathrm{K}=\) \(\left\{z_{1}, z_{2}, \cdots\right\}\) then \(\lim _{i \rightarrow \infty} \operatorname{diam}\left(\pi^{-1}\left(z_{i}\right)\right)=0\) and 5) for a given \(\varepsilon>0, \operatorname{diam}\left(\pi^{-1}(z)\right)<\varepsilon\) for every \(z \in K\).

The proof of this lemna is similar to the proof of Theorem 3 of [I-T]. This lemma is used in the proof of Lemma 4.
5. Lemma 4. Let \(X\) be a metric space of rim-type \(\leq \alpha+n\) where \(\alpha\) is a limit ordinal number and n is a non-negative integer. Then, there exist an extension Z of X and a basis \(B(Z)=\left\{T_{1}, T_{2}, \cdots\right\}\) of open sets of \(Z\) such that: l) the set \(\operatorname{Bd}\left(T_{i}\right), i=1,2, \cdots\) is a compact set, 2) type \(\left(\operatorname{Bd}\left(T_{i}\right)\right) \leq\) \(\alpha+2 n+\min \{\alpha, 1\}, i=1,2, \cdots, 3) T_{i}=\operatorname{Int}\left(c l\left(T_{i}\right)\right)\), \(i=1,2, \cdots, 4) \operatorname{Bd}\left(T_{i}\right) \cap \operatorname{Bd}\left(T_{j}\right)=\varnothing i f i \neq j\), and 5) type \(\left(\left(\operatorname{Bd}\left(T_{i}\right) \cap X\right) \cup\left(B d\left(T_{i}\right) \backslash\left(B d\left(T_{i}\right)\right)^{(\alpha)}\right)\right) \leq \alpha+n\).

The proof of this lemma is similar to the proof of Theorem 8 of [I-T].

The extension \(Z\) is constructed in the same way as the space \(Z\) is constructed in the proof of Theorem 8 of [I-T]. Instead of Theorem 3 of [I-T] which is used in the proof of Theorem 8 of [I-T] we use here Lemma 3.

The basis \(B(Z)=\left\{T_{1}, T_{2}, \cdots\right\}\) of the theorem is a subbasis of \(\left\{Q_{1}, Q_{2}, \cdots\right\}\) (see Theorem 8 of \([I-T]\)) such that \(\operatorname{Bd}\left(T_{i} \cap \operatorname{Bd}\left(T_{j}\right)=\varnothing\right.\) if i \(\neq j\).

We observe that in the present paper X is a subset of its compactification or extension, while in [I-T] a compactification of \(X\) is a pair (\(\mathrm{K}, \mathrm{h}\)), where K is a compact space and \(h\) is a homeomorphism of \(x\) into a dense subset of K. Therefore, in Lemma 3 we consider the compactification \(K\) of \(X\) as the quotient space of the partition \(\left\{\pi^{-1}(z)\right.\), \(z \in \mathbb{K}\}\) of \(Y\) and we identify \(x\) of \(X\) with the point \(\{x\}\) of the above partition. Also, in Lemma 4 we identify a point \(x\) of \(X\) with the point \(f(x)\) of \([0,1]^{N}\) (see Theorem 8 of [I-T]).
II. 1. By \(L_{n}, n=1,2, \cdots\), we denote the set of all ordered n-tuples \(i_{1} \cdots i_{n}\), where \(i_{k}=0\) or \(1, k=1, \cdots, n\). Set \(L_{0}=\{\emptyset\}\) and \(L=U_{n=0}^{\infty} L_{n}\). For \(n=0\), by \(i_{1} \cdots i_{n}\) we denote the element \(\varnothing\) of \(L\). We say that the element \(i_{1} \cdots i_{n}\) of \(L\) is a part of the element \(j_{1} \cdots j_{m}\) if, either \(n=0\), or \(1 \leq n \leq m\) and \(i_{k}=j_{k}\) for every \(k \leq n\). The elements of L are denoted also by \(\bar{i}_{1} \bar{j}, \bar{i}_{1}\) etc. If \(\bar{i}=i_{1} \cdots i_{n}\) then by io (resp. il) we denote the element \(i_{1} \cdots i_{n} 0\) (resp. \(\left.i_{1} \cdots i_{n} l\right)\) of L .

By \(\Lambda_{n}, n=1,2, \cdots\), we denote the set of all ordered n-tuples \(i_{1} \cdots i_{n}\), where \(i_{k}, k=1, \cdots, n\) is a positive integer. Set \(\Lambda=U_{n=1}^{\infty} \Lambda_{n}\). The elements of \(\Lambda\) are denoted by \(\bar{\alpha}, \bar{\beta}\) etc. Let \(\bar{\alpha} \in \Lambda_{n}, \bar{\beta} \in \Lambda_{m}, \bar{\alpha}=i_{1} \cdots i_{n}, \bar{\beta}=j_{1} \cdots j_{m}\), We write \(\bar{\beta} \geq \bar{\alpha}\) if \(1 \leq n \leq m\) and \(i_{k}=j_{k}\) for every \(k \leq n\). Obviously, if \(\bar{\alpha}, \bar{\beta} \in \Lambda_{\mathrm{n}}\) and \(\bar{\beta} \geq \bar{\alpha}\) then \(\bar{\beta}=\bar{\alpha}\). Also, for every \(\bar{\alpha} \in \Lambda_{n}\) the set of all elements \(\bar{\beta} \in \Lambda_{n+1}\) such that \(\bar{\beta} \geq \bar{\alpha}\), is a countable non-finite set.

By \(C\) we denote the Cantor ternary set. \(B y C_{\bar{i}}\), where \(\bar{i}=i_{1} \cdots i_{n} \in L, n \geq 1\), we denote the set of all points of C for which the \(k\)-th digit in the ternary expansion, \(k=1, \ldots, n\), coincides with 0 if \(i_{k}=0\) and with 2 if \(i_{k}=1\). Also, set \(C_{\emptyset}=C\). For every subset \(s\) of \(L_{k}\), \(k=0,1, \cdots\), we set \(C_{s}=U_{\bar{i} \in s} C_{\bar{i}}\). For every point a of \(C\) and for every integer \(n \geq 0\) by \(\bar{i}(a, n)\) we denote the element \(\bar{i} \in L_{n}\) for which \(a \in C_{\bar{i}}\). Obviously, this element is uniquely determined. For every subset \(F\) of \(C\) and for every integer \(\mathrm{n}=0,1,2, \ldots\) by \(s t(\mathrm{~F}, \mathrm{n})\) (it is called the n -star of F in C) we denote the union of all sets \(C_{\bar{i}}\), where \(\bar{i} \in L_{n}\), such that \(C_{i} \cap F \neq \varnothing\). If \(F=\{a\}\) then we set \(\operatorname{st}(F, n)=\operatorname{st}(a, n)\).

Let \(D\) be a partition of a subset \(S\) of \(C, \bar{i}\) an element of \(L_{k}\) and \(t\) an arbitrary subset of \(L_{n}\), where \(k, n=\) \(0,1,2, \cdots . \operatorname{Set} D(1)=\{d \in D: d\) is not singleton \(\}\), \(D_{\bar{i}}=\left\{d \in D: d \cap C_{\bar{i} 0} \neq \varnothing, d \cap C_{\bar{i} 1} \neq \varnothing, d \subseteq C_{\bar{i} 0} \cup C_{\bar{i} 1}\right\}\), \(D_{k}=U_{\bar{i} \in L_{k}} D_{\bar{i}}\) and \(D(k, t)=\left\{d \in D_{k}: d \cap C_{\bar{j}} \neq \varnothing, \bar{j} \in t\right.\) and \(d \subseteq U_{\bar{j} \in t^{C}} \bar{j}^{-}\). Obviously, 1) \(D(1)=U_{k=0}^{\infty} D_{k}, D_{\bar{i}} \cap D_{\bar{j}}=\varnothing\) if \(\bar{i}, \bar{j} \in L_{k}\) and \(\left.\bar{i} \neq \bar{j}, 3\right) D_{k_{1}} \cap D_{k_{2}}=\varnothing\) if \(k_{1} \neq k_{2}\) and 4) \(D\left(k, t_{1}\right) \cap D\left(k, t_{2}\right)=\emptyset\) if \(t_{1} \subseteq L_{n}, t_{2} \subseteq L_{n}\) and \(t_{1} \neq t_{2}\). We say that the degree of an element \(d\) of \(D\) is \(k\) and we write \(\operatorname{deg}(d)=k\) iff \(d \in D_{k}\).

For every integer \(k \geq 0\) by \(D_{k}^{*}\) we denote the subset of \(S\) which is the union of all elements of \(D_{k}\).
2. By \(M(\alpha)\), where \(\alpha\) is an ordinal number we denote a countable family of spaces for which the \(\alpha\)-derivative is empty. We suppose that two different elements of \(M(\alpha)\) are not homeomorphic.

A partition \(D\) of a subset \(S\) of \(C\) is called \(M(\alpha)\)-partition iff l) D is an upper semi-continuous partition, 2) every element of \(D\) is a singleton or consists of two points and 3) for every pair of integers \(k\) and \(n, k, n=0,1,2, \ldots\), and for every subset \(t\) of \(L_{n}\) there exists an element \(M(D, k, t) \in\) \(M(\alpha)\) which is homeomorphic to the subset \(D(k, t)\) of the quotient space D.

By \(h(D, k, t)\) we denote a homeomorphism of \(M(D, k, t)\) onto \(D(k, t)\). In the future we suppose that for a given \(M(\alpha)-\) partition the homeomorphisms \(h(D, k, t)\) are fixed.

By A we denote a family of pairs (S,D), where \(S\) is a non-empty subset of \(C\) and \(D\) is a \(M(\alpha)\)-partition of \(S\) (it is supposed that \(\varnothing \not \subset D)\). We suppose that the power of \(A\) is less than or equal to the continuum.

By \(S(A)\) we denote the set of all subsets \(S\) of \(C\) such that there exists a pair \((S, D) \in A\). If \(\left(S_{1}, D_{1}\right)\) and \(\left(S_{2}, D_{2}\right)\) are different elements of \(A\) then we consider \(S_{1}\) and \(S_{2}\) as different elements of \(S(A)\) (though \(S_{1} \equiv S_{2}\)).

If \(S \in S(A)\) then by \(D(S)\) we denote the corresponding \(M(\alpha)\)-partition of \(S\) such that \((S, D(S)) \in A\).

Since the power of \(A\) is less than or equal to the continuum, for every element \(\bar{i} \in L\) there exists a subset \(S(\bar{i})\) of \(S(A)\) such that: 1\() S(\varnothing)=S(A), 2) S(\bar{i}) \cap S(\bar{j})=\varnothing\) if \(\left.\bar{i}, \bar{j} \in L_{k}, \bar{i} \neq \bar{j}, 3\right) S(\bar{i})=S(\bar{i} 0) \cup S(\bar{i} 1)\) and 4) for every \(S_{1}, S_{2} \in S(A), S_{1} \neq S_{2}\) there exists an integer \(k \geq 0\) and elements \(\bar{i}, \bar{j} \in L_{k}, \bar{i} \neq \bar{j}\) such that \(S_{l} \in S(\bar{i})\) and \(S_{2} \in S(\bar{j})\).

Let \(\left(S_{1}, D_{1}\right),\left(S_{2}, D_{2}\right) \in A\). We say that the elements \(S_{1}\) and \(S_{2}\) of \(S(A)\) are \((k, n)\)-equivalent, where \(k, n=0,1, \cdots\),
if 1) there exists an element \(\bar{i} \in L_{k}\) such that \(S_{1}, S_{2} \in S(\bar{i})\) and 2) for every subset \(t\) of \(L_{n}\) we have \(M\left(D_{1}, k, t\right)=M\left(D_{2}, k, t\right)\). By \(S(k, n)\) we denote the set of all classes of the \((k, n)\)-equivalence. It is easy to see that the set \(S(k, n)\) is countable.

Let \(Q\) be a subset of an element of \(S(k, n)\). If \(t\) is a subset of \(I_{n}\) and \(S \in Q\) then the element \(M(D(S), k, t)\) of \(M(\alpha)\) is independent of \(S\). This element is denoted by \(M(Q, k, t)\).

Consider the set \(C \times S(A)\). For every subset \(Q\) of \(S(A)\) we set \(J(Q)=\{(a, S) \in C \times S(A): a \in S, S \in Q\}\). The set \(J(S(A))\) is also denoted by \(J(A)\).

A subset \(y\) of \(J(Q)\) is called a D-set of \(J(Q)\) with respect to (\(\mathrm{k}, \mathrm{n}\))-equivalence iff there exist a subset \(t(y)\) of \(L_{n}\) and an element \(z(y)\) of \(M(Q, k, t(y))\) such that
\[
y=u_{S \in Q}(h(D(S), k, t(y))(z(y)) \times\{S\})
\]

For every \(S \in Q\) we denote by \(y(S)\) the element \(h(D(S), k\), \(t(y))(z(y))\) of \(D(S)\). Obviously, \(y(S) \times\{S\}=y \cap(C \times\{S\})\) and \(y(S) \in D_{k}(S) \equiv(D(S))_{k}\). Also, for every \(S \in Q\) and for every \(d \in D_{k}(S)\) there exists a uniquely determined D-set \(y\) of \(J(Q)\) with respect to \((k, n)\)-equivalence such that \(\mathrm{d}=\mathrm{y}(\mathrm{S})\).

The ordinal number type \(\left(\mathrm{y}(\mathrm{S}), \mathrm{D}_{\mathrm{k}}(\mathrm{S})\right.\)) is independent of \(S\). This ordinal number is called the type of \(y\) with respect to \(Q\) (denoted by type(y)). The number k is called the degree of the D-set \(y\) (denoted by \(\operatorname{deg}(\mathrm{y})\)).

It is easy to see that if \(y_{l}\) is a D-set of \(J\left(Q_{1}\right)\) with respect to (\(k_{1}, n_{1}\))-equivalence, \(Y_{2}\) is a \(D\)-set of \(J\left(Q_{2}\right)\) with
respect to \(\left(\mathrm{k}_{2}, \mathrm{n}_{2}\right)\)-equivalence, \(\mathrm{S} \in \mathrm{Q}_{1} \cap \mathrm{Q}_{2}\) and \(\mathrm{y}_{1}(\mathrm{~S}) \neq\) \(y_{2}(S)\) then \(y_{1} \cap y_{2}=\varnothing\).
3. As it is mentioned in the introduction, in part II of this paper we construct a space denoted by \(T(A)\) which will be used in part III as a universal element. The points of the space \(T(A)\) are the elements of some partition of the set \(J(A)\). The elements of this partition which are not singletons, are countable. These elements (denoted by \(d(\bar{\alpha}, m)\)) and some subsets of \(J(A)\) (denoted by \(U(\bar{\gamma}, m, k-1)\)) are constructed by induction in the next "long" lemma. The subsets \(U(\bar{\gamma}, m, k-1)\) define some neighbourhoods of the points \(d(\bar{\alpha}, m)\) in the space \(T(A)\). The topology of the space \(T(A)\) is not quotient because in the set \(J(A)\) there is no topology. Moreover, the topology of \(T(A)\) is not quotient with respect to the "natural" topology which may be defined in the set \(J(A)\).

Lemma 5. For every integer \(k=0,1,2, \cdots\) and for every element \(\bar{\alpha}\) of \(\Lambda_{k+1}\) there exist:
i) an integer \(\mathrm{n}(\bar{\alpha}) \geq \mathrm{k}+1\),
ii) a set \(\mathrm{S}(\bar{\alpha})\) which is a subset of an element of the set \(\mathrm{S}(\mathrm{k}, \mathrm{n}(\bar{\alpha})\)) (it is possible that \(\mathrm{S}(\bar{\alpha})=\varnothing\)),
iii) an ordering \(y(\bar{\alpha}, 0), y(\bar{\alpha}, 1), y(\bar{\alpha}, 2), \cdots\) of the set of all \(\mathrm{D}-\) sets of \(\mathrm{J}(\mathrm{S}(\bar{\alpha}))\) with respect to (\(\mathrm{k}, \mathrm{n}(\bar{\alpha}))\)-equivalence (it is possible that for some integers \(m, y(\bar{\alpha}, m)=\varnothing\)),
iv) a finite sequence \(\mathrm{d}(\bar{\alpha}, 0), \mathrm{d}(\bar{\alpha}, 1), \cdots, \mathrm{d}(\bar{\alpha}, \mathrm{k})\) of subsets of \(J(S(\bar{\alpha}))\) (it is possible that for some integers \(m\), \(d(\bar{\alpha}, m)=\varnothing)\),
v) a subset \(U(\bar{\gamma}, \mathrm{~m}, \mathrm{k}-1)\) of \(\mathrm{J}(\mathrm{S}(\bar{\gamma}))\), for every \(\bar{\gamma} \in \Lambda_{\mathrm{q}}\),
\(1 \leq q \leq k\) and \(0 \leq m \leq q-1\) (it is possible that for some \(\bar{\gamma}\) and \(m, U(\bar{\gamma}, m, k-1)=\emptyset)\) and
vi) a subset \(s(\bar{\gamma}, m, \bar{\alpha})\) of \(I_{n(\bar{\alpha})}\) for every \(\bar{\gamma} \in \Lambda_{q^{\prime}}\) \(1 \leq q \leq k, 0 \leq m \leq q-1\) and \(\bar{\gamma} \leq \bar{\alpha}\) such that:
1) \(\mathrm{n}(\bar{\alpha}) \geq \mathrm{n}(\bar{\beta})\) if \(\bar{\alpha} \geq \bar{\beta}\)
2) \(S(A)=U_{\bar{\alpha}^{\prime} \Lambda_{1}} S(\bar{\alpha})\).
3) If \(\bar{\alpha}_{1}, \bar{\alpha}_{2} \in \Lambda_{k+1}, \bar{\alpha}_{1} \neq \bar{\alpha}_{2}\) then \(s\left(\bar{\alpha}_{1}\right) \cap\) \(s\left(\bar{\alpha}_{2}\right)=\varnothing\).
4) If \(\bar{B} \in \Lambda_{k}\) then \(S(\bar{\beta})=U_{\bar{\alpha} \in \Lambda_{\bar{\alpha}} \geq{ }^{\mathrm{\beta}}+1} \mathrm{~S}(\bar{\alpha})\).
5) If \(0 \leq m \leq k, \bar{\gamma} \in \Lambda_{\mathrm{k}+1-\mathrm{m}}\) and \(\bar{\gamma} \leq \bar{\alpha}\) then \(\mathrm{d}(\bar{\alpha}, \mathrm{m})=\mathrm{y}(\bar{\gamma}, \mathrm{m}) \cap \mathrm{J}(\mathrm{S}(\bar{\alpha}))\).
6) If \(\bar{\gamma} \in \Lambda_{q}, 1 \leq q \leq k\) and \(0 \leq m \leq q-1\) then \(d(\bar{\gamma}, m) \subseteq U(\bar{\gamma}, m, k-1)\).
7) If \(\bar{\gamma} \in \Lambda_{q}, 1 \leq q \leq k, 0 \leq m \leq q-1\) and \(d(\bar{y}, m)=\varnothing\) then \(U(\bar{\gamma}, m, k-1)=\varnothing\).
8) If \(\bar{\gamma} \in \Lambda_{q}, \bar{\gamma}_{1} \in \Lambda_{q}, 1 \leq q \leq k, l \leq q^{\prime} \leq k_{1}\), \(0 \leq m \leq q-1,0 \leq m_{1} \leq q^{\prime}-1, k_{1}<k\) and
\(d(\bar{\gamma}, m) \subseteq U\left(\bar{\gamma}_{1}, m_{1}, k_{1}-1\right)\) then \(U(\bar{\gamma}, m, k-1) \subseteq\) \(\mathrm{u}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}, \mathrm{k}_{1}-1\right)\).
9) \(I f \bar{\gamma}_{1} \in \Lambda_{q}, \bar{\gamma}_{2} \in \Lambda_{q^{\prime}}, l \leq q^{\prime} \leq k, 1 \leq q^{\prime \prime} \leq k\), \(0 \leq m_{1} \leq q^{\prime}-1,0 \leq m_{2} \leq q^{\prime \prime}-1\) and \(d\left(\bar{\gamma}_{1}, m_{1}\right) \neq\) \(\mathrm{d}\left(\bar{\gamma}_{2}, \mathrm{~m}_{2}\right)\) then \(\mathrm{U}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}, \mathrm{k}-1\right) \cap \mathrm{U}\left(\bar{\gamma}_{2}, \mathrm{~m}_{2}, \mathrm{k}-1\right)=\varnothing\).
10) If \(\bar{\gamma} \in \Lambda_{q}, 1 \leq q \leq k-1,0 \leq m \leq q-1\), \(S \in S(\bar{\gamma}), d \in D(S)\) and \((d \times\{S\}) n(\bar{\gamma}, m, k-1)\)
\(\neq \varnothing\) then \(\mathrm{d} \times\{\mathrm{S}\} \subseteq \mathrm{U}(\overline{\mathrm{Y}}, \mathrm{m}, \mathrm{k}-2)\).
11) If \(\bar{\gamma} \in \Lambda_{\mathrm{q}}, 1 \leq \mathrm{q} \leq \mathrm{k}, 0 \leq \mathrm{m} \leq \mathrm{q}-1, \bar{\gamma} \leq \bar{\alpha}\), \(s \in S(\bar{\alpha}), d \in D_{q-m-1}(s), d \times\{s\}=d(\bar{y}, m) \cap\)
\((C \times\{S\}), d^{\prime} \in D(S)(1), d^{\prime} \neq d\) and \(d^{\prime} \subseteq\)
st \((\mathrm{d}, \mathrm{n}(\bar{\alpha}))\) then, either \(\operatorname{deg}\left(\mathrm{d}{ }^{\prime}\right)>\mathrm{k}\) or
\(\operatorname{deg}\left(d^{\prime}\right)=q-m-1\) and type \(\left(d^{\prime}, D_{q-m-1}(S)\right)<\)
type (\(\mathrm{d}_{\mathrm{d}}^{\mathrm{q}-\mathrm{m}-1} \mathrm{(s)}\)).
12) \(I f \bar{\gamma} \in \Lambda_{q}, l \leq q \leq k, 0 \leq m \leq q-1, \bar{\gamma} \leq \bar{\alpha}\),
\(S \in S(\bar{\alpha}), d \in D(S)\) and \(d \times\{S\}=d(\bar{\gamma}, m) \cap\)
(\(C \times\{S\}\)) then \(\operatorname{st}(d, n(\bar{\alpha}))=C_{s}(\bar{\gamma}, m, \bar{\alpha}) \cdot\)
13) If \(\bar{\gamma} \in \Lambda_{q}, l \leq q \leq k\) and \(0 \leq m \leq q-1\) then
\(J(S(\bar{\alpha})))\).
14) If \(\bar{\gamma} \in \Lambda_{k+1-m}, 0<m \leq k, \bar{\gamma} \leq \bar{\alpha}, S_{l} \in S(\bar{\alpha})\),
\(S_{2} \in S(\bar{\alpha}), d_{1} \in D\left(S_{1}\right), d_{2} \in D\left(S_{2}\right), d_{1} \times\left\{S_{1}\right\}=\)
\(\mathrm{y}(\overline{\mathrm{y}}, \mathrm{m}) \cap\left(\mathrm{C} \times\left\{\mathrm{S}_{1}\right\}\right), \mathrm{d}_{2} \times\left\{\mathrm{S}_{2}\right\}=\mathrm{y}(\bar{\gamma}, \mathrm{m}) \quad \mathrm{n}\)
\(\left(C \times\left\{S_{2}\right\}\right)\) then \(\operatorname{st}\left(d_{1}, n(\bar{\alpha})\right)=\operatorname{st}\left(d_{2}, n(\bar{\alpha})\right)\).

Proof. We prove the lemma by induction on \(k\).
Let \(k=0\). Set \(n(\bar{\alpha})=1\) for every \(\bar{\alpha} \in \Lambda_{1}\). There exists a one-to-one correspondence between the set \(S(0,1)\) and a subset of \(\Lambda_{1}\). If \(Q \in S(0,1)\) corresponds to \(\bar{\alpha} \in \Lambda_{1}\), then we set \(S(\bar{\alpha})=Q\). If there is no element of \(S(0,1)\) which corresponds to \(\bar{\alpha} \in \Lambda_{1}\) then we set \(S(\bar{\alpha})=\varnothing\).

For every \(\bar{\alpha} \in \Lambda_{1}\), let \(y(\bar{\alpha}, 0), y(\bar{\alpha}, 1), \cdots\) be an ordering of the set of all D-sets of \(J(S(\bar{\alpha}))\) with respect to \((0,1)-\) equivalence. Set \(d(\bar{\alpha}, 0)=y(\bar{\alpha}, 0), \bar{\alpha} \in \Lambda_{1}\).

Obviously, properties 1), 2), 3), 5) and 14) are true for \(k=0\).

Suppose that the lemma is true for all integers \(k<p\), \(p>0\). We prove the lemma for \(k=p\).

For every \(s \in S(\bar{\gamma}), \bar{\gamma} \in \Lambda_{q}, q \leq p\) and for every \(d(\bar{\gamma}, m)\), \(0 \leq m \leq q-1\), by \(d(S, \bar{\gamma}, m)\) we denote the element of \(D(S)\) for which \(d(S, \bar{\gamma}, m) \times\{S\}=d(\bar{\gamma}, m) \cap(C \times\{s\})\). For every \(U(\bar{\gamma}, m, k-1)\), where \(\bar{\gamma} \in \Lambda_{q}, l \leq q \leq k, 0 \leq m \leq q-1\) and \(k \leq p-1\) by \(U(S, \bar{\gamma}, m, k-1)\) where \(S \in S(\bar{\gamma})\) we denote the subset of \(S\) for which \(U(S, \bar{Y}, m, k-1) \times\{S\}=U(\bar{Y}, m, k-1) \cap(C \times\) \{s\}). Obviously, if \(d(\bar{\gamma}, m)=\varnothing\) or \(U(\bar{\gamma}, m, k-1)=\varnothing\) then \(d(S, \bar{\gamma}, m)=\varnothing\) or \(U(S, \bar{\gamma}, m, k-l)=\varnothing\), respectively. We observe that by property l3) it follows that the set \(U(S, \bar{\gamma}, m, k-1)\) is an open subset of \(s\). Also, for every \(\bar{\gamma} \in \Lambda_{p+1-m}\), \(0<m \leq p, S \in S(\bar{Y})\) we denote by \(y(S, \bar{\gamma}, m)\) the element \(d\) of \(D(S)\) for which \(d \times\{s\}=y(\bar{\gamma}, m) \cap(C \times\{s\})\).

Let \(\bar{\alpha} \in \Lambda_{p+1}\). There exists a uniquely determined element \(\bar{\beta} \in \Lambda_{p}\) such that \(\bar{\beta} \leq \bar{\alpha}\). Let \(S \in S(\bar{\beta})\).

There exists an integer \(t_{1}(S, p) \geq 0\) such that if \(\bar{\gamma} \in \Lambda_{q^{\prime}} \bar{\gamma}_{l} \in \Lambda_{q^{\prime}}, l \leq q \leq p, 0 \leq m \leq q-1, l \leq q^{\prime} \leq p\), \(0 \leq m_{1} \leq q^{\prime}-1, k_{1}<p, S \in S(\bar{\gamma}) \cap S\left(\bar{\gamma}_{1}\right)\) and \(d(\bar{\gamma}, m) \subseteq\) \(U\left(\bar{\gamma}_{1}, m_{1}, k_{1}-1\right)\), then \(s t\left(d(S, \bar{\gamma}, m), t_{1}(S, p)\right) \subseteq U\left(S, \bar{\gamma}_{1}, m_{1}, k_{1}-1\right)\).

Also, there exists an integer \(t_{2}(S, p) \geq 0\) such that if \(\bar{\gamma}_{1} \in \Lambda_{q^{\prime}}, \bar{\gamma}_{2} \in \Lambda_{q^{\prime \prime}}, l \leq q^{\prime} \leq p, l \leq q^{\prime \prime} \leq p, 0 \leq m_{l} \leq\) \(q^{\prime}-1,0 \leq m_{2} \leq q^{\prime \prime}-1, s \in S\left(\bar{\gamma}_{1}\right) \cap S\left(\bar{\gamma}_{2}\right)\) and \(d\left(\bar{\gamma}_{1}, m_{1}\right) \neq\) \(d\left(\bar{\gamma}_{2}, m_{2}\right)\), then \(\operatorname{st}\left(d\left(s, \bar{\gamma}_{1}, m_{1}\right), t_{2}(S, p)\right) \cap \operatorname{st}\left(d\left(s, \bar{\gamma}_{2}, m_{2}\right)\right.\), \(\left.t_{2}(s, p)\right)=\varnothing\).

Since \(D(S)\) is an upper semi-continuous partition there exists an integer \(t_{3}(S, p) \geq 0\) such that if \(\bar{\gamma} \leq \bar{\beta}, \bar{\gamma} \in \Lambda_{q}\), \(1 \leq q \leq p-1,0 \leq m \leq q-l, d \in D(S)\) and \(d \cap\) st \((d(S, \bar{\gamma}, m)\), \(\left.t_{3}(S, p)\right) \neq \varnothing\), then \(d \subseteq U(S, \bar{\gamma}, m, p-2)\).

Finally, since l) D(S) is an upper semi-continuous partition, 2) \(D_{k}(S), k=0,1,2, \ldots\), is a closed subset of
\(D(S)\) having type \(\leq \alpha\) and 3\() D_{k_{1}}(S) \cap D_{k_{2}}(S)=\varnothing, k_{1} \neq k_{2}\), there exists an integer \(t_{4}(S, p) \geq 0\) such that if \(\bar{\gamma} \in \Lambda_{q}\), \(l \leq q \leq p, 0 \leq m \leq q-l, \bar{\gamma} \leq \bar{\beta}, d^{\prime} \in D(S)(l), d^{\prime} \neq d(S, \bar{\gamma}, m)\) and \(d^{\prime} \subseteq s t\left(d(S, \bar{\gamma}, m), t_{4}(S, p)\right)\), then, either \(\operatorname{deg}\left(d^{\prime}\right)>p\), or \(\operatorname{deg}\left(d^{\prime}\right)=q-m-1\) (we observe that \(\operatorname{deg}(d(\bar{y}, m))=\) \(q-m-1)\) and type (\(\left.\mathrm{d}^{\prime}, \mathrm{D}_{\mathrm{q}-\mathrm{m}-1}(\mathrm{~S})\right)<\operatorname{type}\left(\mathrm{d}(\mathrm{S}, \bar{\gamma}, \mathrm{m}), \mathrm{D}_{\mathrm{q}-\mathrm{m}-1}(\mathrm{~S})\right)\). Set \(t(S, p)=\max \left\{n(\bar{\beta}), t_{1}(S, p), t_{2}(S, p), t_{3}(S, p), t_{4}(S, p)\right.\), \(\mathrm{p}+1\) \}.

Now, in the set \(S(\bar{\beta})\) we define an equivalence relation. Let \(S_{1}, S_{2} \in S(\bar{\beta})\). We say that \(S_{1} \sim S_{2}\) if and only if 1) \(\left.t\left(S_{1}, p\right)=t\left(S_{2}, p\right), 2\right) S_{1}\) and \(S_{2}\) are \(\left(p, t\left(S_{1}, p\right)\right)\)-equivalent, 3) st \(\left(d\left(S_{1}, \bar{\gamma}, m\right), t\left(S_{1}, p\right)\right)=s t\left(d\left(S_{2}, \bar{\gamma}, m\right), t\left(S_{2}, p\right)\right)\) for every \(\bar{\gamma} \leq \bar{\beta}, \bar{\gamma} \in \Lambda_{q}, 1 \leq q \leq p\) and \(0 \leq m \leq q-1\) and 4) \(s t\left(y\left(S_{1}, \bar{\gamma}, m\right), t\left(S_{1}, p\right)\right)=s t\left(y\left(S_{2}, \bar{\gamma}, m\right), t\left(S_{2}, p\right)\right)\) for every \(\bar{\gamma} \leq \bar{\beta}, \bar{\gamma} \in \Lambda_{p+1-m}, 0<m \leq p\).

It is clear that the set of all equivalence classes is countable. Hence, there exists a one-to-one correspondence between this set and a subset of the set of all elements \(\bar{\delta}\) of \(\Lambda_{p+l}\) for which \(\bar{\beta} \leq \bar{\delta}\). If there is no equivalence class which corresponds to the element \(\bar{\alpha}\), then we set \(S(\bar{\alpha})=\varnothing\). In the opposite case, we denote by \(S(\bar{\alpha})\) the equivalence class which corresponds to the element \(\bar{\alpha}\).

Set \(\mathrm{n}(\bar{\alpha})=\mathrm{t}(\mathrm{S}, \mathrm{p})\) where \(\mathrm{S} \in \mathrm{S}(\bar{\alpha})\). Obviously, the number \(n(\bar{\alpha})\) is independent of the element \(S\) of \(S(\bar{\alpha})\).

Let \(y(\bar{\alpha}, 0), y(\bar{\alpha}, 1), \cdots\) be an arbitrary ordering of the set of all D-sets of \(J(S(\bar{\alpha}))\) with respect to (\(p, n(\bar{\alpha}))\) equivalence.

Set \(d(\bar{\alpha}, m)=y(\bar{\gamma}, m) \cap J(S(\bar{\alpha}))\) where \(\bar{\gamma} \in \Lambda_{p+1-m}, \bar{\gamma} \leq \bar{\alpha}\) and \(m=0,1, \cdots, p\).

Let \(\bar{\gamma} \in \Lambda_{q^{\prime}} l \leq q \leq p, \bar{\gamma} \leq \bar{\alpha}, 0 \leq m \leq q-1\) and \(S_{0} \in S(\bar{\alpha})\). We define the sets \(s(\bar{\gamma}, m, \bar{\alpha})\) and \(U(\bar{\gamma}, m, p-1)\) setting \(s\left(\bar{\gamma}, m_{, ~}^{\alpha}\right)=\left\{\bar{i} \in L_{n(\bar{\alpha})}: C_{\bar{i}} \subseteq \operatorname{st}\left(d\left(S_{0}, \bar{\gamma}, m\right), n(\bar{\alpha})\right)\right\}\) and \(U(\bar{\gamma}, m, p-1)=U_{\bar{\alpha} \geq}, \bar{\gamma}, \bar{\alpha} \in \Lambda_{p+1}, S \in S(\bar{\alpha})((\operatorname{st}(d(S, \bar{\gamma}, m), n(\bar{\alpha})) \times\) \(\{S\}) \cap J(S(A)))(*)\)

By condition 3) of the definition of the equivalence relation in the set \(S(\bar{\beta})\) it follows that the set \(s(\bar{\gamma}, m, \bar{\alpha})\) is independent of \(S_{0} \in S(\bar{\alpha})\). Obviously, if \(d(\bar{\gamma}, m)=\varnothing\), then \(s(\bar{\gamma}, m, \bar{\alpha})=\varnothing\) and \(U(\bar{\gamma}, m, p-1)=\varnothing\).

Now, we prove that the properties of the lemma are true for the \(k=p\).

Property l) follows by the definition of the number \(n(\bar{\alpha})\). Property 2) is independent of p. Properties 3) and 4) follow by the construction of the sets \(s(\bar{\alpha}), \bar{\alpha} \in \Lambda_{p+1}\). Property 5) follows by the determination of the set \(d(\bar{\alpha}, m)\). Properties 6) and 7) follow by the construction of the sets \(\mathrm{U}(\bar{\gamma}, m, p-1)\).

It is easy to see that properties 8), 9), 10) and 11) follow by the definition of the numbers \(t_{1}(S, p), t_{2}(S, p)\), \(t_{3}(S, P)\) and \(t_{4}(S, P)\), respectively, and by the construction of the sets \(u(\bar{\gamma}, m, p-1)\). Property 12\()\) follows by the definition of the sets \(s(\bar{\gamma}, m, \bar{\alpha})\).

In the type (*) using the property l2) we have
\(U_{S \in S(\alpha)}((\operatorname{st}(d(S, \bar{\gamma}, m), n(\bar{\alpha})) \times\{S\}) \cap J(S(A)))=\left(C_{s(\bar{\gamma}, m, \bar{\alpha})} \times\right.\) \(S(\bar{\alpha})) \cap J(S(\bar{\alpha}))\). From this follows property 13).

Property 14) follows by condition 4) of the definition of the equivalence relation in the set \(S(\bar{\beta})\). The proof of the lemma is completed.
4. By \(T(A)\) we denote the set of all non-empty sets of the form \(d(\bar{\alpha}, m), \bar{\alpha} \in \Lambda_{k+1}, 0 \leq m \leq k\) and \(k=0,1,2, \cdots\) and all singletons \(\{x\}\) where \(x\) belongs to \(J(A)\) and does not belong to any set \(d(\bar{\alpha}, m)\). The elements \(d(\bar{\alpha}, m)\) (resp. \(\{x\}\)) of the set \(T(A)\) are called elements of the first kind (resp. the second \(k i n d\)).

By \(U(A)\) we denote the set of all sets \(U(\bar{\gamma}, m, k-1)\), \(\bar{\gamma} \in \Lambda_{q}, l \leq q \leq k, 0 \leq m \leq q-1\) and \(k=0,1,2, \ldots\) and all sets of the form \(\left(C_{t} \times s(\bar{\alpha})\right) \cap J(A)\) where \(t\) is a subset of \(L_{k}, k=0,1,2, \cdots\) and \(\bar{\alpha} \in \Lambda\).

If \(U \in U(A)\), then by \(O(U)\) we denote the set of all elements of \(T(A)\) which are contained in the set \(U\). If \(\mathrm{U}=\mathrm{U}(\bar{y}, \mathrm{~m}, \mathrm{k}-1)\) or \(\mathrm{U}=\left(\mathrm{C}_{\mathrm{t}} \times \mathrm{S}(\bar{\alpha})\right) \mathrm{n} \mathrm{J}(\mathrm{A})\) then we set \(O(\bar{\gamma}, m, k-1)=O(U)\) or \(O\left(C_{t}, S(\bar{\alpha})\right)=O(U)\), respectively.

By \(O(A)\) we denote the set of all sets \(O(U), U \in U(A)\). Obviously, the set \(O(A)\) is countable.

In the future, the sets \(U(\bar{\gamma}, m, k-1)\) and \(O(\bar{\gamma}, m, k-1)\) (resp. \(\left(C_{t} \times S(A)\right) \cap J(A)\) and \(\left.O\left(C_{t}, S(\bar{\alpha})\right)\right)\) are called elements of the first kind (resp. the second kind) of the sets \(U(A)\) and \(O(A)\), respectively.

Also, for every \(S \in S(\bar{\gamma}), \bar{\gamma} \in \Lambda_{q}, 1 \leq q, 0 \leq m \leq q-1\), by \(d(S, \bar{\gamma}, m)\) (resp. \(y(s, \bar{\gamma}, m)\)) we denote the element \(d\) of \(D(S)\) for which \(d \times\{s\}=d(\bar{\gamma}, m) \cap(C \times\{S\})(\) resp. \(d \times\{s\}=\) \(y(\bar{\gamma}, \mathrm{~m}) \cap(\mathrm{C} \times\{\mathrm{S}\})) . \quad\) Obviously, \(\mathrm{d} \in \mathrm{D}_{\mathrm{q}-\mathrm{m}-1}(\mathrm{~S})\) (resp. \(\left.d \in D_{q-1}(S)\right)\).

Lemma 6. The set \(O(A)\) is a basis of open sets for \(a\) topology on \(\mathrm{T}(\mathrm{A})\).

Proof. It is sufficient to prove that: l) for every \(d \in T(A)\) there exists \(O \in O(A)\) such that \(d \in O\) and 2) if \(d \in O_{1} \cap O_{2}\) where \(O_{1}, O_{2} \in O(A)\), then there exists \(O \in O(A)\) such that \(d \in O \subseteq O_{1} \cap O_{2}\).

Let \(d \in T(A)\). If \(d=d(\bar{\alpha}, m), \bar{\alpha} \in \Lambda_{k+1}\) and \(0 \leq m \leq k\) or \(d=\{(\alpha, S)\}\) where \(S \in S(\bar{\alpha})\) then, obviously, \(d \in O(C, S(\bar{\alpha}))\) \(=O \in O(A)\).

Let \(d \in O_{1} \cap O_{2}\) where \(O_{1}, O_{2} \in O(A)\). First, we suppose that \(d=\{x\}\), where \(x=(a, s)\). Then, there exist \(\bar{i}_{1}, \bar{i}_{2} \in L\) and \(\bar{\alpha}_{1}, \bar{\alpha}_{2} \in \Lambda\) such that \(d \in O\left(C_{\bar{i}_{1}}, S\left(\bar{\alpha}_{1}\right)\right) \subseteq o_{1}\) and \(\mathrm{d} \in \mathrm{O}\left(\mathrm{C}_{\overline{\mathrm{i}}_{2}}, \mathrm{~S}\left(\bar{\alpha}_{2}\right)\right) \subseteq \mathrm{O}_{2}\). If \(\mathrm{O}_{1}\) or \(\mathrm{O}_{2}\) is an element of the first kind, then the existence of \(\bar{i}_{1}\) or \(\bar{i}_{2}\) of \(L\) follows by the structure of the elements of \(U(A)\) of the first kind (see property 13) of Lemma 5). Let \(\bar{i} \in L\) and \(\bar{\alpha} \in \Lambda\) such that a \(\in \mathrm{C}_{\overline{\mathrm{i}}} \subseteq \mathrm{C}_{\overline{\mathrm{i}}_{1}} \cap \mathrm{C}_{\overline{\mathrm{i}}_{2}}\) and \(\mathrm{S} \in \mathrm{S}(\bar{\alpha}) \subseteq \mathrm{S}\left(\bar{\alpha}_{1}\right) \cap \mathrm{S}\left(\bar{\alpha}_{2}\right)\). Obviously, \(d \in O\left(C_{\bar{i}}, S(\bar{\alpha})\right)=0 \subseteq O_{1} \cap O_{2}\).

Now, let \(d=d(\bar{\gamma}, m), \bar{\gamma} \in \Lambda_{q}, 0 \leq m \leq q-1\).
First, we prove that if \(d(\bar{\gamma}, m) \subseteq O\left(C_{t}, S(\bar{\beta})\right)=O^{\prime} \in O(A)\), where \(t \subseteq L_{n}\) and \(\bar{\beta} \in \Lambda_{q} \prime^{\prime}\), then \(d(\bar{\gamma}, m) \subseteq O(\bar{\gamma}, m, k-1) \subseteq O^{\prime}\) for \(k \geq \max \{n, q+l\}\). Indeed, let \(k \geq \max \{n, q+l\}, \bar{\alpha} \in \Lambda_{k+1}\) and \(\bar{\gamma} \leq \bar{\alpha}\). Since \(d(\bar{\gamma}, m) \neq \varnothing\) and \(d(\bar{\gamma}, m) \subseteq O\left(C_{t}, S(\bar{\beta})\right)\) we have that \(S(\bar{\gamma}) \subseteq S(\bar{\beta})\). Hence, \(S(\bar{\alpha}) \subseteq S(\bar{\beta})\). Let \(S \in S(\bar{\alpha})\). Since \(d(S, \bar{\gamma}, m) \times\{S\} \subseteq d(\bar{\gamma}, m) \subseteq C_{t} \times S(\bar{\beta})\) we have \(d(S, \bar{\gamma}, m)\) \(\subseteq C_{t}\). By property 12) of Lemma 5 we have \(C_{S}(\bar{\gamma}, m, \bar{\alpha})=\) st \((d(S, \bar{\gamma}, m), n(\bar{\alpha}))\). Since \(n(\bar{\alpha}) \geq k+1>n, C_{s(\bar{\gamma}, m, \bar{\alpha})} \subseteq C_{t}\). Hence, \(C_{S}(\bar{\gamma}, m, \bar{\alpha}) \times S(\bar{\alpha}) \subseteq C_{t} \times S(\bar{\beta})\) for every \(\bar{\alpha} \geq \bar{\gamma}\),
\(\bar{\alpha} \in \Lambda_{k+1}\). From the structure of the set \(U(\bar{\gamma}, m, k-1)\) (see property 13) of Lemma 5) we have \(U(\bar{\gamma}, m, k-1) \subseteq C_{t} \times S(\bar{\beta})\). Thus, \(d(\bar{\gamma}, m) \subseteq O(\bar{\gamma}, m, k-1) \subseteq O^{\prime}\).

Using the above proposition (and properties 6) and 8) of Lemma 5) we may find integers \(k_{1} \geq 0\) and \(k_{2} \geq 0\) such that \(d \in O\left(\bar{\gamma}, m, k_{1}-1\right) \subseteq O_{1}\) and \(d \in O\left(\bar{\gamma}, m, k_{2}-1\right) \subseteq O_{2}\). Set \(O=O(U)\), where \(U=U(\bar{\gamma}, m, k-1), k \geq \max \left\{k_{1}, k_{2}\right\}\). Then \(d \in O \subseteq O_{1} \cap O_{2}\). The proof of the lemma is completed.
5. In the future, in the set \(T(A)\) we consider the topology which has the set \(O(A)\) as a basis of open sets.

Lemma 7. The space \(T(A)\) is a Hausdorff space.
Proof. Let \(d_{1}, d_{2} \in T(A), d_{1} \neq d_{2}\). Consider the cases:
1) \(\left.d_{1}=\left\{\left(a_{1}, s_{1}\right)\right\}, d_{2}=\left\{\left(a_{2}, s_{2}\right)\right\}, 2\right) d_{1}=\{(a, s)\}\), \(d_{2}=d(\bar{\gamma}, m), \bar{\gamma} \in \Lambda_{q}, 0 \leq m \leq q-1\) and 3\() d_{1}=d\left(\bar{\gamma}_{1}, m_{1}\right)\), \(d_{2}=d\left(\bar{\gamma}_{2}, m_{2}\right), \bar{\gamma}_{1} \in \Lambda_{q} \prime^{\prime} \bar{\gamma}_{2} \in \Lambda_{q \prime \prime}, q^{\prime} \geq q^{\prime \prime}, 0 \leq m_{1} \leq q^{\prime}-1\), \(0 \leq m_{2} \leq q^{\prime \prime}-1\).

In the first case, either \(a_{1} \neq a_{2}\), or \(S_{1} \neq S_{2}\). By the definition of the \((k, n)\)-equivalence, if \(a_{1} \neq a_{2}\) (resp. \(S_{1} \neq S_{2}\), then there exist an integer \(n \geq 1\) and \(\bar{i}, j \in L_{n}\), \(\bar{i} \neq \bar{j}\left(\right.\) resp. \(\bar{\alpha}_{1}, \bar{\alpha}_{2} \in \Lambda_{n}, \bar{\alpha}_{1} \neq \bar{\alpha}_{2}\)) such that \(a_{1} \in C_{\bar{i}}\) and \(a_{2} \in C_{\bar{j}}\) (resp. \(S_{1} \in S\left(\bar{\alpha}_{1}\right)\) and \(S_{2} \in S\left(\bar{\alpha}_{2}\right)\)) (we observe that \(S_{1} \neq S_{2}\) means that the elements \(S_{1}\) and \(S_{2}\) of \(S(A)\) are different though it is possible that \(S_{1} \equiv S_{2}\) as subset of \(C\)). Set \(O_{1}=O\left(C_{\bar{i}}, S\left(\bar{\alpha}^{\prime}\right)\right)\) and \(O_{2}=O\left(C_{\bar{j}}, S\left(\bar{\alpha}^{\prime \prime}\right)\right)\), where \(\bar{\alpha}^{\prime}, \bar{\alpha}^{\prime \prime} \in \Lambda_{1}\), \(S_{1} \in S\left(\bar{\alpha}^{\prime}\right)\) and \(S_{2} \in S\left(\bar{\alpha}^{\prime \prime}\right)\left(r e s p . O_{1}=O\left(C, S\left(\bar{\alpha}_{1}\right)\right)\right.\) and \(O_{2}=\) \(O\left(C, S\left(\bar{\alpha}_{2}\right)\right)\). Then \(d_{1} \in O_{1}, d_{2} \in O_{2}\) and \(O_{1} \cap O_{2}=\varnothing\).

In the second case, either \(S \notin S(\bar{\gamma})\), or \(S \in S(\bar{\gamma})\) and a \(\notin d(S, \bar{\gamma}, m)\). Let \(S \notin S(\bar{\gamma}), \bar{\gamma}^{\prime} \in \Lambda_{q}\) and \(S \in S\left(\bar{\gamma}^{\prime}\right)\). Setting \(O_{1}=O\left(C, S\left(\bar{\gamma}^{\prime}\right)\right)\) and \(O_{2}=O(C, S(\bar{\gamma}))\) we have \(d_{1} \in O_{1}, d_{2} \in O_{2}\) and \(O_{1} \cap O_{2}=\varnothing\).

Let \(S \in S(\bar{\gamma})\) and \(\& d(S, \bar{\gamma}, m)\). There exists an integer \(k \geq q+1\) such that \(s t(a, k) n\) st \((d(S, \bar{\gamma}, m), k)=\varnothing\). Let \(\bar{\alpha} \in \Lambda_{k+1}, S \in S(\bar{\alpha}), O_{1}=O(s t(a, k), S(\bar{\alpha}))\) and \(O_{2}=O(\bar{\gamma}, m, k-1)\). Obviously, \(d_{1} \in O_{1}\) and \(d_{2} \in O_{2}\). By property l3) of Lemma 5 we have that \(U(\bar{\gamma}, m, k-1) \cap(s t(a, k) \times s(\bar{\alpha}))=\left(C_{s(\bar{\gamma}, m, \bar{\alpha})} \times\right.\) \(S(\bar{\alpha})) \cap(s t(a, k) \times s(\bar{\alpha}))\).

Since \(n(\bar{\alpha}) \geq k+1\), by property 12) of Lemma 5,
\(\operatorname{st}(d(S, \bar{\gamma}, m), k) \geq C_{s}(\bar{\gamma}, m, \bar{\alpha})\). Since \(s t(a, k) \cap \operatorname{st}(d(S, \bar{\gamma}, m), k)\) \(=\varnothing\) we have \(U(\bar{\gamma}, \mathrm{~m}, \mathrm{k}-\mathrm{l}) \mathrm{n}(\mathrm{st}(\mathrm{a}, \mathrm{k}) \times \mathrm{S}(\bar{\alpha}))=\varnothing\). Hence, \(O_{1} \cap O_{2}=\varnothing\).

In the third case, setting \(O_{1}=O\left(\bar{\gamma}_{1}, m_{1}, k-1\right)\) and \(O_{2}=O\left(\bar{\gamma}_{2}, m_{2}, k-1\right)\), where \(k \geq q^{\prime}+1\), by properties 6) and 9) of Lemma 5, we have \(d_{1} \in O_{1}, d_{2} \in o_{2}\) and \(O_{1} \cap o_{2}=\varnothing\). The proof of the lemma is completed.
6. Lemma 8. If \(U \in U(A)\) then \(B d(O(U)) \subseteq\{d \in T(A):\) \(\mathrm{d} \cap \mathrm{U} \neq \varnothing, \mathrm{d} \cap(\mathrm{J}(\mathrm{A}) \backslash \mathrm{U}) \neq \varnothing\}\).

Proof. Let \(d \in \operatorname{Bd}(O(U))=\operatorname{cl}(O(U)) \backslash O(U)\). Since \(d \notin U\), \(d \cap(J(A) \backslash U) \neq \varnothing\). We prove that \(d \cap U \neq \varnothing\). It is sufficient to prove that if \(d \cap U=\varnothing\), then \(d \notin \mathrm{cl}(O(U))\).

Consider the following cases: 1\() d=\{(a, s)\}, U=\left(C_{t}\right.\) \(\times s(\bar{\alpha})) \cap J(A), t \subseteq L_{n}\) and \(\left.\bar{\alpha} \in \Lambda_{q}, 2\right) d=\{(a, S)\}, U=\) \(\mathrm{U}(\bar{\gamma}, \mathrm{m}, \mathrm{k}-1), \bar{\gamma} \in \Lambda_{q^{\prime}} 0 \leq m \leq q-1\) and \(\left.k \geq q, 3\right) d=d(\bar{\gamma}, m)\), \(\bar{\gamma} \in \Lambda_{q}, 0 \leq m \leq q-1, U=\left(C_{t} \times S(\bar{\alpha})\right) \cap J(A), t \subseteq L_{n}\) and \(\bar{\alpha} \in \Lambda_{q}\), and 4) \(d=d(\bar{\gamma}, m), \bar{\gamma} \in \Lambda_{q}, 0 \leq m \leq q-1\),
\(\mathrm{U}=\mathrm{U}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}, \mathrm{k}_{1}-1\right), \bar{\gamma}_{1} \in \Lambda_{\mathrm{q}}, \prime 0 \leq m \leq \mathrm{q}^{\prime}-1\) and \(\mathrm{q}^{\prime} \leq \mathrm{k}_{1}\). In the first case, since \(d \cap U=\varnothing\), we have, either a \(\notin C_{t}\), or \(s \notin S(\bar{\alpha})\). If a \(\notin C_{t}\), then \(\operatorname{st}(a, n) \cap C_{t}=\varnothing\). Let \(\bar{\beta} \in \Lambda_{\mathrm{q}}\) and \(\mathrm{S} \in \mathrm{S}(\bar{\beta})\) then \((\mathrm{st}(\mathrm{a}, \mathrm{n}) \times \mathrm{S}(\bar{\beta})) \cap\left(C_{t} \times\right.\) \(S(\bar{\alpha}))=\varnothing\). Setting \(O=O(s t(a, n), S(\bar{\beta}))\) we have that \(d \in O\) and \(O \cap O(U)=\varnothing\). This means that \(d \notin \mathrm{cl}(O(U))\).

If \(S \notin S(\bar{\alpha})\) then setting \(O=O(C, S(\bar{\beta}))\) where \(\bar{\beta} \in \Lambda_{q}\) and \(S \in S(\bar{\beta})\), we have \(d \in O\) and \(O \cap O(U)=\varnothing\), that is d \& cl(O(U)).

In the second case, either \(S \notin S(\bar{\gamma})\) or there exists an element \(\bar{\alpha} \in \Lambda_{k+1}\) such that \(\bar{\alpha} \geq \bar{\gamma}, S \in \bar{\alpha}\) and \(a \notin C_{S}(\bar{\gamma}, m, \bar{\alpha})\). This follows by the structure of the set \(U(\bar{\gamma}, m, k-1)\) (see property 13) of Lemma 5). If \(S \notin \bar{\gamma}\), then setting \(O=O\left(C, S\left(\bar{\gamma}_{1}\right)\right)\), where \(\bar{\gamma}_{l} \in \Lambda_{q}\) and \(S \in S\left(\bar{\gamma}_{1}\right)\) we have \(d \in O\) and \(O \cap O(\bar{\gamma}, \mathrm{~m}, \mathrm{k}-1)=\varnothing\), that is, \(d \& \operatorname{cl}(O(U))\).

If a \(\notin C_{s}(\bar{\gamma}, m, \bar{\alpha})\), where \(\bar{\alpha} \in \Lambda_{k+1}, \bar{\alpha} \geq \bar{\gamma}\) and \(s \in \bar{\alpha}\), then \(\operatorname{st}(\mathrm{a}, \mathrm{n}(\bar{\alpha})) \cap \mathrm{C}_{\mathrm{s}}(\bar{\gamma}, \mathrm{m}, \bar{\alpha})=\varnothing\) and hence, \((\mathrm{st}(\mathrm{a}, \mathrm{n}(\bar{\alpha})) \times\) \(\mathrm{S}(\bar{\alpha})) \cap\left(\left(\mathrm{C}_{\mathrm{s}}(\bar{\gamma}, \mathrm{m}, \bar{\alpha}) \times \mathrm{S}(\bar{\alpha})\right) \cap \mathrm{J}(\mathrm{A})\right)=(\mathrm{st}(\mathrm{a}, \mathrm{n}(\bar{\alpha})) \times \mathrm{S}(\bar{\alpha})) \mathrm{n}\) \(U(\bar{\gamma}, \mathrm{~m}, \mathrm{k}-\mathrm{l})=\varnothing\). Since \(\mathrm{a} \in O=O(\mathrm{st}(\mathrm{a}, \mathrm{n}(\bar{\alpha})), \mathrm{S}(\bar{\alpha}))\), \(d \& \operatorname{cl}(O(U))\).

In the third case, if \(S(\bar{\gamma}) \cap S(\bar{\alpha})=\varnothing\), then \(U(\bar{\gamma}, m, q-1)\) \(\cap \mathrm{U}=\varnothing\), that is, \(\mathrm{d} \notin \mathrm{cl}(\mathrm{O}(\mathrm{U}))\). Let \(\mathrm{S}(\bar{\gamma}) \cap \mathrm{S}(\bar{\alpha}) \neq \varnothing\). Then for every \(S \in S(\bar{\gamma}) \cap S(\bar{\alpha})\) we have \(d(S, \bar{\gamma}, m) \cap C_{t}=\emptyset\) and, hence, \(\operatorname{st}(d(s, \bar{\gamma}, m), n) \cap C_{t}=\varnothing\), that is, (st \((d(S, \bar{\gamma}, m), n) \times\) (S\}) \(\cap U=\varnothing\). From this and by properties 12) and 13) of Lemma 5, it follows that \(U(\bar{\gamma}, m, k-1) \cap U=\varnothing\) if \(k=\max \{q, n\}\), that is, \(d \& \operatorname{cl}(O(U))\).

In the fourth case, obviously, \(d(\bar{\gamma}, m) \neq \dot{d}\left(\bar{\gamma}_{1}, m_{l}\right)\). If \(S(\bar{\gamma}) \cap S\left(\bar{\gamma}_{1}\right)=\varnothing\), then \(U(\bar{\gamma}, m, k-1) \cap U\left(\bar{\gamma}_{1}, m_{1}, k_{1}-1\right)=\varnothing\) for every \(k \geq q\), that is, \(d \& \operatorname{cl}(O(U))\).

Let \(S(\bar{\gamma}) \cap S\left(\bar{\gamma}_{1}\right) \neq \varnothing\). If \(q \leq k_{1}\), then by property 9) of Lemma 5, \(\mathrm{U}\left(\bar{\gamma}, \mathrm{m}, \mathrm{k}_{1}-1\right) \cap \mathrm{U}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}, \mathrm{k}_{1}-1\right)=\varnothing\), that is, d \(\notin \mathrm{cl}(\mathrm{O}(\mathrm{U}))\).

If \(q>k_{1}\), then \(\bar{\gamma}_{1} \leq \bar{\gamma}\). By the structure of the set \(\mathrm{U}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}, \mathrm{k}_{1}-1\right)\) (see property 13) of Lemma 5) there exists an element \(\bar{\alpha} \in \Lambda_{k_{1}+1}\) such that \(\bar{\gamma}_{1} \leq \bar{\alpha}, \bar{\alpha} \leq \bar{\gamma}, d(\bar{\gamma}, m) \subseteq c \times s(\bar{\alpha})\) and \(d(\bar{\gamma}, m) \cap\left(C_{s}\left(\bar{\gamma}_{1}, m_{1}, \bar{\alpha}\right) \times S(\bar{\alpha})\right)=\varnothing\). Hence, as in the third case, there exists an integer \(k \geq q\) such that \(U(\bar{\gamma}, m, k-1) \cap\left(C_{s}\left(\bar{\gamma}_{1}, m_{1}, \bar{\alpha}\right) \times s(\bar{\alpha})\right)=U(\bar{\gamma}, m, k-1) \cap U\left(\bar{\gamma}_{1}, m_{1}, k_{1}-1\right)\) \(=\varnothing\), that is \(\mathrm{d} \notin \mathrm{cl}(\mathrm{O}(\mathrm{U}))\). The proof of the lemma is completed.
7. Lemma 9. The space \(T(A)\) is a regular space.

Proof. Let \(d \in O(U), U \in U(A)\). We must prove that there exist \(U_{0} \in U(A)\) such that \(d \in O\left(U_{0}\right) \subseteq c l\left(O\left(U_{0}\right)\right) \subseteq O(U)\).

Consider the cases: 1) \(d=\{(a, s)\}, U=\left(C_{t} \times S(\bar{\alpha})\right) \cap\) \(J(A), t \subseteq L_{n+l}\) and \(\left.\bar{\alpha} \in \Lambda_{k+1}, 2\right) d=\{(a, s)\}, U=U(\bar{y}, m, k-1)\), \(\bar{\gamma} \in \Lambda_{q}, 0 \leq m \leq q-l\) and \(\left.q \leq k, 3\right) d=d(\bar{\gamma}, m), U=\) \(\mathrm{U}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}, \mathrm{k}_{1}-1\right), \bar{\gamma} \in \Lambda_{\mathrm{q}}, 0 \leq \mathrm{m} \leq \mathrm{q}-1, \bar{\gamma}_{1} \in \Lambda_{\mathrm{q}^{\prime}}, 0 \leq \mathrm{m}_{1} \leq\) \(q^{\prime}-1\) and \(q^{\prime} \leq k_{1}\) and 4) \(d=d(\bar{\gamma}, m), U=\left(C_{t} \times S(\bar{\alpha})\right) \cap J(A)\), \(\bar{\gamma} \in \Lambda_{q}, 0 \leq m \leq q-1, t \subseteq L_{n}\) and \(\bar{\alpha} \in \Lambda_{k+1}\).

In the first case, since \(D(S)\) is an upper semi-continuous partition, there exists an integer \(q \geq \max \{k+1, n+l\}\) such that if \(d^{\prime} \in D(S)\) and \(d^{\prime} n\) st \((a, q) \neq \varnothing\), then \(d^{\prime} \subseteq C_{t}\).

Let \(\bar{\delta} \in \Lambda_{q+1}\) and \(s \in S(\bar{\delta})\). Set \(U_{l}=(s t(a, q) \times s(\bar{\delta}))\) \(n J(A)\). By the choice of the integer \(q, d \subseteq O\left(U_{1}\right) \subseteq O(U)\). We prove that \(\mathrm{cl}\left(\mathrm{O}\left(\mathrm{U}_{1}\right)\right) \subseteq \mathrm{O}(\mathrm{U}) U \mathrm{~F}\) where F is a finite set. , Let \(d_{1} \in \operatorname{Bd}\left(O\left(U_{1}\right)\right)\). By Lemma \(8 d_{1}\) is an element of the first kind. Let \(d_{1}=d\left(\bar{\delta}_{1}, m_{1}\right)\) where \(\bar{\delta}_{1} \in \Lambda_{q}\), and \(0 \leq m_{1} \leq\) \(q^{\prime}\) - l. By \(F\) we denote the set of all such elements \(d_{1}\) for \(q^{\prime} \leq q+1\). It is easy to see that the set \(F\) is finite.

Now, suppose that \(q^{\prime} \geq q+2\). We prove that \(d_{1} \in O(U)\). Indeed, in the opposite case, by Lemma 8 we have that \(d_{1} \cap U_{1} \neq \varnothing\) and \(d_{1} \cap(J(A) \backslash U) \neq \varnothing\). Let \(\left(a_{1}, S_{1}\right) \in d_{1} \cap U_{1}\) and \(\left(a_{2}, S_{2}\right) \in d_{1} \cap(J(A) \backslash U)\).

By property 14) of Lemma 5 (setting \(k+1=q \prime, m=m_{1}\) and \(\left.\bar{\alpha}=\bar{\delta}_{1}\right)\) if \(m_{1}>0\) we have that \(\operatorname{st}\left(d\left(S_{1}, \bar{\delta}_{1}, m_{1}\right), n\left(\bar{\delta}_{1}\right)\right)=\) \(\operatorname{st}\left(\mathrm{d}\left(\mathrm{S}_{2}, \bar{\delta}_{1}, \mathrm{~m}_{1}\right), \mathrm{n}\left(\bar{\delta}_{1}\right)\right)\). If \(\mathrm{m}_{1}=0\), then \(\mathrm{d}\left(\bar{\delta}_{1}, 0\right)=\mathrm{y}\left(\bar{\delta}_{1}, 0\right)\). Since \(S_{1}\) and \(S_{2}\) are \(\left(q^{\prime}-1, n\left(\bar{\delta}_{1}\right)\right)\)-equivalent there exist a subset \(t\left(d_{1}\right)\) of \(L_{n\left(\bar{\delta}_{1}\right)}\) and an element \(z\left(d_{1}\right)\) of \(M\left(S\left(\bar{\delta}_{1}\right)\right.\), \(\left.q^{\prime}-1, t\left(d_{1}\right)\right)\) such that \(h\left(D\left(S_{1}\right), q^{\prime}-1, t\left(d_{1}\right)\right)\left(z\left(d_{1}\right)\right)=\) \(d\left(S_{1}, \bar{\delta}_{1}, 0\right)\) and \(h\left(D\left(S_{2}\right), q^{\prime}-1, t\left(d_{1}\right)\right)\left(z\left(d_{1}\right)\right)=d\left(S_{2}, \bar{\delta}_{1}, 0\right)\). This means that \(\left.d\left(S_{1}, \bar{\delta}_{1}, 0\right) \in D\left(S_{1}\right)\left(q^{\prime}-1\right), t\left(d_{1}\right)\right)\) and \(d\left(S_{2}, \bar{\delta}_{1}, 0\right) \in D\left(S_{2}\right)\left(q^{\prime}-1, t\left(d_{1}\right)\right)\), that is, \(\operatorname{st}\left(d\left(S_{1}, \bar{\delta}_{1}, 0\right)\right.\), \(\left.n\left(\bar{\delta}_{1}\right)\right)=\operatorname{st}\left(d\left(S_{2}, \bar{\delta}_{1}, 0\right), n\left(\bar{\delta}_{1}\right)\right)\). Thus, st \(\left(d\left(S_{1}, \bar{\delta}_{1}, m_{1}\right)\right.\), \(\left.n\left(\bar{\delta}_{1}\right)\right)=\operatorname{st}\left(d\left(S_{2}, \bar{\delta}_{1}, m_{1}\right), n\left(\bar{\delta}_{1}\right)\right)\) for \(0 \leq m \leq q^{\prime}-1\). Since \(n\left(\bar{\delta}_{1}\right) \geq q^{\prime} \geq q+2\) from the above it follows that \(d\left(S_{1}, \bar{\delta}_{1}, m_{1}\right) \cap\) st \((a, q) \neq \varnothing\) and \(d\left(S_{1}, \bar{\delta}_{1}, m_{1}\right) \cap\left(C \backslash C_{t}\right) \neq \varnothing\). Hence, since \(t \subseteq L_{n+1}\) we have that \(d\left(S_{1}, \bar{\delta}_{1}, m_{1}\right) \in D_{k_{1}}\left(S_{1}\right)\), where \(k_{1} \leq n\). Since \(S_{1}\) and \(S\) are (\(q, n(\bar{\delta})\))-equivalent, there is an element \(d^{\prime} \in D_{k_{1}}(S)\) such that \(s t\left(d^{\prime}, n(\bar{\delta})\right)=\)
st \(\left(\mathrm{d}\left(\mathrm{S}_{1}, \bar{\delta}_{1}, \mathrm{~m}_{1}\right), \mathrm{n}(\bar{\delta})\right)\). From the above and since \(\mathrm{n}(\bar{\delta}) \geq \mathrm{q}+\) \(l>n+l\) it follows that \(d^{\prime} n\) st \((a, q) \neq \emptyset\) and \(d^{\prime} \cap\left(C \backslash C_{t}\right)\) \(\neq \varnothing\).

By the choice of the set st(a,q) this is impossible. Hence, \(d_{1} \cap(J(A) \backslash U)=\varnothing\), that is, \(d_{1} \in O(U)\).

Since the space \(T(A)\) is Hausdorff, there is an open neighbourhood \(O\left(U_{0}\right), U_{0} \in U(A)\) of \(d_{1}\) such that \(O\left(U_{0}\right) \cap F=\varnothing\) and \(O\left(U_{0}\right) \subseteq O\left(U_{1}\right)\). Then \(d \in O\left(U_{0}\right) \subseteq c l\left(O\left(U_{0}\right)\right) \subseteq O(U)\).

In the second case, by the structure of the set \(\mathrm{U}(\bar{\gamma}, \mathrm{m}, \mathrm{k}-1)\) (see property 13) of Lemma 5) there exists an element \(\bar{\alpha} \in \Lambda_{k+1}\) such that \(d \subseteq U^{\prime}\) where \(U^{\prime}=C_{s(\bar{\gamma}, m, \bar{\alpha})} \times\) \(S(\bar{\alpha}) \subseteq U\). By the first case there exists \(U_{0} \in U(A)\) such that \(\mathrm{d} \in \mathrm{O}\left(\mathrm{U}_{0}\right) \subseteq \mathrm{cl}\left(\mathrm{O}\left(\mathrm{U}_{0}\right)\right) \subseteq \mathrm{O}\left(\mathrm{U}^{\prime}\right) \subseteq \mathrm{O}(\mathrm{U})\).

Consider the third case. Let k be an integer such that \(k>\max \left\{\mathrm{k}_{1}, \mathrm{q}\right\}\). Then, by property 8) of Lemma 5 we have that \(\mathrm{d} \subseteq \mathrm{U}(\bar{\gamma}, m, k) \subseteq \mathrm{U}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}, \mathrm{k}_{1}-1\right)\). Set \(\mathrm{U}_{0}=\mathrm{U}(\bar{\gamma}, \mathrm{m}, \mathrm{k})\). We prove that \(\mathrm{d} \in O\left(\mathrm{U}_{0}\right) \subseteq \mathrm{cl}\left(O\left(\mathrm{U}_{0}\right)\right) \subseteq O(\bar{\gamma}, \mathrm{~m}, \mathrm{k}-\mathrm{l}) \subseteq O(\mathrm{U})\).

Indeed, let \(d_{1} \in \operatorname{cl}\left(O\left(U_{0}\right)\right) O\left(U_{0}\right)\). Then, by Lemma 8 , \(d_{1} \cap U_{0} \neq \varnothing\). Obviously, \(d_{1}\) is an element of the first kind. Let \(d_{1}=d\left(\bar{\delta}, m^{\prime}\right)\) where \(\bar{\delta} \in \Lambda_{q \prime \prime}\) and \(0 \leq m^{\prime} \leq q^{\prime \prime}-1\).

If \(q^{\prime \prime} \leq k+1\), then by property 9) of Lemma 5, we must have that \(U(\bar{\gamma}, m, k) \cap U\left(\bar{\delta}, m^{\prime}, k\right)=\varnothing\) which is impossible.

Hence, \(q^{\prime \prime}>\mathrm{k}+1\). This means that there exists an element \(\bar{\alpha} \in \Lambda_{\mathrm{k}+2}\) such that \(\bar{\gamma} \leq \bar{\alpha} \leq \bar{\delta}\), that is, \(\mathrm{S}(\bar{\delta}) \subseteq \mathrm{S}(\bar{\alpha})\) \(\subseteq S(\bar{\gamma})\). By the structure of the set \(U(\bar{\gamma}, m, k)\) (see property 13) of Lemma 5) we have \(d_{1} \cap U(\bar{\gamma}, m, k)=d_{1} \cap\left(\left(C_{s(\bar{\gamma}, m, \bar{\alpha})} \times\right.\right.\) \(S(\bar{\alpha})) \cap J(A)) \neq \varnothing\). This means that there is an element \(S_{1}\) of \(S(\bar{\delta})\) such that \(d\left(S_{1}, \bar{\delta}, m^{\prime}\right) \cap C_{S}(\bar{\gamma}, m, \bar{\alpha}) \neq \varnothing\). We prove that this is true for every \(S \in S(\bar{\delta})\).

Indeed, let \(S \in S(\bar{\delta})\). By property 5) of Lemma 5 we have \(d\left(\bar{\delta}, m^{\prime}\right)=y\left(\bar{\delta}^{\prime}, m^{\prime}\right) \cap J(S(\bar{\delta}))\), where \(\bar{\delta}^{\prime} \in \Lambda_{q^{\prime \prime}-m^{\prime}}\) and \(\bar{\delta}^{\prime} \leq \bar{\delta}\). Obviously, \(y\left(S, \bar{\delta}^{\prime}, m^{\prime}\right)=d\left(S, \bar{\delta}, m^{\prime}\right)\). If \(m^{\prime} \neq 0\), then by property 14) of Lemma 5 st \(\left(y\left(S_{1} \bar{\delta}^{\prime}, \mathrm{m}^{\prime}\right), \mathrm{n}(\bar{\delta})\right)=\) st \(\left(y\left(S, \bar{\delta}^{\prime}, m^{\prime}\right), n(\bar{\delta})\right)\), that is, \(\left.s t\left(d_{1}, \bar{\delta}, m^{\prime}\right), n(\bar{\delta})\right)=\) st \(\left(\mathrm{d}\left(\mathrm{S}, \bar{\delta}, \mathrm{m}^{\prime}\right), \mathrm{n}(\bar{\delta})\right)\). Since \(\mathrm{n}(\bar{\delta}) \geq \mathrm{n}(\bar{\alpha})\) it follows that \(\mathrm{d}\left(\mathrm{s}, \bar{\delta}, \mathrm{m}^{\prime}\right) \cap \mathrm{C}_{\mathrm{s}}(\bar{\gamma}, \mathrm{m}, \bar{\alpha}) \neq \varnothing\).

Suppose now that \(m^{\prime}=0\). Then \(d(\bar{\delta}, 0)=y(\bar{\delta}, 0)\), that is, \(d(\bar{\delta}, 0)\) is a \(D\)-set of \(S(\bar{\delta})\) with respect to (\(q\) " \(-1, n(\bar{\delta})\))equivalence (see property 5) of Lemma 5). Hence, there exist a subset \(t\left(d_{1}\right)\) of \(L_{n}(\bar{\delta})\) and an element \(z\left(d_{1}\right)\) of \(\mathrm{M}\left(\mathrm{S}(\bar{\delta}), \mathrm{q}^{\prime \prime}-1, \mathrm{t}\left(\mathrm{d}_{1}\right)\right)\) such that \(\mathrm{h}\left(\mathrm{D}\left(\mathrm{S}_{1}\right), \mathrm{q}^{\prime \prime}-1, \mathrm{t}\left(\mathrm{d}_{1}\right)\right)\left(\mathrm{z}\left(\mathrm{d}_{1}\right)\right)\) \(=d\left(S_{1}, \bar{\delta}, 0\right)\) and \(h\left(D(S), q "-1, t\left(d_{1}\right)\right)\left(z\left(d_{1}\right)\right)=d(S, \bar{\delta}, 0)\). This means that \(d\left(S_{1}, \bar{\delta}, 0\right) \in D\left(S_{1}\right)\left(q "-1, t\left(d_{1}\right)\right)\) and \(d(S, \bar{\delta}, 0) \in D(S)\left(q^{\prime \prime}-1, t\left(d_{1}\right)\right)\), that is, st(d(S \(\left., \bar{\delta}, m^{\prime}\right)\), \(n(\bar{\delta}))=\operatorname{st}(d(s, \bar{\delta}, m), n(\bar{\delta}))=C_{t}\left(d_{1}\right)\).

As above, since \(n(\bar{\delta}) \geq n(\bar{\alpha})\) and \(d\left(S_{1}, \bar{\delta}, 0\right) \cap C_{s}(\bar{\gamma}, m, \bar{\alpha})\) \(\neq \varnothing\) we have that \(d(S, \bar{\delta}, 0) \cap C_{s}(\bar{\gamma}, m, \bar{\alpha}) \neq \varnothing\).

Thus, for all cases, for every \(S \in S(\bar{\delta})\) we have \(d\left(S, \bar{\delta}, m^{\prime}\right) \cap C_{s(\bar{\gamma}, m, \bar{\alpha})} \neq \varnothing\). By property 10) of Lemma 5, we have that \(d\left(s, \bar{\delta}, m^{\prime}\right) \times\{s\} \subseteq U(\bar{\gamma}, m, k-1)\) for every \(S \in S(\bar{\delta})\) and, hence, \(d\left(\bar{\delta}, m^{\prime}\right) \subseteq U(\bar{\gamma}, m, k-l)\), that is, \(d_{1}=d\left(\bar{\delta}, m^{\prime}\right) \in\) \(O(\bar{\gamma}, m, k-1) \subseteq O(U)\). Hence, \(d \in O\left(U_{0}\right) \subseteq c l\left(O\left(U_{0}\right)\right) \subseteq O(U)\).

Finally, consider the fourth case. There exists an
integer \(k_{1} \geq q\) such that \(d \subseteq U\left(\bar{\gamma}, m, k_{1}\right) \subseteq\left(C_{t} \times S(\bar{\alpha})\right) \cap J(A)\) (see the proof of Lemma 6). By the third case, there exists \(\mathrm{U}_{0} \in \mathrm{U}(\mathrm{A})\) such that \(\mathrm{d} \in \mathrm{O}\left(\mathrm{U}_{0}\right) \subseteq \mathrm{cl}\left(\mathrm{O}\left(\mathrm{U}_{0}\right)\right) \subseteq O(\mathrm{U})\). The proof of the lemma is completed.
8. Lemma 10. For every \(O \in O(A)\), type \((B d(O)) \leq \alpha\). Proof. For every element \(d(\bar{\alpha}, m)\), where \(\bar{\alpha} \in \Lambda_{k+1}\), \(0 \leq m \leq k\), by type \((\alpha(\bar{\alpha}, m))\) (resp. \(\operatorname{deg}(d(\bar{\alpha}, m))\)) we denote the ordinal number type \((y(\bar{\gamma}, m))\) (resp. the integer \(\operatorname{deg}(y(\bar{\alpha}, m))\), where \(\bar{\gamma} \in \Lambda_{k+l-m^{\prime}} \bar{\gamma} \leq \bar{\alpha}\) and \(\left.d(\bar{\alpha}, m)=y(\bar{\gamma}, m) \cap J(S(\bar{\alpha}))\right)\). Since \(D(S)\) is an \(M(\alpha)\)-partition, for every \(S \in S(A)\) we have that type \((\alpha(\bar{\alpha}, m) \leq \alpha\) for every \(d(\bar{\alpha}, m)\).

Let \(O \in O(A)\). Consider two cases: l) \(O=O(U)\), where \(U=\left(C_{t} \times S(\bar{\beta})\right) \cap J(A), t \subseteq L_{n}, \bar{\beta} \in \Lambda_{q}, n=0,1, \cdots\), \(q=1,2, \ldots\) and 2) \(O=O(U)\), where \(U=U(\bar{\gamma}, m, k-1), \bar{\gamma} \in \Lambda_{q}\), \(0 \leq m \leq q-1, q \leq k\).

Consider the first case. Let \(d(\bar{\alpha}, m) \in \operatorname{Bd}(0)\), where \(\bar{\alpha} \in \Lambda_{q},{ }^{\prime} 0 \leq m \leq q^{\prime}-1\). Let \(k \geq \max \left\{q^{\prime}, n, q\right\}\). We prove that if \(d_{1}=d\left(\bar{\alpha}_{1}, m_{1}\right) \in O(\bar{\alpha}, m, k-1) \cap \operatorname{Bd}(0)\), where \(\bar{\alpha}_{1} \in \Lambda_{q \prime \prime}\) ', \(0 \leq m_{1} \leq q "-1\) and \(d\left(\bar{\alpha}_{1}, m_{1}\right) \neq d(\bar{\alpha}, m)\), then type \(\left(d\left(\bar{\alpha}_{1}, m_{1}\right)\right)\) \(<\) type \((\mathrm{d}(\bar{\alpha}, m))\).

Indeed, let \(\bar{\gamma} \in \Lambda_{q^{\prime}-m^{\prime}} \bar{\gamma} \leq \bar{\alpha}^{\prime} \bar{\gamma}_{1} \in \Lambda_{q^{\prime \prime}-m_{1}}, \bar{\gamma}_{1} \leq \bar{\alpha}_{1}\), \(\mathrm{d}(\bar{\alpha}, \mathrm{m})=\mathrm{y}(\bar{\gamma}, \mathrm{m}) \cap J(S(\bar{\alpha})), \mathrm{d}\left(\bar{\alpha}_{1}, \mathrm{~m}_{1}\right)=\mathrm{y}\left(\bar{\gamma}_{1}, \mathrm{~m}_{1}\right) \cap J\left(S\left(\bar{\alpha}_{1}\right)\right)\) and \(S \in S\left(\bar{\alpha}_{1}\right) \cap S(\bar{\alpha})\). By the above definition of the type of the elements of \(T(A)\) of the first kind we have that \(\operatorname{type}\left(d\left(\bar{\alpha}_{1}, m_{1}\right)\right)=\operatorname{type}\left(y\left(\bar{\gamma}_{1}, m_{1}\right)\right)\) and type \((d(\bar{\alpha}, m))=\) type \((y(\bar{\gamma}, m))\).

On the other hand, type \(\left(y\left(\bar{\gamma}_{1}, m_{1}\right)=\operatorname{type}\left(d\left(S, \bar{\alpha}_{1}, m_{1}\right)\right.\right.\), \(\left.D_{q \prime-m_{1}-1}(S)\right)\) and type \((y(\bar{\gamma}, m))=\operatorname{type}\left(d(S, \bar{\alpha}, m), D_{q^{\prime}-m-1}(S)\right)\). Since \(d\left(\bar{\alpha}_{1}, m_{1}\right) \subseteq U(\bar{\alpha}, m, k-1)\) we have that \(q " \geq k+1\), because in the opposite case \(U\left(\bar{\alpha}_{1}, m_{1}, k-1\right) \cap U(\bar{\alpha}, m, k-1)=\varnothing\) which is impossible. Hence, there exists an element \(\bar{\delta} \in \Lambda_{k+1}\) such that \(\bar{\alpha} \leq \bar{\delta} \leq \bar{\alpha}_{1}\). Let \(S \in S\left(\bar{\alpha}_{1}\right)\). Then, by the structure
of the set \(u(\bar{\alpha}, m, k-1)\) (see property 13) of Lemma 5) we have that \(d\left(S, \bar{\alpha}_{1}, m_{1}\right) \subseteq s t(d(S, \bar{\alpha}, m), n(\bar{\delta}))\). By property ll) of Lemma 5, either \(\operatorname{deg}\left(d\left(S, \bar{\alpha}_{1}, m_{1}\right)\right)>k\), or \(\operatorname{deg}\left(d\left(S, \bar{\alpha}_{1}, m_{1}\right)=\right.\) \(q^{\prime}-m-1\) and type \(\left(d\left(S, \bar{\alpha}_{1}, m_{1}\right), D_{q}{ }^{\prime}-m-1(S)\right)<\) type \((d(S, \bar{\alpha}, m)\), \(\left.D_{q^{\prime}-m-1}(S)\right)\).

Since \(d\left(\bar{\alpha}_{1}, m_{1}\right) \in \operatorname{Bd}(0), S\left(\bar{\alpha}_{1}\right) \cap S(\bar{\beta}) \neq \varnothing\). Since \(q^{\prime \prime} \geq k+1>q, s\left(\bar{\alpha}_{1}\right) \subseteq s(\bar{\beta}) . \quad\) Let \(\left(a_{1}, S_{1}\right) \in d\left(\bar{\alpha}_{1}, m_{1}\right) \cap U\). Then \(\alpha\left(S_{1}, \bar{\alpha}_{1}, m_{1}\right) \cap C_{t} \neq \varnothing\).

We prove that if \(d\left(S_{1}, \bar{\alpha}_{1}, m_{1}\right) \subseteq c_{t}\), then for every \(S \in S\left(\bar{\alpha}_{1}\right)\) we have that \(d\left(S, \bar{\alpha}_{1}, m_{1}\right) \subseteq C_{t}\).

Indeed, let \(\alpha\left(S_{1}, \bar{\alpha}_{1}, m_{1}\right) \subseteq c_{t}\) and \(s \in S\left(\bar{\alpha}_{1}\right)\). If \(m_{1}>0\), then by property 14) of Lemma \(\left.5 \operatorname{st}\left(d^{(} s_{1}, \bar{\alpha}_{1}, m_{1}\right), n\left(\bar{\alpha}_{1}\right)\right)=\) st \(\left(\mathrm{d}\left(\mathrm{s}, \bar{\alpha}_{1}, \mathrm{~m}_{1}\right), \mathrm{n}\left(\bar{\alpha}_{1}\right)\right)\). Since \(\mathrm{n}\left(\bar{\alpha}_{1}\right) \geq \mathrm{q}^{\prime \prime}+1 \geq \mathrm{k}+2 \geq \mathrm{n}+2\) we have that \(\operatorname{st}\left(\mathrm{d}\left(\mathrm{S}, \bar{\alpha}_{1}, \mathrm{~m}_{1}\right), \mathrm{n}\left(\bar{\alpha}_{1}\right)\right) \subseteq \mathrm{C}_{\mathrm{t}}\) and, hence, \(d\left(S, \bar{\alpha}_{1}, m_{1}\right) \subseteq C_{t}\).

If \(m_{1}=0\), then the set \(d\left(\bar{\alpha}_{1}, 0\right)=y\left(\bar{\alpha}_{1}, 0\right)\) is a \(D\)-set of \(S\left(\bar{\alpha}_{1}\right)\) with respect to (\(q\) " \(-1, n\left(\bar{\alpha}_{1}\right)\))-equivalence. This means that there is a subset \(t\left(d_{1}\right)\) of \(L_{n\left(\bar{\alpha}_{1}\right)}\) and an element \(z\left(d_{1}\right)\) of \(M\left(S\left(\bar{\alpha}_{1}\right), q^{\prime \prime}-1, t\left(d_{1}\right)\right)\) such that \(h\left(D\left(S_{1}\right), q "-1\right.\), \(\left.t\left(d_{1}\right)\right)\left(z\left(d_{1}\right)\right) \in D\left(q^{\prime \prime}-1, t\left(d_{1}\right)\right)\) and \(h\left(D(S), q "-1, t\left(d_{1}\right)\right)\) \(\left(z\left(d_{1}\right)\right) \in D\left(q^{\prime \prime}-1, t\left(d_{1}\right)\right)\), that is, st \(\left(d\left(s_{1}, \bar{\alpha}_{1}, 0\right), n\left(\bar{\alpha}_{1}\right)\right)=\) \(\operatorname{st}\left(d\left(S, \bar{\alpha}_{1}, 0\right), n\left(\bar{\alpha}_{1}\right)\right)=c_{t\left(d_{1}\right)}\). Since \(n\left(\bar{\alpha}_{1}\right) \geq n+2\) and \(d\left(S_{1}, \bar{\alpha}_{1}, 0\right) \subseteq C_{t}\) we have that \(d\left(s, \bar{\alpha}_{1}, 0\right) \subseteq c_{t}\).

Hence, for all \(S \in S\left(\bar{\alpha}_{1}\right)\) we have that \(d\left(S, \bar{\alpha}_{1}, m_{1}\right) \subseteq c_{t}\), that is, \(d\left(\bar{\alpha}_{1}, m_{1}\right) \subseteq\left(C_{t} \times S(\bar{\beta})\right) \cap J(A)\). This means that \(\mathrm{d}\left(\bar{\alpha}_{1}, \mathrm{~m}_{1}\right) \& \mathrm{Bd}(\mathrm{O})\) which is impossible.

Thus, \(d\left(S_{1}, \bar{\alpha}_{1}, m_{1}\right) \cap C_{t} \neq \varnothing\) and \(d\left(S_{1}, \bar{\alpha}_{1}, m_{1}\right) \notin C_{t} . \quad\) This means that \(\operatorname{deg}\left(\mathrm{d}\left(\mathrm{S}_{1}, \bar{\alpha}_{1}, \mathrm{~m}_{1}\right)\right)=\operatorname{deg}\left(\mathrm{d}\left(\bar{\alpha}_{1}, \mathrm{~m}_{1}\right)\right) \leq \mathrm{n}-1<\mathrm{k}\).

Hence, \(\operatorname{deg}\left(d\left(S_{1}, \bar{\alpha}_{1}, m_{1}\right)\right)=q^{\prime}-m-1=q^{\prime \prime}-m_{1}-1\) and type \(\left(\mathrm{d}\left(\bar{\alpha}_{1}, \mathrm{~m}_{1}\right)\right)<\operatorname{type}(\mathrm{d}(\bar{\alpha}, \mathrm{m}))\).

From the above it follows that if type \((d(\bar{\alpha}, m))=1\), then \(O(\bar{\alpha}, m, k-1) \cap B d(O)=\{d(\bar{\alpha}, m)\}\), that is, the point \(d(\bar{\alpha}, m)\) is an isolated point of \(B d(0)\). Hence, type \((\bar{\alpha}(\bar{\alpha}, m)\), \(\operatorname{Bd}(0))=1\), that is, type \((\mathrm{d}(\bar{\alpha}, \mathrm{m}), \operatorname{Bd}(0)) \leq \operatorname{type}(\mathrm{d}(\bar{\alpha}, \mathrm{m}))\). By induction, it follows that for every point \(d(\alpha, m)\) of \(B d(0)\) we have type \((d(\bar{\alpha}, m), B d(0)) \leq\) type \((d(\bar{\alpha}, m))\). Hence, type (Bd (O)) \(\leq \alpha\).

We now consider the second case. We prove that the set \(B d(O)\) is the free union of the sets \(\operatorname{Bd}\left(O C_{s}(\bar{\gamma}, m, \bar{\alpha})\right.\), \(S(\bar{\alpha})), \bar{\alpha} \geq \bar{\gamma}, \bar{\alpha} \in \Lambda_{\mathrm{k}+1}\).

Indeed, let \(d\left(\bar{\beta}, m_{l}\right) \in \operatorname{Bd}(0)\) where \(\bar{\beta} \in \Lambda_{q}\) and \(0 \leq m_{l} \leq\) \(q^{\prime}-1 . \quad\) ff \(q^{\prime} \leq k\), then by property 9) of Lemma 5, \(O\left(\bar{\beta}, m_{1}, k-1\right) \cap O\left(\bar{\gamma}, m_{1}, k-1\right)=\varnothing\), that is, \(d\left(\bar{\beta}, m_{l}\right) \notin B d(O)\). Hence, \(q^{\prime}>k\). Since \(q^{\prime}>q\) and \(d\left(\bar{\beta}, m_{1}\right) \cap U(\bar{\gamma}, m, k-l) \neq \emptyset\) it follows that there exists an element \(\bar{\alpha}\) of \(\Lambda_{k+1}\) such that \(\bar{\alpha} \leq \bar{\beta}\), that is, \(S(\bar{\beta}) \subseteq S(\bar{\alpha})\). Hence, \(d\left(\bar{\beta}, m_{1}\right) \cap U(\bar{\gamma}, m, k-l)=\) \(d\left(\bar{\beta}, m_{1}\right) \cap\left(\left(C_{s}\left(\bar{\gamma}, m_{1}, \bar{\alpha}\right) \times S(\bar{\alpha})\right) \cap J(A)\right)\) and \(d\left(\bar{\beta}, m_{1}\right) \cap(J(A)\) \(U(\bar{\gamma}, m, k-1)) \subseteq d\left(\bar{\beta}, m_{1}\right) \cap\left(J(A) \backslash\left(C_{s}\left(\bar{\gamma}, m_{1}, \bar{\alpha}\right) \times s(\bar{\alpha})\right)\right)\). This means that \(d\left(\bar{\beta}, m_{1}\right) \in \operatorname{Bd}\left(O\left(C_{s}\left(\bar{\gamma}, m_{,} \bar{\alpha}\right), S(\bar{\alpha})\right)\right.\).

Conversely, let \(\alpha\left(\bar{\beta}, m_{1}\right) \in \operatorname{Bd}\left(O\left(C_{s}(\bar{\gamma}, m, \bar{\alpha}), S(\bar{\alpha})\right)\right)\), where \(\bar{\beta} \in \Lambda_{q}, 0 \leq m_{1} \leq q^{\prime}-1, \bar{\alpha} \in \Lambda_{k+1}\) and \(\bar{\gamma} \leq \bar{\alpha}\). Then \(d\left(\bar{\beta}, m_{1}\right) \cap\left(\left(C_{s(\bar{\gamma}, m, \bar{\alpha})} \times S(\bar{\alpha})\right) \cap J(A)\right) \neq \emptyset\) (see Lemma 8), that is, \(d\left(\bar{\beta}, m_{1}\right) \cap U(\bar{\gamma}, m, k-l) \neq \varnothing\). If \(q^{\prime} \leq k\), then \(U\left(\bar{\beta}, m_{l}, k-l\right) \cap U(\bar{\gamma}, m, k-1)=\varnothing\) which is impossible. Hence, \(q^{\prime}>k\). There exists an element \(\bar{\alpha} \in \Lambda_{k+1}\) such that \(\bar{\beta} \geq \bar{\alpha}\), that is, \(S(\bar{\beta}) \subseteq S(\bar{\alpha})\). From this it follows that
\(d\left(\bar{\beta}, m_{1}\right) \cap\left(J(A) \backslash\left(C_{s}(\bar{\gamma}, m, \bar{\alpha}) \times S(\bar{\alpha})\right)\right) \nsubseteq U(\bar{\gamma}, m, k-1)\) and, hence, \(d\left(\bar{\beta}, m_{1}\right) \cap(J(A) \backslash U(\bar{\gamma}, m, k-1)) \neq \varnothing\). This means that \(d\left(\bar{\beta}, m_{1}\right) \in B d(0)\). Moreover, if \(\bar{\alpha}_{1} \in \Lambda_{k+1}\) and \(\bar{\alpha}_{1} \neq \bar{\alpha}\), then \(S(\bar{\beta}) \cap S\left(\bar{\alpha}_{1}\right)=\varnothing\). Hence, \(\alpha\left(\bar{\beta}_{1} m_{1}\right) \cap\left(C_{s}\left(\bar{\gamma}, m, \bar{\alpha}_{1}\right) \times S\left(\bar{\alpha}_{1}\right)\right)=\varnothing\) that is, \(d\left(\bar{\beta}_{1} m_{1}\right) \& \operatorname{Bd}\left(O\left(C_{s}\left(\bar{\gamma}, m, \bar{\alpha}_{1}\right), S\left(\bar{\alpha}_{1}\right)\right)\right)\).

Hence, \(\operatorname{Bd}\left(O\left(C_{s}\left(\bar{\gamma}, m, \bar{\alpha}_{1}\right), S\left(\bar{\alpha}_{1}\right)\right)\right) \cap \operatorname{Bd}\left(O\left(C_{s}\left(\bar{\gamma}, m, \bar{\alpha}_{2}\right)\right.\right.\) ' \(\left.\left.S\left(\bar{\alpha}_{2}\right)\right)\right)=\varnothing\) for every \(\bar{\alpha}_{1}, \bar{\alpha}_{2} \in \Lambda_{\mathrm{k}+1}, \bar{\alpha}_{1} \neq \bar{\alpha}_{2}\).

Also, the sets \(O\left(C, S\left(\bar{\alpha}_{1}\right)\right)\) and \(O\left(C, S\left(\bar{\alpha}_{2}\right)\right)\) are open neighbourhoods of the sets \(B d\left(O\left(C_{s}\left(\bar{\gamma}_{1}, m_{1}\right), S\left(\bar{\alpha}_{1}\right)\right)\right)\) and \(\operatorname{Bd}\left(O\left(C_{S}\left(\bar{\gamma}, m, \bar{\alpha}_{2}\right), S\left(\bar{\alpha}_{2}\right)\right)\right)\), respectively, with empty intersection.

Thus, \(\mathrm{Bd}(0)\) is the free union of the closed sets \(\operatorname{Bd}\left(O\left(C_{s}\left(\bar{\gamma}, m_{,} \bar{\alpha}\right), S(\bar{\alpha})\right)\right), \bar{\alpha} \geq \bar{\gamma}, \bar{\alpha} \in \Lambda_{k+1}\). By the first case, for every \(\bar{\alpha} \geq \bar{\gamma}, \bar{\alpha} \in \Lambda_{k+1}\), we have that type \(\left(\operatorname{Bd}\left(O C_{s}(\bar{\gamma}, m, \bar{\alpha})\right.\right.\), \(S(\bar{\alpha})))\) < \(\alpha\).

Hence, type \((B d(0)) \leq \alpha\). The proof of the lemma is completed.
9. Corollary. The space \(T(A)\) is metrizable with a countable basis space having type \(\leq \alpha\).
III. 1. By \(R(\leq \alpha)\) we denote the set of all spaces having rim-type \(\leq \alpha\).

A pair (\(\mathrm{S}, \mathrm{D}\)) where S is a subset of the Cantor ternary set \(C\) and \(D\) is a partition of \(S\) is called a representation of a space \(X\) iff the quotient space \(D\) is homeomorphic to the space \(X\).

Let \(\alpha=\beta+n\) where \(\beta\) is a limit ordinal number and \(n\) is a non-negative integer.

Let \(M(\alpha)\) be a countable set of spaces having the property: a space \(X\) is homeomorphic to an element of \(M(\alpha)\) iff, either \(X\) is a compact space and type (X) < \(B\), or \(X\) is an element of the set \(G(\beta, m)\), where \(0 \leq m \leq n\). We consider that two different elements of \(M(\alpha)\) are not homeomorphic. The existence of such set follows by Lemma 2.

A representation (S,D) of a space \(X\) is called a \(M(\alpha)\)-representation iff the partition \(D\) of \(S\) is a \(M(\alpha)\)-partition.

Lemma 11. Let \(\mathrm{X} \in \mathrm{R}(\leq \alpha)\). There exists an element \(\hat{\mathrm{X}}\) of \(\mathrm{R}(\leq \alpha)\) containing X topologically and having an \(M(\alpha)\)-representation.

Proof. Let \(X \in R(\leq \alpha)\). Let \(Z\) be an extension of \(X\) and \(B(Z)=\left\{T_{1}, T_{2}, \cdots\right\}\) be a basis of open sets of \(Z\) having all the properties of Lemma 4.

As in section \(I .5\) of \(\left[I_{4}\right]\) we set \(A_{0}^{i}=c l\left(T_{i}\right)\) and \(A_{1}^{i}=z \backslash T_{i}, i=1,2, \ldots\) For every \(i_{1} \cdots i_{m} \in L_{m}, m=1,2, \ldots\) we set \(Z_{i_{1}} \cdots i_{m}=A_{i_{1}}^{l} \cap \cdots \cap \mathbb{A}_{i_{m}}^{m}\). We define a subset \(S(Z)\) of \(C\) and a map \(q(Z)\) of \(S(Z)\) into \(Z\). The point a of \(C\) belongs to \(S(Z)\) if and only if \(Z_{\bar{i}(a, 1)} \cap Z_{\bar{i}(a, 2)} \cap \cdots \neq \varnothing\). Obviously, for every point \(a \in S(Z)\), the set \(Z_{i(a, 1)} \cap\) \(Z_{\bar{i}(a, 2)} n^{\cdots}\) is a singleton. If \(\{x\}=Z_{\bar{i}(a, 1)} \cap Z_{\bar{i}(a, 2)} \cap\) ..., then we set \(q(z)(a)=x\).

Set \(D(Z)=\left\{(q(Z))^{-1}(x): x \in Z\right\}\). Obviously, \(D(Z)\) is a partition of \(S(Z)\). Also, set \(B d(B(Z))=U_{i=1}^{\infty} B d\left(T_{i}\right)\).

The set \(S(Z)\), the map \(q(Z)\) and the partition \(D(Z)\) have the following properties (see section \(I .5\) and Lemma 2 of \(\left[\mathrm{I}_{4}\right]\)):
1) \(q(z)\left(C_{\bar{i}} \cap S(z)\right)=z_{\bar{i}}, \bar{i} \in L\),
2) if \(x \notin B d(B(Z))\) then \((q(Z))^{-1}(x)\) consists of one point only,
3) if \(x \in B d(B(Z))\) then \((q(Z))^{-1}(x)\) consists of exactly two points,
4) the map \(q(Z)\) is continuous,
5) the map \(q(Z)\) is closed,
6) the partition \(D(Z)\) is an upper semi-continuous partition of \(S(Z)\).

Let \(p(Z)\) be the natural projection of \(S(Z)\) onto \(D(Z)\). Since \(D(Z)\) is upper semi-continuous, the projection \(p(Z)\) is closed.

Let \(i(Z)\) be the map of \(Z\) onto \(D(Z)\) for which \(p(Z)=\) \(i(Z) \circ q(z)\). Obviously, the map \(i(z)\) is one-to-one. Since both maps \(p(Z)\) and \(q(Z)\) are continuous and closed, the map \(i(Z)\) is also continuous and closed. Hence \(i(Z)\) is a homeomorphism of \(Z\) onto \(D(Z)\).

Set \(\hat{x}=x \cup\left(U_{i=1}^{\infty}\left(\operatorname{Bd}\left(T_{i}\right) \backslash\left(\operatorname{Bd}\left(T_{i}\right)\right)(\beta)\right)\right) . \quad B y\) Lemma 4, \(\hat{x}\) is an element of \(R(\leq \alpha)\).

Also, set \(S(\hat{X})=(q(z))^{-1}(\hat{X}), D(\hat{X})=i(Z)(\hat{X}) . \quad\) Obviously, \((p(Z))^{-l}(D(\hat{X}))=S(\hat{x})\). Let \(i(\hat{X})=\left.i(Z)\right|_{\hat{X}}, q(\hat{X})=\left.q(Z)\right|_{S(\hat{X})}\) and \(p(\hat{X})=\left.p(Z)\right|_{S(\hat{X})}\). Obviously, \(p(\hat{X})=i(\hat{X}) \circ q(\hat{X})\). It is clear that the map \(p(\hat{X})\) is continuous and closed. Hence, \(D(\hat{X})\) is an upper semi-continuous partition and the space \(D(\hat{X})\) has the quotient topology. Since \(i(\hat{X})\) is a homeomorphism of \(\hat{X}\) onto \(D(\hat{X})\), the pair \((S(\hat{X}), D(\hat{X}))\) is a representation of \(\hat{X}\).

We prove that \((S(\hat{X}), D(\hat{X}))\) is an \(M(\alpha)\)-representation of \(\hat{X}\). By the above properties 2) and 3) of the map \(q(z)\)
it follows that every element of \(D(\hat{X})\) is a singleton, or it consists of exactly two points.

Hence, in order to prove that \((S(\hat{X}), D(\hat{X}))\) is a \(M(\alpha)\)-representation it is sufficient to prove that for every integer \(k \geq 0\) and for every subset \(t\) of \(L_{m}\), \(m=0,1,2, \ldots\) the \(s u b s e t ~ D(\hat{X})(k, t)\) is homeomorphic to an element of the set \(M(\alpha)\).

Let \(k \geq 0\) be an integer and let \(t\) be a subset of the set \(L_{m}, m \geq 0\). Consider the set \(D(\hat{X})(k, t)\). Obviously, \(D(\hat{X})(k, t)=D(Z)(k, t) \cap D(\hat{X})\).

Let \(d \in D(Z)(k, t)\). Then, \(d=(q(Z))^{-1}(x)\) for some \(x \in Z\). By the definition of the map \(i(Z),(i(Z))^{-1}(d)=x\).

By the construction of the set \(S(Z)\) it follows that \(d \in D(Z)_{k-1}\) if and only if \(x \in B d\left(T_{k}\right)\). On the otiner hand, \(d \cap C_{\bar{i}} \neq \varnothing\) if and only if \(x \in Z_{\bar{i}}\) (see property 1) of the set \(S(Z)\) and the map \(q(Z))\). Hence, \((i(Z))^{-1}(D(Z)(k-1, t))=\) \(\left(\cap_{\bar{i} \in t} Z_{\bar{i}}\right) \cap \operatorname{Bd}\left(T_{k}\right)\). Set \(B d_{t}\left(T_{k}\right)=\left(\cap_{\bar{i} \in t} Z_{\bar{i}}\right) \cap B d_{k}\left(T_{k}\right)\).

Since \(\operatorname{Bd}\left(T_{i}\right) \cap \operatorname{Bd}\left(T_{j}\right)=\varnothing\) if \(i \neq j\) we have that the set \(B d_{t}\left(T_{k}\right)\) is an open and closed subset of the set \(B d\left(T_{k}\right)\).

We have \((i(\hat{X}))^{-1}(D(\hat{X})(k-1, t))=B d_{t}\left(T_{k}\right) \cap \hat{X} . \quad\) Hence, if type \(\left(B d_{t}\left(T_{k}\right)\right)<\beta\), then \(B d_{t}\left(T_{k}\right) \subseteq X\). This means that \(D(\hat{X})(k-l, t)\) is homeomorphic to \(B d_{t}\left(T_{k}\right)\) and, hence, it is homeomorphic to an element of \(M(\alpha)\), because \(B d_{t}\left(T_{k}\right)\), as a compact space having type \(<\beta\), is homeomorphic to an element of \(M(\alpha)\).

Suppose that type \(\left(B d_{t}\left(T_{k}\right)\right) \geq \beta\). Then, \(B d_{t}\left(T_{k}\right)\) V \(\left(B d_{t}\left(T_{k}\right)\right)^{(\beta)} \subseteq \hat{X}\) and since \(B d_{t}\left(T_{k}\right) \cap \hat{X} \subseteq \operatorname{Bd}\left(T_{k}\right) \cap \hat{X}=\) \(\left(X \cap\left(B d\left(T_{k}\right)\right)\right) U\left(B d\left(T_{k}\right) \backslash\left(B d\left(T_{k}\right)(B)\right)\right)\) (we have) type \(\left(B d_{t}\left(T_{k}\right)\right.\) \(n \hat{X}) \leq \beta+n\). The above means that the set \(B d_{t}\left(T_{k}\right) \hat{n} \hat{X}\) and,
hence, \(D(\hat{X})(k-1, t)\) is homeomorphic to an element of \(M(\alpha)\). The proof of the lemma is completed.
2. A representation \((S(X), D(X))\) of a space \(X\) is called complete if the set \(C \backslash\left(u_{k=0}^{\infty} \mathrm{cl}\left(\mathrm{D}_{\hat{k}}^{\star}(\hat{X})\right)\right)\) is a subset of the set \(S(X)\).

Lemma 12. Let \(\mathrm{X} \in \mathrm{R}(\leq \alpha)\). There exists an element X * of \(\mathrm{R}(\leq \alpha)\) containing topologically the space X and having a complete \(M(\alpha)\)-representation.

Proof. Let \(X\) be a space and \((S(\hat{X}), D(\hat{X}))\) be the \(M(\alpha)-\) representation of \(\hat{X}\) constructed in Lemma 11 .

Set \(S_{C}(\hat{X})=S(\hat{X}) \cup\left(C \backslash\left(U_{k=0}^{\infty} C l\left(D_{k}^{\star}(\hat{X})\right)\right)\right) . \quad B y D_{C}(\hat{X})\) we denote a partition of the set \(S_{C}(\hat{X})\) which is defined as follows: l) every element of the set \(D(\hat{X})(1)\) is an element of the partition \(D_{C}(\hat{X})\) and 2) if \(x \in S_{C}(\hat{X})\) and \(x\) does not belong to any element of \(D(\hat{X})(1)\) then the singleton \(\{x\}\) is an element of \(D_{c}(\hat{X})\).

Since \(D_{C}(\hat{X})(1)=D(\hat{x})(1)\) the partition \(D_{C}(\hat{X})\) is an \(M(\alpha)\)-partition of the set \(S_{C}(\hat{X})\). Hence, by the construction of the set \(S_{C}(\hat{X})\), the pair \(\left(S_{c}(\hat{X}), D_{c}(\hat{X})\right)\) is a complete \(M(\alpha)\)-representation of the quotient space \(D_{C}(\hat{X})\). Obviously, the space \(D(\hat{X})\) and, hence, the spaces \(\hat{X}\) and \(X\) are homeomorphic to a subset of the space \(D_{C}(\hat{X})\). Setting \(X^{*}=D_{C}(\hat{X})\) we complete the proof of the lemma.
3. Theorem. In the family \(\mathrm{R}(\leq \alpha)\) there exists a universal element \(T\) having the property of finite intersection with respect to a given subfamily \(\mathrm{R}_{1}\) of \(\mathrm{R}(\leq \alpha)\), where the power of \(\mathrm{R}_{1}\) is less than or equal to the continuum.

Proof. Let \(\mathrm{X} \in \mathrm{R}(\leq \alpha)\). By Lemma 12 there exists a space \(X * \in R(\leq \alpha)\) containing topologically the space \(X\) and having a complete \(M(\alpha)\)-representation (\(\left.S\left(X^{*}\right), D\left(X^{*}\right)\right)\).

By \(A^{\prime}\) we denote the set of all pairs (\(S\left(X^{*}\right), D\left(X^{*}\right)\)) where \(X \in R(\leq \alpha) \backslash R_{1}\). We consider that if \(\left(S\left(X_{1}^{*}\right), D\left(X_{1}^{*}\right)\right)\) and (\(\left.S\left(X_{2}^{*}\right), D\left(X_{2}^{*}\right)\right)\) are different elements of \(A^{\prime}\) then, either \(S\left(X_{1}^{*}\right) \neq S\left(X_{2}^{*}\right)\), or \(D\left(X_{1}^{*}\right) \neq D\left(X_{2}^{*}\right)\). We observe that for every element (S(X*),D(X*)) the set \(D\left(X^{*}\right)(1)\) uniquely determines the set \(S\left(X^{*}\right)\). Since the set \(D\left(X^{*}\right)(1)\) is uniquely determined by a sequence of countable subsets of \(C \times C\) we have that the power of \(A\) ' is less than or equal to the continuum.

By \(A_{l}\) we denote the set of all pairs (\(S\left(X^{*}\right), D\left(X^{*}\right)\)) where \(X \in R_{1}\). We consider that if \(X_{1}\) and \(X_{2}\) are different elements of \(R_{1}\) then (\(\left.S\left(X_{1}^{*}\right), D\left(X_{1}^{*}\right)\right)\) and (\(\left.S\left(X_{2}^{*}\right), D\left(X_{2}^{*}\right)\right)\) are different elements of \(A_{1}\).

Let \(A\) be the free union of the sets \(A^{\prime}\) and \(A_{1}\). Then, the power of \(A\) is less than or equal to the continuum.

Set \(T=T(A)\) where \(T(A)\) is the space constructed in section II for the set \(A\). By the corollary of section II.9, \(T\) is a metrizable space with a countable basis having rim-type \(\leq \alpha\), that is, \(T\) is an element of \(R(\leq \alpha)\).

Let \(\left(S\left(X^{*}\right), D\left(X^{*}\right)\right)\) be an element of \(A\). Consider the subset \(T\left(S\left(X^{*}\right)\right)\) of \(T(A)\) which consists of the points \(d\) of \(T(A)\) for which \(d \cap\left(C \times\left\{S\left(X^{*}\right)\right\}\right) \neq \varnothing\).

We prove that the subset \(T\left(S\left(X^{*}\right)\right)\) of \(T(A)\) is homeomorphic to the quotient space \(D\left(X^{*}\right)\).

We observe that by the construction of the elements of \(T(A)\) (see Lemma 5) it follows that if \(d \in T\left(S\left(X^{*}\right)\right)\), then the
subset \(d^{\prime}\) of \(S\left(X^{*}\right)\) for which \(d^{\prime} \times\left\{S\left(X^{*}\right)\right\}=d \cap\left(C \times\left\{S\left(X^{*}\right)\right\}\right)\) is an element of \(D\left(X^{*}\right)\).

Conversely, if \(d^{\prime}\) is an element of \(D\left(X^{*}\right)\), then there exists an element \(d \in T\left(S\left(X^{*}\right)\right)\) such that \(d^{\prime} \times\left\{S\left(X^{*}\right)\right\}=\) \(\mathrm{d} \cap\left(\mathrm{C} \times\left\{\mathrm{S}\left(\mathrm{X}^{*}\right)\right\}\right)\).

We define a map \(h\left(X^{*}\right)\) of \(T\left(S\left(X^{*}\right)\right)\) into \(D\left(X^{*}\right)\) setting \(h\left(X^{*}\right)(d)=d^{\prime}\). Obviously, the map \(h\left(X^{*}\right)\) is one-to-one and "onto."

Now, we prove that \(H\left(X^{*}\right)\) is a homeomorphism of \(T\left(S\left(X^{*}\right)\right)\) onto \(D\left(X^{*}\right)\). Indeed, let \(h\left(X^{*}\right)(d)=d^{\prime}\) and let \(V\) be an open neighbourhood of \(d^{\prime}\) in \(D\left(X^{*}\right)\). Since \(D\left(X^{*}\right)\) is an upper semicontinuous partition of \(S\left(X^{*}\right)\) we may assume that there is an open subset \(V^{\prime}\) of \(S\left(X^{*}\right)\) such that the set \(V\) is the set of all elements of \(D\left(X^{*}\right)\) which have a non-empty intersection with \(V^{\prime}\). There exists an integer \(m \geq 0\) such that st \(\left(d^{\prime}, m\right) \subseteq V^{\prime}\). Obviously, there is a subset \(t\) of \(L_{m}\) for which \(C_{t}=s t\left(d^{\prime}, m\right)\). Consider the set \(O\left(C_{t}, S(A)\right)\). This is an open subset of \(T(A)\) which contains the element \(d\). Set \(W=T\left(S\left(X^{*}\right)\right) \cap O\left(C_{t}, S(A)\right)\). The set \(W\) is an open neighbourhood of \(d\) in the space \(T\left(S\left(X^{*}\right)\right)\).

We prove that \(h\left(X^{*}\right)(W) \subseteq V\). Indeed, let \(d_{1} \in W\). Then, \(d_{1} \subseteq C_{t} \times s(A)\). Hence, if \(h\left(X^{*}\right)\left(d_{1}\right)=d_{i}^{\prime}\) then \(d_{i} \subseteq c_{t}\) and, hence, \(d_{i}^{\prime} \subseteq V^{\prime}\), that is, \(d_{l}^{\prime} \in V\). Thus, \(h\left(X^{*}\right)(W) \subseteq V\) and, hence, \(h\left(X^{*}\right)\) is a continuous map.

Conversely, let \(W\) be an open neighbourhood of \(d\) in \(T\left(S\left(X^{*}\right)\right)\) and \(d=\left(h\left(X^{*}\right)\right)^{-1}\left(d^{\prime}\right)\). We may assume that \(W=T\left(S\left(X^{*}\right)\right) \cap O\), where \(O\) is an element of \(O(A)\) (see section II.4): There is a neighbourhood \(O_{1} \in O(A)\) of \(d\) in \(T\) such
that \(d \in O_{1} \subseteq c l\left(O_{1}\right) \subseteq O(\operatorname{see} L e m m a 9)\). Let \(O_{1}=O(U)\), where \(U \in U(A)\). By \(V^{\prime}\) we denote the open subset of \(C\) for which \(V^{\prime} \times\left\{S\left(X^{*}\right)\right\}=U U\left(C \times\left\{S\left(X^{*}\right)\right\}\right.\). Obviously, \(d^{\prime} \subseteq V^{\prime}\). By \(V\) we denote the open subset of \(D\left(X^{*}\right)\) which consists of elements \(d_{i}^{\prime}\) of \(D\left(X^{*}\right)\) such that \(d_{i}^{\prime} \subseteq V^{\prime}\). Obviously, \(V\) is an open neighbourhood of \(d\) in \(D\left(X^{*}\right)\).

We prove that \(\left(h\left(X^{*}\right)\right)^{-l}(V) \subseteq W\). Indeed, let \(d_{i} \in V\). Then, \(d_{i}^{\prime} \subseteq V^{\prime}\). Hence, \(d_{i}^{\prime} \times\left\{S\left(X^{*}\right)\right\} \subseteq U\). This means that if \(d_{l}=\left(h\left(X^{*}\right)\right)^{-l}\left(d_{1}^{\prime}\right)\) then \(d_{1} \cap U \neq \varnothing\). By Lemma 8, \(d_{1} \in \operatorname{cl}(O(U))\) and, hence, \(d_{1} \in O\). Since \(d_{1} \in T\left(S\left(X^{*}\right)\right)\), \(d_{1} \in W\). Thus, \(\left(h\left(X^{*}\right)\right)^{-1}(V) \subseteq W\) and the map \(\left(h\left(X^{*}\right)\right)^{-1}\) is continuous. Hence, the map \(h\left(X^{*}\right)\) of \(T\left(S\left(X^{*}\right)\right)\) onto \(D\left(X^{*}\right)\) is a homeomorphism.

Let \(\left(S\left(X_{1}^{*}\right), D\left(X_{1}^{\star}\right)\right)\) and \(\left(S\left(X_{2}^{*}\right), D\left(X_{2}^{*}\right)\right)\) be two different elements of \(A\). We prove that the set \(T\left(S\left(X_{1}^{*}\right)\right) \cap T\left(S\left(X_{2}^{*}\right)\right)\) is finite.

Indeed, the elements \(S\left(X_{1}^{*}\right)\) and \(S\left(X_{2}^{*}\right)\) of \(S(A)\) are different. Hence, there exist an integer \(k \geq 0\) and two different elements \(\bar{\alpha}_{1}\) and \(\bar{\alpha}_{2}\) of the set \(\Lambda_{k+1}\) such that \(s\left(X_{1}^{\star}\right) \in S\left(\bar{\alpha}_{1}\right)\) and \(S\left(X_{2}^{\star}\right) \in S\left(\bar{\alpha}_{2}\right)\).

Suppose that \(d \in T\left(S\left(X_{1}^{*}\right)\right) \cap T\left(S\left(X_{2}^{*}\right)\right)\). Obviously, \(d\) is an element of the first kind. Let \(d=d(\bar{\alpha}, m), \bar{\alpha} \in \Lambda_{q}\) and \(0 \leq m \leq q-1\). If \(q \geq k+1\) then, either \(\bar{\alpha} \geq \bar{\alpha}_{1}\) or \(\bar{\alpha} \underline{\propto} \bar{\alpha}_{2}\). This means that, either \(d \cap\left(C \times S\left(X_{1}^{\star}\right)\right)=\varnothing\), or \(\mathrm{d} \cap\left(\mathrm{C} \times \mathrm{S}\left(\mathrm{X}_{2}^{\star}\right)\right)=\varnothing\). In both cases, \(d \& T\left(S\left(X_{1}^{\star}\right)\right) \cap \mathrm{T}\left(S\left(X_{2}^{*}\right)\right)\).

Hence, \(q \leq k+1\). Obviously, the set of all points \(d(\bar{\alpha}, m)\) of \(T\) for which \(\bar{\alpha} \in \Lambda_{q}, 0 \leq m \leq q-1\) and \(q \leq k+1\) is finite. Hence, the set \(T\left(S\left(X_{1}^{*}\right)\right) \cap T\left(S\left(X_{2}^{*}\right)\right)\) is finite, too.

Now, let \(X\) be an element of \(R(\leq \alpha)\). By \(g(X)\) we denote a homeomorphism of \(X\) into \(D\left(X^{*}\right)\). Set \(i_{X}=\left(h\left(X^{*}\right)\right)^{-1} \circ g(X)\). Obviously, \(i_{X}\) is a homeomorphism of \(X\) into \(T\left(S\left(X_{1}^{*}\right)\right) \subseteq T\). Hence, the space \(T\) is a universal element of the family \(R(\leq \alpha)\).

Let \(X_{1}\) and \(X_{2}\) be two different elements of \(R_{1}\). Then, \(S\left(X_{1}^{*}\right)\) and \(S\left(X_{2}^{*}\right)\) are different elements of \(S(A)\). Hence, the set \(T\left(S\left(X_{1}^{*}\right)\right) \cap T\left(S\left(X_{2}^{*}\right)\right)\) is finite. Then, the set \(i_{X_{1}}\left(X_{1}\right) \cap\) \(\mathrm{i}_{\mathrm{X}_{2}}\left(\mathrm{X}_{2}\right)\) is finite, too. Thus, the space T has the property of finite intersection with respect to subfamily \(R_{1}\) of \(R(\leq \alpha)\). The proof of the theorem is completed.

Corollary l. In the family \(\mathrm{R}(\leq \alpha)\) there exists a universal element having the property of finite intersection with respect to the subfamily \(\mathrm{R}^{\mathrm{COM}}(\underline{\leq})\) of all compact spaces having rim-type \(\leq \alpha\).

Using Theorem 8 of \([I-T]\) and Theorem 3 of \(\left[I_{4}\right]\) we have

Corollary 2. Let \(\alpha=\beta+n\) where \(\beta\) is a limit ordinal number (or 0) and n is a non-negative integer. There exists a continuum of rim-type \(\leq \beta+2 n+\min \{\alpha, 1\}\) having the property of finite intersection with respect to the family of all compact spaces of rim-type \(\leq \alpha\).

In particular,

Corollary 3. There exists a continuum of rim-type 2 having the property of finite intersection with respect to the family of all rim-finite compact spaces.

Corollary 4. For a given space X of rim-type \(\leq \alpha\) there exists a space of rim-type \(\leq \alpha\) having the property of finite intersection with respect to the family of all closed subsets of X .

\section*{References}
[I \(]_{1}\) S. D. Iliadis, The rim-type of spaces and the property of universality (to appear in the Houston J. of Math.).
\(\left[I_{2}\right]\) \(\qquad\) , Rational spaces and the property of universality (to appear in Fund. Math.).
\(\left[I_{3}\right]\) \(\qquad\) , Rim-finite spaces and the property of universality, Houston J. of Math. 12 (1) (1986), 55-78.
\(\left[I_{4}\right]\) \(\qquad\) , On the rim-type of spaces, Lecture Notes in Mathematics 1060 (1984), 45-54.
[I-T] \(\qquad\) and E. D. Tymchatyn, Compactifications of rational spaces of minimum rim-type (to appear).
[K] J. L. Kelley, General topology, New York (1957).
[Ku] K. Kuratowski, Topology, Vol. I, II, New York (1966, 1968).
[M-S] S. Mazurkiewicz and W. Sierpinski, Contribution a la topologie des ensembles denombrables, Fund. Math. 1 (1920), 17-27.
[N] G. Nöbeling, ひ̈ber regular-eindimensionale Räume, Math. Ann. 104 (I) (1931), 81-91.

University of Patras
Patras, Greece```

